Consensus Service to Solve Agreement Problems

Giovani Pieri, Joni da Silva Fraga Lau Cheuk Lung
Departamento de Automag e Sistemas Departamento de Inforatica e Estastica
Federal University of Santa Catarina Federal University of Santa Catarina
Florianbpolis, Brazil Florianbpolis, Brazil
Email: {pieri, fragd @das.ufsc.br Email: lau.lung@inf.ufsc.br

Abstract—This paper describes an extension of the ConsensusAfter the servers reach a consensus they reply the decision
Service proposed by Guerraoui and Schiper. The objective is yvalue to the clients.
to provide a standard way to implement agreement protocols pegpjte similarities in agreement problems, each one bas it
resilient to Byzantine faults using an intrusion tolerant service s . P -
built upon virtual machines technology. This is achieved through own speC|f!C|t|es. To deal with therr_1, Guerraoui and Schlp_er
the implementation of a Generic Consensus Service (GCS).Use what is called a consensus filter. The consensus filter
GCS separates specificities of different agreement problems is responsible for calculating a proposal to be used in the
from consensus in a clear way, using client-server interaction, consensus protocoL given the data received from C|ientsy

allowing total independence between consensus protocols usedy, hat the protocol outcome satisfies the given agreement
and problem specific specializations. Besides that, the framework problem

provides a set of properties and guarantees. It will be shown how])
the GCS works, its general properties and how it may be used to ~ Recently there has been a trend trying to achieve greater
solve some agreement problems, for instance, reliable and atomicresilience [5], [6], [8], [17], [18] despite the existencé o

broadcast.) Byzantine faults by trusting in part of the system. With

I ndex Tgrms—Dependgble Systems, Consensus, Intrusion tol- adequate reliable components [6], [15], [16] it is possilole
erance, Distributed algorithm, Fault tolerance

tolerate up tof out ofn = 2 f+1 faulty processes and decrease

the number of steps required by an agreement protocol. One
of the problems with this approach is that it requires a &uist

Agreement problems, such as atomic commitment, grogpmponent, therefore some kind of measure has to be taken
membership, and total order broadcast are at the heartt@fguarantee its inviolability. The generic consensus iserv
many distributed systems. These problems share one caiiiews us to take advantage of this new trend while not having
mon characteristic, they require that each process afeer tbh make assumptions on every node of the system. Due to
completion of the protocol agrees on the outcome of thRe complete isolation between the execution of the comsens
distributed computation that has taken place. Usually eagtotocol from the agreement problem, only those who execute
one of these problems is tackled separately and solved thg consensus are augmented with trusted components.
specialized algorithms. However, in [19] it was proposeatth The rest of the paper is structured as follows. Section Il
one of the simplest agreement problems, namely consensiisfines the system model, our assumptions, processes behav-
should be used as a paradigm to build distributed protocoisrs and the architecture. Section IV presents the generic
Besides, it has been shown that efficient protocols to solgensensus service, the general algorithms and the internal
agreement problems may be developed using consensus agkking of the framework. Section VI illustrates the use of
building block in Byzantine settings [9], [22]. the generic consensus service on two agreement problems:

In this paper we propose an extension of the Consensus Seliable broadcast and atomic broadcast. Section VII pitsse
vice [13] proposed by Guerraoui and Schiper to a Byzantirggorithms to solve consensus through specially designed
environment, and two consensus algorithms based on differesliable component. Section VIII we show some results and
trusted components. The objective of consensus serviae icbmparisons. Section IX concludes the paper.
provide a intrusion-tolerant common infrastructure toeagr
ment problems. The consensus service proposed in [13]és abl
to tolerate crash faults, we take it one step further andterea This work is based on consensus service introduced by
an intrusion tolerant service. Note that, in our propositithe Guerraoui and Schiper [13] in a crash-only environmentsThi
clients of this service may suffer Byzantine failures. consensus service service aims to separate the resoludtion o

Inside the consensus service each process has a role: initiznsensus from the specificities of each agreement problem.
tor, client and server. In order to solve a problem, theaiuti It provides a framework upon which crash-tolerant agreémen
process decides that a consensus must be started andyrelipftocols may be built by defining a consensus filter, respon-
multicast a message to the clients. The clients receive thible for the reduction of an agreement problem to consensus
message and compute a proposal accordingly. This proposabeveral works proposed the use of consensus protocols as
is sent to the servers responsible for executing the coansendasis upon which agreement problems could be built [19].

