
Integrating the Unreliable Multicast Inter-ORB

Protocol in MJaco

Alysson Neves Bessani1, Lau Cheuk Lung2,
Joni da Silva Fraga1, Alcides Calsavara2

1 Laboratório de Controle e Microinformática - DAS
Universidade Federal de Santa Catarina - Florianópolis - SC Brazil

{neves,fraga}@das.ufsc.br,
2 Graduate Program in Applied Computer Science - CCET

Pontifical Catholic University of Paraná - Curitiba - Paraná - Brazil
{lau,alcides}@ppgia.pucpr.br

Abstract. This paper presents our experience in implementing OMG
Unreliable Multicast Inter-ORB Protocol specifications into an ORB. An
integration model is proposed to allow the coexistence of two different
protocol stacks (IIOP/TCP/IP and MIOP/UDP/IP multicast) making
possible a large spectrum of middleware support for distributed objects
communication. That integration model is discussed in this paper, giving
evidence of the compatibility of our approach with the CORBA specifi-
cations. In order to evaluate that integration, different tests were made
considering interoperability, performance and scalability aspects.

1 Introduction

Nowadays, the CORBA architecture (Common Object Request Broker Architec-
ture) [9] constitutes the most important middleware specification for supporting
distributed objects. The main component of this architecture is the ORB (Ob-
ject Request Broker) which, among other things, implements the communication
semantics defined in the architecture. Messages and formats follow the General
Inter-ORB Protocol (GIOP) which is a generic protocol used to support remote
invocation. GIOP is a protocol that allows communication despite of different
ORB implementations and transport technologies. The Internet Inter-ORB Pro-
tocol (IIOP) specifies how GIOP messages are exchanged using TCP/IP connec-
tions. Although the IIOP and TCP/IP combination provides a reliable solution
for point-to-point communications - handling flow control errors, FIFO order,
etc. - many other communication paradigms, when implemented over these pro-
tocols, may not use some important characteristics of lower levels of the network.
This difficulty always reflects in the performance costs of these paradigms.

Some distributed applications depend on abstractions such as group com-
munication to allow a sender to multicast messages to many receivers. These
applications (e.g. groupware systems) require a better employment of network
services. In 1999, the OMG published a request for proposal defining a set of re-
quirements for an unreliable multicast service based in IP multicast. IP multicast



is an extension of the Internet Protocol (IP) that enables multipoint communica-
tions [2]. This protocol is characterized by the absence of guarantees and by it’s
high performance, particularly in local network. Therefore, in 2001, the OMG
published the UMIOP specifications (Unreliable Multicast Inter-ORB Protocol)
[10], which specifies a concretization of GIOP over the stack UDP/IP multicast.
UMIOP is the key for providing an unreliable multicast into the ORB.

The group paradigm in open systems has been the theme of many research
projects [6, 4, 7] and standardization proposals [3, 8, 10]. To provide the concept
of group to distributed applications, it is necessary a combination of protocols
that deal with group management and group communication. Within the OMG,
these facilities are being standardized separately. Group management (e.g. fault
detection and membership) is defined in the FT-CORBA specifications [8]3.
However, OMG has not yet published a specification for group communication in
the CORBA architecture that meets different levels of guarantees and semantics
available in the usual group processing models [5]. OMG started to deal with
group communication with the publication of the UMIOP specifications, for
unreliable multicast - the least restrictive model of group communication.

This paper presents our experiences with the integration of UMIOP into
an ORB that complies with OMG specifications. Our integration model is dis-
cussed in this text, which shows evidence of the compliance of our approach
to the CORBA specifications. For evaluating this implementation, tests were
performed concerning interoperability, performance and scalability aspects. We
present comparative measures collected with our unreliable multicast mechanism
(based on the MIOP4/UDP/IP multicast stack), and the use of UDP sockets for
IP multicast communication.

In section 2 the paper presents a short description of the IP multicast. As-
pects of the specification describing the MIOP and the necessary structures to
the ORB for providing unreliable multicast are presented in section 3. In section
4, we propose an integration model aiming to preserve two protocol stacks: one
for point-to-point, and the other for multipoint communications. Details of im-
plementation are described in section 5. In section 6, some tests and measures
are presented and discussed and, finally, in section 7, the final considerations of
this work are presented.