I. INTRODUCTION

II. RELATED WORKS

In a Byzantine environment, it has been shown that efficiemmitiators may intersect. Client processes are the ones tha
consensus based algorithms to solve problems such as vehtore an agreement problem that needs to be solved in the
consensus and atomic broadcast may be built on top afntext of an distributed application algorithm AP. By soty
consensus algorithms [9]. a consensus problem, server processes are responsible for

The use of virtual machines and virtualization technologgollecting proposals from clients, creating and decidirnvgla
to deliver intrusion tolerant services have been resedrcheector for replying it to the clients. The initiator process
recently. The VM-FIT architecture [17] is one of the firsstart a consensus instance where clients will query serRers
known proposal of the use of virtualization to achieve faulthe name implies, the GCS is general and server processes
tolerance. In this work, several virtual machines run ondabp are agnostic to the proposals’ and results’ meanings. It is
an only physical system, reducing the implementation cbst i@sponsibility of each client to convert the result recdifrem
the system. Up until now hardware redundancy was obligatdiye servers into a useful value to solve the particular agese
to leverage fault tolerance support. problem in which the clients are interested in. This coneers

In LBFT1 and LBFT2 [5] it is proposed an approachs done through the concept of a consensus filter (CF). This
in which a virtual system assumes the role of a trustéel is composed by a deterministic function, calResul t ,
component. This trusted component orders the requests mtus takes the decision calculated by the servers and pesduc
by clients and delivers them to the service VMs in order tiie value that will be consumed by the client.
be executed. During the execution of a consensus instance, there are at

Wormholes abstractions were introduced in [7]. It proposégost fs faulty server processeg, faulty client processes.
the reduction of implementation costs of a distributed tfauln order to support the presence ¢f faulty clients, our
tolerant algorithm through the use of a trusted componealgorithms require that. = 3f. + 1. The resilience of the
called TTCB which gives access to a private system whiget of server processes is dictated by the consensus protoco
has different synchrony and fault models. Using this systemused. Through the adoption of a reliable component, it will
is possible to implement reliable broadcast amang f+1 be required onlyn, = 2f; 4+ 1 processes to suppofi faulty
participants being up t¢g Byzantine. servers.

Several other proposals for trusted components have beerfhe set of initiators may be composed by any number of
made in recent years. In the A2M [6], it is proposed a trustgfocesses. These processes must ensure that all coregscli
log service. In the Trinc [16], a minimal trusted component ieventually initiate consensus instances.
built on top of a Trusted Platform Module [15], [21], easing. virtual Machines

the system deployment. We will employ virtualization technology in part of the

I1l. SYSTEM MODEL system. The virtual machines run on top of a Virtual Machine

é\{la%nitor (VMM). Our objective in using VMs is to isolate the

malicious aspects from the crash fault tolerance. The dault
hat may be experienced by a VM are unrestricted, while the
M only suffers crash faults.

The VMM provides to all VMs access to trusted compo-

We consider an asynchronous distributed system compo
by a finite set of processds (IT = {p1,p2,...,pn}). These
processes may be classified into correct or faulty during t
execution of the algorithm. A correct process will always

follow its algorithmic specification. Faulty process mayfeu nents, presented in section VII. These components make some

Byzantine fallgres, €., Fhey_behave arbitrarily. A fguftro- services available to the VMs, which prevents equivocgidn
cess may omit or send invalid messages and are not reqw&eg

. . aulty processes. This leads to more resilient algorilatle
to follow the algorithm. Besides that, faulty processes m'%\é yp g

:) o tolerate f out of n = 2f + 1 processes instead 8ff + 1
coordinate in order to stall the progress of the dlstrlbuter quired in a traditional Byzantine system model.

system or lead it to an invalid state. The host operating system may have security flaws (vul-

_ Any two processes are connected through a reliable a“thﬂ'é\'rabilities), however, they can not be exploited throug t
ticated asynchronous channel. These properties guasatfete etwork. This claim is feasible because we assume that the

every sent message is eventually deli_/ered,_ th? sender t operating system is inaccessible. This may be easily
message is known and the message integrity is guarant§gdie mented in a real system using a firewall system or

,tAIthough v;/e do r}ott make ant)_/ synihiﬂny a:ssu_r:;\ptmn In Ord8rsabling/removing the network drivers of the host opexati
0 guarantee salely properties ol the algonihm, We Mugsiem 1n our model, only the VMs have direct access to the
assume eventual synchrony to ensure liveness propeftias. | r]etwork interfaces

system was completely asy_nchronous it would _b_e impossible\ys assume that VMM provides isolation between VMs,
to solve consensus, according to the FLP condition [12]. i.e., faults in one VM can not influence another one. This

A. Process Roles is assumption is guaranteed by virtualization technolagy.(

Lo . VirtualBox, XEN, VMware, VirtualPC, etc).
As consensus service in [13], the generic consensus service

(GCS) proposed here is composedrhyserver,n, client and C. Communication Primitives
n; initiator processes. The servers are running in separated process may use 2 different communication protocols
nodes than clients and initiators. The sets of clients afor broadcasting a message to a given set of processes:

. . . . 1: procedure REQUIRESTART
Rrul ticast andMul ti send. Mul ti send is composed 5. P idC CA(ECULATHD

by two operationsMul ti send() and Receive(). By 3 Rmulticast{SYNC;idC) to clients
using Multisend, if the sender is faulty, then no assumptioff: end procedure ,
. . . . : procedure REQUIRELOCALSTART(:dC)

can be made abqut the reception in the destination prg: " send(SYNC; idC) to p;
cesses. However, if the sender is correct then every correttend procedure
process receives the same message and delivers it through
Recei ve(). Mul ti send is built using reliable point-to-
point communication channels.