2 IP Multicast

Through IP multicast service, it is possible to send an IP packet to a group
of hosts identified by an IP address. When a datagram is sent to a group, an
attempt is made to deliver it to each host member of this group. However, as
in IP unicast, there is no guarantee of delivery. That is, this service does not
provide any guarantees concerning: the delivery of packets to all members of the
group, the integrity of the packets and the packet delivery order.

3 Currently the FT-CORBA specification is part of the CORBA specification [9].
4 UMIOP is the name of the specification, MIOP is the name of the protocol defined

in this specification.



Operation Description

CreateGroup Create a temporary group with the invoking host as its only member

JoinGroup Add the invoking host to the specified group (permanent or temporary)

LeaveGroup Remove the invoking host from the specified group

Table 1. IP Multicast Management Operations.

The IP multicast specifications [3] define two types of groups: permanent
groups and temporary groups. Furthermore, there is no membership service.
Each host knows what group it belongs to, but does not know about the other
members. The management of members of a group is dynamic, so the associa-
tion of IP addresses with hosts is quite flexible. Thus, at a given instant, a host
may belong to one or more groups, or to no group. This dynamic association is
carried out through three management operations, provide by the IP module.
These operations are shown in table 1.Note that there is no operation for the
destruction of groups, which is justified by the fact that permanent groups can-
not be destroyed and temporary groups only exist as long as their number of
members is more than zero.

Management operations are implemented through the IGMP protocol (Inter-
net Group Management Protocol) [2], which is used in communication among
local network hosts and multicast agents. Every network that supports IP multi-
cast must contain at least one active multicast agent, usually implemented in the
gateway of the network. The agent is the entity encharged for groups creation
and maintenance, and for messages exchange in the Internet. Each multicast
agent must know which groups have members in its network.

3 UMIOP Object Model

The current CORBA objects model (stack IIOP/TCP/IP) specifies an Interop-
erable Object Reference (IOR) which is associated to a single implementation.
Furthermore, the CORBA remote method invocation implements an at-most-
once semantic based on TCP connections that provides error handling that adds
reliability to the point-to-point communication regarding the message delivery
and, also, the FIFO ordering that can be defined to wait or do not for a reply.

The delivery of GIOP messages via unreliable multicast service establishes
a different communication context from that cited above. The UMIOP speci-
fication defines an unreliable multicast mechanism for communications among
distributed objects. At distributed object level, these mechanisms are reduced to
the mapping of GIOP messages in UDP/IP packets - the MIOP protocol - and
some facilities for group management. Information about the group is added in
its corresponding reference (group IOR) for the group management. The group
management is simplified since reliability is not required in MIOP and a mem-
bership service is unnecessary as there is no need to know how many or who are
the group members.



Actually, a group of objects in the UMIOP specification consists of informa-
tion about how to access it through the network. This information is contained in
the UIPMC profile, available through the group reference (figure 1). The UIPMC
profile differs from the traditional IIOP profile presented in a single object IOR
by the following points:

– There is no object key5;

– The host IP address of the IIOP profile is replaced on the UIPMC by a field
that must contain an IP multicast address, or an alias of this address.

Object keys and host addresses absences in the UIPMC profile is pertinent:
the unreliable multicast service is defined under the assumption of non-existence
of membership. Even so, it is possible to reach group members (an object) from
the UIPMC profile, using POAs (Portable Object Adapter6) in the hosts that
received the multicast message.

ProfileBodyTAG_UIPMCTAG_INTERNET_IOP ProfileBody

IIOP
Version Host Port Object

Key Components

Componentscomponents
Number of

ComponentsPortMulticast
Address

MIOP
Version

components
Number of Tag Group

Component
Tag Group IIOP

Component Components
Other

Component
Version

Group
Domain
Id

Object
Reference
ersion

Object
Group
Id

Type_id Number of
profiles IIOP_Profile UIPMC_Profile

IIOP
Version Host Port Object

Key Components

Componentscomponents
Number of

IIOP Profile
Gateway

UIPMC Profile

Group Information

IOR

Group IIOP Profile

Fig. 1. Group Interoperable Object Reference.