The Rmulticast protocol ensures a consistent behavior everk/I

when the message sender is faulty. A Rmulticast is composseednjlr'lc'omuzs(;léer: vr\‘/ri];yig?/;[i]gh :) doesr;?; tc;f sseer:/\g(r:s attacelsé
by two operationsRrul ti cast() and Rdeliver(). A 9 g prop - TIOW

message sent by a correct process throghl t i cast () servers should be able to resume its services after thekattac

will eventually beRdel i ver ed by all correct processes. IfiS Znisrrl]ed. in 1101, 1111in order to red th i
the sender is faulty then correct processes will delivestmae s shown in [10], [11] in order to reduce another agreemen

message or do not deliver it at all. Reliable multicast ard iProbIems, ?S gt(;rnlc brotadcast to Igg?sensus Iortlnf;anze, It

primitives are thoroughly studied in the literature in difént necessary 1o detine a stronger vaiidity property to the iass

model systems [1], [4], [14] agreement definition for crash failures. In this paper, we ar
T ' founded on the definition of vector validity.The serverdect

IV. THE GENERIC CONSENSUSSERVICE PROBLEM proposals and agree a vector that satisfies the vector tyalidi

GCS modularizes the implementation of agreement proBr_operty.
lems in Byzantine settings. This is done by separating the
consensus protocol execution from the agreement problem
that must be solved by the clients. The GCS is presentedAs stated above, the GCS acts as a framework. In this
as a framework to clients and initiators. These processggction we will present the algorithms that form the core of
implement some specific functions and procedures that dhés framework.
called by the application for solving an agreement problem Correctness proofs were developed to the algorithms pre-
using GCS. For instance, the computation of the consensgnted, unfortunately due to space restrictions we willtomi
instance identification, proposal and processing of theltes them. The proofs are available online at: http://www:.ifdau
are all problem-specific and left open to specializations. br/~pieri/SGCProofs.pdf

In the GCS model, the roles of initiators and clients may Each one of the processes in the agreement problem to be
overlap. The initiator starts a consensus instance by Rrastt solved obey an algorithm depending on the role they play in
a SYNC message to the clients. Then, as consequence, ttteeGCS. The initiator processes follow the algorithm 1.sThi
clients will calculate and send messages with their prdposalgorithm provides a procedure callBdqui r eAgr eenent
to the servers, using Rmultisend. These proposals arefigpedo initiate a consensus instance, whose identifier is catled|
to the problem that the clients must solve. The serversatollehrough a call to a procedur€al cul at el d that must be
the proposals, run a consensus protocol to reach agreemmmlemented according to the specific problem to be solved
and reply to the clients an agreed value. by GCS. If the client and initiator sets are equal, then the

In our approach, two modes of relationships among initigrocedureRequi r eLocal St art may be used to start an
tors and clients are distinguished. In the first mode, it agreement. This procedure forces the client who has exécute
and clients are separated and a consensus instance igl stéirt®® send its proposal to the servers. Therefore, the GCS’s
by a Rmulticast of SYNC message. In the second one, the specialization must ensure that all correct clients semir th
of initiators and clients are exactly the same. In this laste¢ proposals to the servers. If this constraint is not met, the
it is possible to initiate an agreement without using rdéabservers will not decide and will not reply the clients’ reqte
broadcast. However, it must ensure that all correct preses3heRequi r eSt art satisfies this requirement because if one
send a proposal regarding a specific consensus instancedwect process receives a SYNC message, every other torrec
server processes. Otherwise, the servers will not be ableptocess will receive the same SYNC message and start the
create a valid response to the clients. agreement.

Is is important to highlight that a malicious initiator may GCS clients follow the algorithm 2. On receive a message
perform attacks. However, these attacks are limited by #fse (SYNC from an initiator process, the client calculates its
of a reliable multicast to send the synchronization messagproposal and assign it to the variableoposal (line 5). Then,

A malicious initiator may only attempt to start an invalicthis variable is sent to the GCS’s server processes through
consensus instance or exhaust identification values spaee. a Mul t i send(), concatenated with the consensus instance
first attack is application dependent and should be dealt witlentifier i dC and a signature (line 8). The client waits
according to the specific agreement protocol. The former mthe arrival of the replies from the servers. When the client
be solved through several techniques such as low and higleeivesf; + 1 responses with the same decision vector from
watermarks [3]. distinct servers (line 13), it applies the Consensus F{(G¥)

Fig. 1. Algorithm of initiatorp;

V. ALGORITHMIC BASIS OFGCS

. . |
function Resul t to the vector (lines 14 and 15) and handlesr,l certidC « 0 vectoridC « (15 1;...; L)
the control to the application through a call to the methoa: ag?“eedVector“iC — (L1, J.)

Agr eenent Fi ni shed. : resp_sign; < 0; valid]V[essage < false
. on receive (PROPOSEidC'; proposal;; sign;) from c;

3
4

Init: 5: validMessage < VERIFIEDSIGNATURE(sign;, ¢;)
) 6
7
8

1: proposal; « 0; sign; « 0 if valszejéage A wectori?C[j] = L then

2: resp; <L v (L;L;...5 1) vectorlc 5] <—pmposal

3: received, msgsLdC — @ valszessage « false : prop;® « {(PROPOSEIdC; proposaly; sign)}
4: on Rdelivery (SYNC; idC)) from Initiator 9: Cethdc «— CeTt’dC U propid©

5: proposal; < CALCULATE PROPOSAL(#dC') 10: (#Lvector = fc) then

6: sign; < SIGN((idC'; proposal)) 11: PROPOSKdC; vectorid®; certid®)

7 regq; < (PROPOSE:dC; proposal; sign) 12: end if

8: MultiSend req; to GCS 13: end if

9: on receive (DECIDE; idC; v; sign;) from s; 14: on decide (idC; agreedVector;)

10: walidMessage < VERIFIEDSIGNATURE(sign,, s;) 15: resp_sign; < SIGN((idC; agreedV ector;))

11: if validMessage then 16: msg; < (DECIDE; idC; agreedV ector;; resp_sign)
12: recewed _msgs! dC + received msgsldc U {v} 1 MultiSend msg; to clients

13: if (#oreceived_: msgs“ic =fs+1) then

14: result; < RESULT(V) Fig. 3. Server process; from the GCS
15: AgreementFinished(idC; result;)

16: end if Init:

17: end if

1: proposal;:dc «— 1
2: procedure R_Broadcast(msg;)

Fig. 2. Client process; from the GCS 3: MultiSend (INITIAL, msg;) to clients
4: end procedure

. . : on receive INITIAL i) from ¢;
The server processes follow the algorithm 3. Upon receipt ¢t " 555+ <ms magy) from c;

— f. PROPOSE messages from clients proposing a value proposal’dcg +— msg;
to the same consensus instance (line 10), the server starB'a REQUIREL OCALSTART(idC)
consensus protocol (line 11). Then, the result of this aito > procedure CALCULATE PROPOSAL(IAC)
: return proposal

is relayed to the clients through thél t i send of a message 11: end procedure
(DECIDE; idC'; agreedV ector) (line 17). 12: procedure AGREEMENTFINISHED(idC, result)

The servers build a vector based on the received propos%rl%. F_deliver({idC, result;))

. . . . >"end procedure
This vector is certified through a set of messages digitally
signed by the clients. The consensus protocol used, agtisll Fig. 4. Client/initiatorc; of Reliable Broadcast
a variation of the classical consensus problem named @elrtifi
Initial Value Consensus. This variation of consensus and . _ o
an algorithm solving it in presence of Byzantine faults areroblems in this paper, it is by no means the only problems
introduced in [11]. This problem guarantees that the agretitatt may be tackled by the GCS. We have also defined algo-
value is a certified initial value. rithms to solve Strong Consensus, Vector Consensus, Group

In order to satisfy the needs of server processes andMembership, and a hybrid approach to Atomic Non Blocking
guarantee the vector validity properties required, thiefahg Commit.
def|n|t_|o_n_ of certified vector is made: _ A Reliable Broadcast

Definition 5.1: A server processs; considers a vector

vectoridC certified in respect of a consensus instand€’, Reliable Broadcast (RB) is a group communication prob-
if and only if: lem whose objective is to send a message to all processes
1) #, vectorid€ < f, belonging to a group. Two primitives define this problem:
1

RMul ti cast () andRDel i ver (). The reliable broadcast
ensures that if a correct proceRbUI ti cast () a message
then every correct process will deliver this same massage. A
precise definition of validity, agreement and integrity mec
Amsg;.1dC = idC ties for RB in Byzantine environments may be found in [2].

The definition 5.1 states that certified vector contains atlIn the following we assume that, as in [2], message iden-
least n, — f. clients proposals and is associated with tifiers are formed by the concatenation of two components
certificate composed by a set of digitally signed messagessg;.id = j|sn, wherej is the sender’s identifier andh is the
Every proposal in the vector must have the respective sisndenessages serial number according to the sender. Algorighms
PROPOSAL message in the certificate. and 5 show the needed specializations for implementing a RB
protocol using GCS.”

For building a reliable broadcast protocol, the initiatoda

In this section, two examples are presented of using GEHent sets are equal. The algorithm 4 describes the behavio
to solve agreement problems: Reliable Broadcast and AtonoicRB participant. It exposes a procedRBr oadcast () to
Broadcasts. Despite of the presentation of just two agraeméhe application that will be used to broadcast a messageeto th

2) Vj e 1, nc] Imsg; € certidC : vectoridC[j] # L
=msg;.proposal = vectorldc [7]

AV ERIFIEDSIGNATURE(msg;.sign, c;)

VI. APPLICATIONS

1: function RESuULT(vector) Init:
2: return MAJORITY(vector) 1: messagesToDeliver < 0; current_agreement_id < 0
3: end function 2: agreementStart Required < false

3: procedure AB_Send(ID, message)

Fig. 5. Result Function to Solve Reliable Broadcast 4: R_Broadcast(ID, message)
5: end procedure
6: procedure RB_Deliver(ID, message)
)) 7 messagesToDeliver — messagesToDeliver U
group. A broadcasted message is received by a process whed(ID, message)} ‘
procedureRDel i ver () is invoked. 8: if agreementStartRequired then _
- X , 9: REQUIREL OCALSTART(current_agreement_id)
The algorithm explores the multisend’s property that stateg: agreementStart Required < false

that if the sender of a message is correct, then every corrétt end if

process will eventually deliver it. When a correct proceél%: end procedure .
L . . . : procedure CALCULATE PROPOSAL(id)

wants to broadcast a message it Willl ti send() it. This 14. i current_agreement_id < id then

message is received by every correct process that will gepd5: return

it to the GCS servers. When the servers reach a consensus égler end if A

. o) . ; . : proposal < {HASH(m) : m € messagesToDeliver}

the message identified by, they will reply the clients with 18: return proposal

a vector. This vector goes through the Consensus Filtereto t#9: end procedure '