This scenario is much more complex than that of IIOP profiles, which iden-
tify only one interface implementation. Besides protocol version, IP multicast
address, and port information, the UIPMC profile also provides a set of other
components such as: an IIOP profile for requests demanding replies (multicast is
used only for oneway requests) and a group information structure which contains
group id, domain and version.

5 The object key is the object id into the ORB. It is used, with the IP address and
ORB port, to locate an object implementation.

6 ORB component responsible to activate implementations and also to forward re-
ceived messages to these.



Besides the UIPMC profile (mandatory), a group IOR can optionally have
one or more IIOP gateway profiles to be used by clients that do not support IP
multicast. A group IOR is then used, basically, in three types of invocations:

– When the client is unable to execute multicast through its ORB, an IIOP
gateway supplies the information needed in this case;

– When client and servers have UMIOP support, implement the same inter-
face and belong to the same group, UIPMC profile is used for multicasting
messages among the group members;

– When a group member is on an IIOP server and communicates using two-
way operations, IIOP group profile is needed to support it.

Figure 1 presents the complete structure of a group IOR, with the UIPMC
profile, group information, IIOP gateway and IIOP group profile of an object
group. As mentioned before, the UIPMC profile does not define object keys
to access members of a group. Thus, a POA must use the associated group
information (id, domain and version) described at the UIPMC profile to identify
local members of the group.

Association among groups and local members implementations requires a
new internal table in the POA. The Active Groups Map table, using UIPMC
group information, makes accessible through its adaptor the corresponding im-
plementation of local group members. In this way, the inclusion of members
in a group is always performed locally through calls to the activated POAs.
For that, UMIOP specifications provide four new operations on the interface
PortableObject:POA. These operations make it possible to associate/dissociate
registered implementations to the group references; as well as to make lists of
the implementations that belong to a given group, offering, a sort of local mem-
bership service.

In figure 2, the Java code shows the association of an object implementation
to a group reference. Lines 1 - 4, show how ORB and POA references are ob-
tained. Next, in lines 5 - 7, a group IOR is created through a corbaloc7 URL. This
URL defines a UIPMC profile to the group and an IIOP profile for operations
with reply.

After getting the group IOR, lines 8 and 9 present the instantiation of the
object member and its activation by the POA. The line 10 shows the operation
associate reference with id, an extension of the POA interface, used for as-
sociating the activated implementation to the group reference, and finally, at
line 11 the ORB is activated, making it ready to receive requests.

When compared to other group supports (e.g., FT-CORBA), group creation
and member association showed in figure 2 can be considered very complex, in-
volving low-level structures manipulations. To avoid this problem, the UMIOP
specification defines an optional service object called MGM (Multicast Group
Manager), which is introduced to offer a high level group management interface.
The MGM service supplies less complex operations for creating and destroying

7 Used to represent object references as URLs.



1 ORB orb = ORB.init(args,null);

2 Object poaObj = orb.resolve_initial_references("RootPOA");

3 POA poa = POAHelper.narrow(poaObj);

4 poa.the_POAManager().activate();

5 Object group = orb.string_to_object("corbaloc:" +

6 "miop:1.0@1.0-mydomain-1-2/225.1.2.5:7676;" +

7 "iiop:1.1@localhost:1236/MyObjectKey");

8 MyGroupMemberImpl member = new MyGroupMemberImpl();

9 byte[] memberId = poa.activate_object(member);

10 poa.associate_reference_with_id(group,memberId);

Fig. 2. Association in POA of a Group IOR with an Implementation Object.

groups. Other operations for managing groups properties (group IIOP compo-
nents, gateway, multicast address and port) are available too.

At message level, a GIOP message is always encapsulated in a set of MIOP
packets. A MIOP packet is composed by a header and a GIOP block of data.
The maximum size of a GIOP data block that can be contained in a MIOP
packet usually depends on the frame size supported by the network utilized.

4 UMIOP Integration Model

Figure 3 presents our UMIOP integration model, implemented in the MJaco

project. MJaco is an extension of JacORB [1], a CORBA compliant ORB. The
architecture MJaco is proposed to allow the co-existence IIOP/TCP/IP and
MIOP/UDP/IP multicast protocol stacks in the same ORB, contributing in this
way, for a better interoperability and portability. In figure 3, we presents a ORB
integrating two protocol stacks: one for point-to-point communication based on
IIOP mapped on TCP/IP services; and the other one for multipoint communi-
cation composed by MIOP, using UDP/IP multicast as a transfer mechanism
for its packages. Our integration model presents several elements defined in the
specification in its support with the two communication models. Also, extensions
and other components not defined in the specifications were added to the sup-
port whose purpose is to facilitate the different stacks integration and improve
the efficiency of the set.