RB protocol (algorithm 5) that, in this case, will choose th%cl); procedure AGREEMENTFINISHED(id, result) _
. o wait until (id = current_agreement_id) A (Vmsg € result :

most frequent message to be delivered. Afterwards, theedgre Hash(msg) € messagesToDeliver)

messages arBDel i ver ed() to the application. 22: msgs < {msg € messagesToDeliver : HASH(msg) € result}

This algorithm respects all the properties required by tkgé for ig”feglifeﬁfgjg‘;o

RB problem. If the sender is correct, then every correcntliezs: end for

will receive the same message through Md ti Send(), 261 messagesToDeliver <— messageT'oDeliver — result

then all correct processes will propose the same messgfe C/7eni-ogreement-id ¢ current_agreement_id + 1
. agreementStart Required <+ true

to the GCS. As the GCS guarantees that there are at le@st if |messagesToDeliver| > 0 then

fe+1 > f.correct values in the agreed vector (vector validity g0 REQUIRELOSCALSTART (current_agreement_id)

the majority function used in the consensus filter will returggj ong Jreement tartRequired false

the message broadcasted by the client. If a message is 38nénd procedure

by a faulty sender, if a correct process delivers it the GCS

guarantees that all correct processes will deliver the same Fig. 6. Client/Initiatore; of Atomic Broadcast
message.
B. Atomic Multicast clients propose to the GCS the set of messages that must

))) o be delivered. Upon the arrival of the GCS consensus, the

Atomic Multicast (AM) is a group communication pro-consensus Filter Result function is applied to calculate an

tocol defined by two primitives:A- Mul ticast() and qrdered list of stable messages to be delivered. Then, the
A-Deliver(). AM enforces the same properties as RByjients will deliver this set of messages to applicationlie t

but' additionally req'uires ordering. Every cqrrect processst procedureAgr eenent Fi ni shed(). Only after the mes-
deliver messages in the same (_)rder. As in the RB protocgéges are delivered a new round is started.
we assume that message identifiers are composed by two parts
msg;.id = j|sn wherej is the sender’s identifier angz a 1: function ResuLT(vector)
serial number. . e

The algorithm shown in figure 6 explicit the following =
behavior for an Atomic Multicast: when a given process3: deliverableMsgs < {msg|#msgallMsgs > fo+ 1}
wants to broadcast a messagesg it will invoke the pro- 4 return DETERMINISTICORDER(deliverableMsgs)

. . . . 5: end function

cedureA- Mul ti cast (). This procedure will use a reliable
broadcast to send these messages to all processes. When a Fig. 7. Consensus Filter to solve Atomic Broadcast
message is RDelivered by the reliable multicast protodw, t
atomic broadcast protocol will include this message in #te s

allMsgs <+ U vector|i]

messagesToDeliver. At this point, the order of the messages VIl CONSENSUSPROTOCOL WITH TRUSTED
must be specified. In order to do this, the client will querg th COMPONENTS
GCSs. The GCS provides separation between the processes re-

The AM algorithm advances in asynchronous rounds, #ponsible for executing the consensus protocol and the ones
each one it will calculate a set of stable messages to that want to solve an agreement problem. This separation of
delivered. A messageisg is considered stable if there areconcerns allows us to use different fault models, or abStnas
fe + 1 clients reporting thainsg must delivered. This guar- in servers and clients. We explore this property by using
antees that at least one correct process received the messatualization technology and trusted components to inpro
through a R-Multicast protocol. In the beginning of a roundhe servers’ resilience to intrusion.

Igorithm for process p;:
We propose two trusted components. Both componerﬁg procedure PROPOSHEid, proposal, certi ficate)

are used by processes in one VM to broadcast messages. APPENX(PROPOSALid,proposal, certificate))
They differ in the ordering constraints imposed on delidere 3: end procedure
messages. This components are implemented inside the VMM, yccigedid « faise

so their protocols are subject only to crash faults. 5: loop

The first component, callegostboxis the abstraction of an ?; ?fgs;jﬁsgop OSALid. proposal’, certi ficate’) then
append-only shared memory region that allow efficient integ: valid; = CHECKCERT(proposal’, certi ficate’)
virtual machine communication. A process inside a VM car®: if not decided}® A valid; then
append a message to the postbox througkppend(nsg) 1‘1’f dDSCid@did < true
operation. Additionally, it may read messages from the posb. ena s PEToposal)

box through aRead() operation that returns a message thag: end if
was previously appended to the postbox. This componét end loop
enforces that every process read the same set of messages in