Our approach proposes a local object service MGM+ which extends the
MGM of the UMIOP specifications, by adding functionalities for group man-
agement at object level. By creating group references, implemented through
ORB calls, MGM+ registers the created group IOR on a CORBA name server,
making the group reference automatically available to any other application.
Other MGM+ facilities concerning the membership changes (locally) are avail-
able through add member and delete member operations. These operations cen-
tralize in the MGM+ the interactions for associating groups and implementa-
tions of local members through active groups map of the POA (section 3).



delete_member
add_member
delete_object
create_object

MGM+

Network
IP

TCP
IP multicast

UDP

IIOP

Adapter
Basic

MIOP

Adapter
Multicast

ORB Core

Delegate
POA

Skeleton
Stub

Implementation
Aplication

Fig. 3. MJaco Architecture.

Another component, part of our integration model, is the Multicast Adaptor
which is responsible for managing the multicast sockets used in the reception of
MIOP packets and for delivering messages addressed to group members by the
active POAs. MIOP module executes tasks described in the UMIOP specification
which refers to the translation of the GIOP messages into collections of MIOP
packets and vice-versa. POA and Delegate are the main ORB components that
were extended. Delegate is altered in some points in order to support the sending
of GIOP messages to groups; it is the first internal component of the ORB to
be activated when a method call is executed on the stub. In our approach,
the delegate decides, based on the corresponding method call, which protocol
stacks will be used to send a GIOP message. The POA, besides the addition
of the four primitives described in the UMIOP specification, must be altered to
search the active groups map in order to obtain implementations of local group
members. The local group members receive through the POAs the messages
addressed to the group to process the corresponding method requests. POA
is also responsible for the activation of the multicast adaptor which executes
operations on IP multicast interface for group management. For example, when
an associate reference with id call is made to register the first member of a
group in the ORB, POA activates the multicast adaptor to create a socket and
to execute the IP multicast operation JoinGroup at the address defined on the
UIPMC profile present in the group reference. From then on, the ORB receives
messages addressed to this group. The other POA operations related to groups
result in the execution of IP multicast management operations.

5 MJaco: Implementing UMIOP on JacORB

For implementing the UMIOP specifications and the model presented in the
section 4, the JacORB platform (http://www.jacorb.org) was selected. JacORB



is a open source ORB that was chosen because of its recognized quality and
performance and our experience with it in other two projects: GroupPac and
JaCoWeb (http://www.das.ufsc.br/grouppac).

Figure 4 presents a class diagram in UML describing classes that process
requests within the client JacORB. The set of classes shown are activated when
a CORBA client makes a method call on the stub. The stub is responsible for the
serialization of the method invocation; the message is sent using the Delegate

class. This class maintains an open TCP connection to the server ORB, where
the implementation corresponding to the stub is registered and it implements
the operations related to the CORBA::Object, the base interface of all defined
for CORBA objects.

«generated»
_<Interface>Stub

<Interface>

«OMG»
ObjectImpl

«OMG»
Delegate

ClientConnection

Request
invokes

creates

0..*

dispatch request

0..*

Fig. 4. Request Processing on CORBA Clients.

On the server side, the requests processing is much more complex. Figure 5
presents a class diagram with the main components in the request processing
activated by a GIOP message arrival in the socket.

An object of the Listener class waits for requests on one TCP connection.
When a request is received in this port, the object creates a new instance of
the RequestReceptor class, which is responsible for interpreting the request
and forwarding it to a destination POA8. Once the POA is located, the request
is placed in a list to be processed by the target implementation (subclass of
Servant). Note that some classes showed in figure 5 have the stereotype thread;
these classes represent the points of JacORB structure that implement their
multithreading architecture.

To process MIOP packets, a new structure of classes must be added to the
JacORB diagrams (showed in figures 4 and 5) to represent classes that send and
receive MIOP packet collections. Figure 6 presents a new diagram with these new
classes. In this diagram we identify Delegate class, within the ORB, as the point
for communication stack selection. In this class, when the IOR of the destination
object corresponds to a group reference and the requested operation is oneway,
the processing is deviated to the class MulticastSender, which encapsulates the
GIOP request in a collection of MIOP packets to be sent via IP multicast.