the same order. This constraint is satisfied by the underlyin

append only shared memory. Being all server processes on

top of the same physical host machine, the service will notThe algorithm correctness is based on the fact that every
tolerate its crash. server process receives the same set of messages in the same
The distribution of this component among several physicatder from the postbox. Thus a process may decide the first
machine is computationally expensive, as it requires tot@lid message that arrives. If this process is correct, yever
ordering of the messages (i.e., a consensus protocol). other correct process behaves in exactly the same way.
The postbox prevents equivocation of faulty servers, as wel CheckCert () procedure’s code is omitted here. It is
as enforcing a total order to the messages that are read fr@sponsible for not allowing invalid proposal to be chosen a
it. These guarantees allow the implementation of highly effihe consensus result.
cient consensus protocols. Under this model, consensus may_. . .
be solved in one postbox communication step, and requi SD'St”bUted Postbox-based Algorithm
ns = 2f, + 1 processes to tolerate up o faults. The algorithm based on the distributed postbox algorithm
The second component is calleistributed postbaxit re- Shown in figure 9 is more complex due to weaker guarantees
laxes the ordering constraints of delivered messagesirimgu Provided by the trusted component. Under the distributed
that messages sent by a process are delivered in the same d¥8&tbox approach, each VMM provides access to a distributed

in which they were sent. This change eases the distribufionR9StbOXx component. These components are interconnected

Fig. 8. Consensus algorithm using a postbox

In order to spread thelistributed postboxamong several Protocols.
physical machines, it is needed a reliable broadcast amond-Orréctness proofs were developed, unfortunately due to
VMMs in the crash fault model. Thus, thistributed postbox SPace restrictions we will omit them. The proofs are avéglab
is preferable than the postbox if the crash of the physic@line at: http:/www.inf.ufsc.br/pieri/SGCProofs.pdf
machine is to be tolerated. The algorithm proposed here is round-based. Each round
In the following, we present consensus algorithms based Gnasynchronous and has a leader. The leader of round
the trusted components described previously. They arelysedS e Process with number mod n. In each round, the
the servers of the GCS in order to achieve consensus. Th&ader tries to impose its proposal to the other processes.
algorithms are subject to Byzantine faults and may use tﬁ@e algorithm works as follows: when the rourdstarts

PV X7 SN
services provided by the trusted components in an arbitrdfy 'eader sends a messageROPOSAL7;; v; ’m.zt—cem
way. with the round number-;, the leader's proposal” and a

init_cert certificate. At the first roundinit_cert = 0. When

a proces receives the leader’s proposal, it sends the message

(PREPARE;; proposal) wherer; is the round number and
The algorithm in figure 8 shows how the postbox abstractigioposal is the proposal received from the leader. If a process

can be used to implement a consensus protocols to be useskives f + 1 prepare messages from the same round, it

among servers with 1 communication step that requires- decidesv and finishes. This behavior occurs when no faulty

2fs + 1 servers to tolerate up tf, faulty components. process is present and messages are received before any time
The consensus algorithm operates by providing a procedesaires.

Pr opose() . When this procedure is called, the message isIn order to guarantee liveness in the presence of faults a

appended to the postbox. This algorithms requires a task touiew change protocol may take place, causing the processes

running, responsible for monitoring the postbox. Wheneverta advance to the next round. Whenever a process suspects

proposal from a consensus instance is received, if it is the fithat the leader is faulty, or it could not assemlfle 1 prepare

one regarding that consensus instance then it is chosere asniessages, it attempts to freeze the current reynoy sending

consensus result. a messagéFREEZE r;, v, 7,). If the process sent a message

A. Postbox-based Algorithm

. . Init:
prepare during round-, r, = r; and v, is the proposal 'y. id . o: jnit_certid « (@, L,..., 1)
confirmed through the prepare message. Otherwises a 2: vy «L;ry 1

value proposed by the leader of roungl correct processes proi:c()ec()j;re CONSENSU$id, proposal, certificate)

sendv,, andr, equals to the last freeze message that was segit if roundié mod n = i then
by them. If no value was proposed yet=_1 e r, = 0. 6: WRITEPOSTBOX((PROPOSAL 7;, vi?, init_cert!4[ri?]))
: ! : p Lo A i i i
The view change mechanism relies upon the constructiof endt if " Lsidiréd] =1 or timed out
of a valid init_cert (definition 7.1). Ainit_cert is a set of wait until proposals;©{r;©] 7. or timed.ou
. . : proposal_received < proposals®[ri®] # 1
f + 1 valid freeze messages collected during round- 1. 10 if proposal_received then o
Definition 7.1: An init_cert is considered valid by a cor- 11: WRITEPOSTBOX((PREPARE r;, proposalsi®[ri?]))
rect process if the conditions below are satisfied: 12: Tp < T idiid
] , O 13: vy <= proposalsi®[ri®]
« Beingr’ the greatest,, of freeze messages imit_cert. 14 end if
Given any two messages freeze with= ' in init_cert, 121 V\y\?it UnFt)” timec:z(?g:?EEZE)
’ . _ ;o ’_ : RITEPOSTBO REEZE 74, vp, Tp
namelym e m/, then:m.v =1L or m.vw' =1 or m.v' = 17- wait until init_certid[rid] £1
m.v. 18: r;?d — r%d +1
» All messages have correct signatures 19: end loop y
« Given any freeze messagesiinit_cert in which v #.1, 22' on rece"’ef?gP}OSA'*’"w”wm”—“”j) from p;
: proposals;“|r;| < vj;
the leader of round,, proposedv. _ 22 UPDATEINITCERT(id, ;)
_ Whenever a new Iegder proposes a value, it must certify. oy receive (PREPARE; , proposal) from p;
its proposal with a validnit_cert certificate. Aninit_cert 24 preparesi?|r;] <—prepares";d[rj]U(PREPARErj,proposal)
certifies values according to definition 7.2. The leader ef ttggi if #meposa(z]freparisi;l[m] = f+1then
. . . . ECIDE(.
first round does not certify its proposal. > end if roposatu
Definition 7.2: Given aninit_cert, and being’ the great- 2s: UPDATEINITCERT(id, ;)
estr, among freeze messagesiitic_cert. The value attested 29: on receive (FREEZE r;, vp,) from p;
by init_cert is: 30: freezesidlr;] < freezesi¥[r;] U (FREEZE r;, vp, 1p)
- 31: UPDATEINITCERT(id, ;)