On the server, an object of MulticastListener class is created for each
group in which the ORB has members registered (one listener for each port and

8 The POA in which the target implementation is registered.



BasicAdapter

«thread»
Listener

«thread»
RequestReceptor

«OMG»
ServerRequest

«OMG»
ORB

«OMG»
POA

«OMG»
POAManager

«thread»
RequestControler

RequestQueue

RPPoolManager

AOM

«thread»
RequestProcessor

«OMG»
Servant

«generated»
<Interface>POA

«user»
<Interface>Impl

creates

creates

1..2

creates

0..*

creates

deliver request

creates

controls

1..*

creates

deliver request

maintains

enqueue request

maintains

dequeue request

manages

1..*

incarnate

contains

0..*

Fig. 5. Request Processing on CORBA Servers.

«OMG»
Delegate

MulticastSender
«thread»

MulticastListener

MulticastAdapter

FragmentedMessage

TimeoutTask

MRRFactory

«thread»
MulticastRequestReceptor

«OMG»
ServerRequest

«OMG»
POA

multicast message

0..* 0..*

Network Link

uses

put packed data

0..*
creates

0..*

destroys

maintains

creates

0..*

maintains

creates

0..*

starts

0..*

creates

deliver request

1..*

Fig. 6. UMIOP Extensions.

one port for each group) by the multicast adaptor (class MulticastAdapter).
These listeners receive and store MIOP packets until to complete the correspond-
ing GIOP message. When that message is completed, a thread (instance of class
MulticastRequestReceptor) is activated from the thread pool to receive the
original GIOP message and pass it to all POAs of the ORB. In each POA, using
the active groups map (AGM) and group information contained in the header of
the GIOP message, a set of local object identifiers belonging to the target group
are located in this POA.

Note that the request is forwarded to all the active POAs, even those that
do not register objects implementations of the destination group. This algorithm
for delivery was developed with the objective of making the class AGM as simple
as possible and of avoiding the processing overhead imposed by the destination
POA search. Another factor that justifies this option is the fact that in the
majority of the applications, not many POAs are activated at the same time.



6 Obtained Results

This section presents some tests performed with the aim of evaluating the imple-
mentation performance of MJaco. The tests were executed on a local network
using computers with the same configuration9, connected to the same hub. Two
versions of a distributed program were implemented for measuring round-trip
times10: the first one using multicast sockets and the other using MJaco.

The first experiment was setup as follows: two instances of the test program
were initiated on four machines, thus eight members in the group. One of these
members was the sender that sent message of variable size to the group. To
configure the round-trip, the sender was kept waiting for all the confirmations
from members who received that message. This procedure was repeated 10000
times. The experiment was executed with each of the program versions built,
and the results obtained are shown in figure 7.

Fig. 7. MJaco Performance.

In figure 7, it can be verified that the use of multicast sockets program re-
sults in a performance approximately 60% better (on the average) than the one
using MJaco. This was expected, since MJaco places a whole software layer
for object and request management, as well as for message serialization (see
figure 3); but distributed programs using multicast sockets in some part of the
application code might have to perform the same functionalities that our little
multicast sockets program does not implement. It is also worth pointing out that
the MJaco implementation was realized with the least possible dependence on
JacORB, which caused some performance losses that must be minimized since
the implementations are evolving.

An important point to be emphasized is that, in this current version of the
prototype, starting with 50 Kbyte messages the system begins to lose some
messages. That is due to the weak reliability of the UDP/IP communications
which does not avoid packet losses.

In the second experiment we evaluated the scalability of MJaco. The tests
were executed in following way: on each host an instance of the test program

9 Pentium III 900 Mhz with 198 Mb RAM memory over Ethernet 10Mbps.
10 round-trip time represents the time period between the beginning of the message

multicasting to all the group members and finishing with the sender reception of the
last confirmation message sent by the receiving members.



was initiated, specifying how many objects of the group had to be instantiated
and registered on the MJaco support. One of the object members created on
the system hosts was the sender, the one that multicast the message with 4
Kbytes of data and was responsible for measuring the round-trip times. The
number of messages multicast during a round-trip was 4n + 1 where n is the
number of group objects registered in each host (one request message and an
acknowledgement for each member object of the group). The round-trip process
was repeated for a different number of objects per host and the results of these
experiments are shown in figure 8.