« Avaluev #.1 of a message freeze with, =’ ,
. . , 32: end procedure
o If a“ messages freeze N Wthh? =T have'U :J_, the 33: procedure UPDATE|N|TCERT(id, Tj)

any value is attested. 34: if init_certi®[r;] =1 then
. . e . . . id[p.] . — .
In order to simplify the specification of the algorithm, somé>: z + {c C fr@ez@siid[m] il = f+1AVe € ¢
e e.proposal = 1V proposals}®[e.proposal.r] = e.proposal.v}
verifications are isolated in a module, callallt detection 5. if || > 0 then
module responsible for detecting faulty processes analyzig: init_certi?[r;] < any element ofz
the history of received messages. When a faulty process3$s end if

detected all future messages from it are dropped, before ﬁg:eendeg?ogedure

algorithm process them. After passing through this module,
the following behavior is ensured: Fig. 9. Distributed postbox-based consensus algorithm
o Round number of messages sent by one process are
strictly increasing.
« If the primary proposes in roundr, then the primary
must prepare.
« If a process that has preparedin round r freezes, if
must freeze with value and roundr.
« If a process have not prepared in roundit can only

timizations. For instance, it requires that some messages m
be digitally signed, which is widely known to be a common
bottleneck in the system performance.

Another point is the fact that some specific implementations
may optimize common cases, leading to faster implementa-
freeze a valuay with roundr, < r. Beingw the value tions in certai_n scenarios. For instance,_the Byzantinesmn _
proposed by the leader of round sus protocol in [20] solves agreement in one communication

. During a round, processes may send only one of the¥P under favorable conditions. _ _
messages in the following order: proposal, prepare angAssuming a GCS based consensus, we notice that GCS is

freeze. The proposal must be made only by the roufigere resilient to intrusion than classical consensus #lgos
leader. A process may decide at any time. such as PBFT [3], requiring@f + 1 acceptors to execute the

After freezing the round, the next message a procesgrotocol. The latency required by GCS is two communication
send must regard the next rount=r + 1. steps plus an access to the trusted component, insteackef thr

. After the leader sends a propose, it must prepare. It caffguired by PBFT.
freeze before preparing. In order to assess the performance of the proposed scheme,

« All messages have valid certificates and signatures. @ Prototype was implemented using Java 1.6. The test bed
is composed by a Core 2 Quad CPU host machine, with 8
VIII. C OMPARISONS ANDRESULTS GB of RAM, running Debian GNU/Linux 5.0, kernel 2.6.26-
First of all, it is important to notice that, in order to ackge 2, and VirtualBox 2.2.4. Each virtual machines has 1 GB of
generality the GCS sacrifices some possible performance &AM and access to one processor. Inside each VM, there is a

server running Ubuntu GNU/Linux 9.10, kernel 2.6.31-15eTh « Definition of two trusted components implementable us-
clients run Ubuntu GNU/Linux 9.10 Desktop, kernel 2.6.3L-1 ing virtualization technology
in a Core 2 Duo CPU with 4 GB of RAM. « Two Byzantine tolerant consensus protocols based on
It was made micro-benchmarks in which each client pro- these trusted components
posed zero length messages to the consensus service. The Separation in tolerating crash and malicious faults
consensus servers used the Postbox as the trusted componentthrough the use of the distributed postbox
In the first experiment, we let the number of clients constant
and increased the number of virtual machines. We observed
that the throughput and response time remained constantt ab[ll G. Bracha. An asynchronous [(n - 1)/3]-resilient corees protocol.
40 requests per second and 25ms respectively, until the limi g‘riﬁgp?é gf'diztrﬁgﬁteedd'”g;r?guﬁ?n?g;gggsagflécl'\f\l:xm\%?i"”R?Yf)n
of seven virtual machines were reached. At this point the usa, 1984. ACM.
throughput diminishes, while the response time increadéd. [2] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secureetficient

. . . asynchronous broadcast protocols. @RYPTO ’'01: Proceedings of
believe that this happens because the computatlonal POWET {he 215t Annual International Cryptology Conference on dubes in

of the host machine starts to exhaust. There are eight cores, Cryptology pages 524-541, London, UK, 2001. Springer-Verlag.

seven of them are processing the requests and the other ddleM- C?SUO and B.ALCi:?\l/I(O}I. Pffgtica' Pyéang%e(4;a3,u$§3 t?glcezggg
. . proactive recovery. rans. Comput. Sy§ . —: , .
is managing the VMs and the postbox. 571640.