Fig. 8. MJaco Scalability.

Figure 8.a shows a situation in which, when we increase the group members,
the round-trip time also increases considerably. This is due to the substantial
increasing of the number of messages generated on the network. For instance,
with two objects per host (eight members in the group), nine messages are ex-
changed for one round-trip (one data message and eight acknowledgements). For
ten objects per host, 41 messages are exchanged in the network. So, if the round-
trip duration is divided by its corresponding message number, an estimative is
obtained from average transfer time for one message in the system. Figure 8.b
shows these values with respect to the number of group members. In this graph,
it is possible to verify that this average time is linear, and increases approxi-
mately 0.1 ms for each new object included in each system host. According to
the results of this last test, we conclude that the solutions adopted in MJaco

prototype presents a good scalability.

7 Conclusions

The Unreliable Multicast Inter-ORB Protocol is the first step towards a complete
group communication solution in the CORBA architecture. We are developing
studies on multicast protocols and evaluating different ways to adapt them to
the CORBA, especially the UMIOP specifications, since the objective of this
project is to implement a reliable multicast mechanism over MIOP on MJaco.



For this reason, questions involving loss of packets, performance analysis, fault-
tolerance, etc, were not discussed here. Our intention, in this paper, is to have
an unreliable multicast support available into an ORB.

In this paper our solutions were presented for the integration of IP multicast
into a CORBA ORB. The integration model proposed does not jeopardize as-
pects of interoperability and portability of ORB as a whole. The ORB is capable
of making invocations using both IIOP and MIOP. This model can very well be
adopted to integrate other communication protocols, since they have an available
API. Furthermore, our experiences with MJaco implementation was also pre-
sented in this paper. This implementation, which had as a basis the integration
model proposed, were built over JacORB, a Java free ORB. These implementa-
tions can be obtained on the Web at http://grouppac.sourceforge.net/.

We are now focusing our efforts to integrate MIOP to the FT-CORBA in-
frastructure. The solutions presented here are part of GroupPac project, which
uses the Fault-Tolerant CORBA specifications, towards the conception of active
replication models [11], inexistent in current OMG specifications.

References

1. Gerald Brose. Jacorb: Implementation and design of a javaorb. In Proceedings of

IFIP WG 6.1 International Working Conference on Distributed Applications and

Interoperable Systems, 1997.
2. S. E. Deering. Host extensions for ip multicasting (rfc 988). IETF Request For

Comments, July 1986.
3. S. E. Deering and D. R. Cheriton. Host groups: A multicast extension to the

internet protocol (rfc 966). IETF Request For Comments, December 1985.
4. Pascal Felber, Benot Garbinato, and Rachid Guerraoui. The design of a CORBA

group communication service. In Proceedings of the 15th Symposium on Reliable

Distributed Systems, pages 150–159, Niagara-on-the-Lake, Canada, 1996.
5. Vassos Hadzilacos and Sam Toueg. A modular approach to the specification and

implementation of fault-tolerant broadcasts. Technical report, Department of Com-
puter Science, Cornell University, New York - USA, May 1994.

6. Silvano Maffeis. Adding group communication and fault-tolerance to CORBA.
In Proceedings of the USENIX Conference on Object Oriented Technologies, pages
135–146, Monterey, Canada, June 1995.

7. L. Moser, P. Melliar-Smith, P. Narasimhan, R. Koch, and K. Berket. A multicast
group communication protocol, engine, and bridge for corba. Concurrency and

Computation Pratice and Experience, 13(7):579–603, June 2001.
8. Object Management Group. Fault-tolerant corba specification v1.0. OMG Stan-

dart, 2000.
9. Object Management Group. The common object request broker architecture: Core

specification v3.0. OMG Standart formal/02-12-06, December 2002.
10. OMG. Unreliable multicast inter-orb protocol specification v1.0. OMG Standart

ptc/03-01-11, October 2001.
11. Fred B. Schneider. Implementing fault-tolerant service using the state machine

aproach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.