After that, we did the opposite: we let the number 0Of[4] T. D. Chandra and S. Toueg. Unreliable failure detecforsreliable
servers constant while increasing the number of clients. In_ distributed systems]. ACM 43(2):225-267, 1996. 226647.

. . : . 5] B.-G. Chun, P. Maniatis, and S. Shenker. Diverse refiboafor single-
this scenario, the throughput decreases while the resionse machine byzantine-fault tolerance. 2008. 1404038 287-292.

increases as the number of clients increases, as expetted. T6] B.-G. Chun, P. Maniatis, S. Shenker, and J. KubiatowicAttested
number of messages and signatures needed to be verified by append-only memory: making adversaries stick to their wordud@.72

: - : : 1294280 189-204.
the servers increases linearly with the number of clierstase [7] M. Correia, L. C. Lung, N. F. Neves, and P. Vesimo. Efficient

ing the the throughout to diminish linearly and the response’ byzantine-resilient reliable multicast on a hybrid failuredel. 2002.
time to increase linearly. 831132.

. M. Correia, N. F. Neves, L. C. Lung, and P. ¥simo. Low complexity
In order to assert the trusted component impact, we run OAQ byzantine-resilient consensu®istrib. Comput. 17(3):237-249, 2005.

server (f; = 0). In the first run we used the algorithm as is, 1151559.

using the postboxy however in the second run we Changed t[’% M. Correia, N. F. Neves, and P. \lssimo. From consensus to atomic

. broadcast: Time-free byzantine-resistant protocols withgignatures.
0
algorithm to not use the postbox. We observed a 10% decrease Comput. J, 49(1):82-96, 2006. 1183871.

REFERENCES

in throughput when using the postbox. [10] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schipduteness Fail-
ure Detectors: Specification and Implementatipages 71-87. 1999.
IX. CONCLUSIONS [11] A. Doudou and A. Schiper. Muteness detectors for cossenwith

. . . . byzantine processes. 1998. 277772 315.
This paper introduces the Generic Consensus Service, (& m. J. Fischer, N. A. Lynch, and M. S. Paterson. Imposiibibf

extension of the previous consensus service towards the tol distributed consensus with one faulty proce3sACM, 32(2):374-382,
erance of Byzantine faults. We presented how the Gene(/ligl 1985. 214121,
e

. - . R. Guerraoui and A. Schiper. The generic consensusiceenNEEE
Consensus Service works and how to specialize it to SOIVe" Tans. Softw. Eng27(1):29-41, 2001. 359565.

distinct agreement problems. [14] V. Hadzilacos and S. Toueg. A modular approach to falérant
The separation of consensus protocol from agreement prob- broadcasts and related problems. Technical report, ItHd¥aUSA,

lems anowe‘_j the adODtion_ Of virtualizatio_n in part of thgs) s Kinney. Trusted platform module basics: using TPM in embedded
system, leading to the possibility of separating crasht fa systems Newnes, 2006.

erance and malicious behavior treatment. We took advantd#@d D: Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.ring:
small trusted hardware for large distributed systems. N®DI'09:

of this to impl_e_ment a consensus agreement prO_tOCOIS that proceedings of the 6th USENIX symposium on Networked sysesign
toleratesf malicious processes out @ff + 1 increasing the and implementationpages 1-14, Berkeley, CA, USA, 2009. USENIX

server's resilience to intrusion. Association.
. &{1@ H. P. Reiser and R. Kapitza. Vm-fit: Supporting intrustoterance with
Besides that, we proposed two trusted components, and yiqyajisation technology. 2007.

one consensus protocol for each trusted component. ThEsg H. P. Reiser and R. Kapitza. Fault and intrusion toleeann the basis
trusted components increases the resilience of the sysidm g of virtual machines. 2008, : -

P Y aﬂg] F. B. Schneider and L. Lamport. Paradigms for distribygemrams. In
a"(_)V_VS to choose a tradeoff between crash fault tolerande an Distributed Systems: Methods and Tools for SpecificationAdvanced
efficiency. Course, April 3-12, 1984 and April 16-25, 1985 Munigages 431-480,

Finally, we commented the implementation of the GCS_ London, UK, 1985. Springer-Verlag.
y L P OJJ Y. J. Song and R. Renesse. Bosco: One-step byzantimela®nous
and gompared some characteristics of a GCS bf"lsed CONSENSUZonsensus. IDISC '08: Proceedings of the 22nd international sym-
algorithm to PBFT. Future works are focused on improving the posium on Distributed Computingages 438-450, Berlin, Heidelberg,

initial prototype and the algorithms, solving other agreein 2008. Springer-Verlag.
P _yp 9 9 grea [21] A. Tomlinson. Introduction to the TPM. IBmart Cards, Tokens,
problems W'th the_ GC_:S') Security and Applicationgpages 155-172. 2008.
The main contributions of this paper are: [22] P. Zielihski. Paxos at war. Technical report, 2004.

o Generalization of the consensus service presented by
Guerraoui and Schiper to a Byzantine environment

