
Consensus Service to Solve Agreement Problems
Giovani Pieri, Joni da Silva Fraga

Departamento de Automação e Sistemas
Federal University of Santa Catarina

Floriańopolis, Brazil
Email: {pieri, fraga}@das.ufsc.br

Lau Cheuk Lung
Departamento de Inforḿatica e Estatı́stica

Federal University of Santa Catarina
Floriańopolis, Brazil

Email: lau.lung@inf.ufsc.br

Abstract—This paper describes an extension of the Consensus
Service proposed by Guerraoui and Schiper. The objective is
to provide a standard way to implement agreement protocols
resilient to Byzantine faults using an intrusion tolerant service
built upon virtual machines technology. This is achieved through
the implementation of a Generic Consensus Service (GCS).
GCS separates specificities of different agreement problems
from consensus in a clear way, using client-server interaction,
allowing total independence between consensus protocols used
and problem specific specializations. Besides that, the framework
provides a set of properties and guarantees. It will be shown how
the GCS works, its general properties and how it may be used to
solve some agreement problems, for instance, reliable and atomic
broadcast.

Index Terms—Dependable Systems, Consensus, Intrusion tol-
erance, Distributed algorithm, Fault tolerance

I. I NTRODUCTION

Agreement problems, such as atomic commitment, group
membership, and total order broadcast are at the heart of
many distributed systems. These problems share one com-
mon characteristic, they require that each process after the
completion of the protocol agrees on the outcome of the
distributed computation that has taken place. Usually each
one of these problems is tackled separately and solved by
specialized algorithms. However, in [19] it was proposed that
one of the simplest agreement problems, namely consensus,
should be used as a paradigm to build distributed protocols.
Besides, it has been shown that efficient protocols to solve
agreement problems may be developed using consensus as a
building block in Byzantine settings [9], [22].

In this paper we propose an extension of the Consensus Ser-
vice [13] proposed by Guerraoui and Schiper to a Byzantine
environment, and two consensus algorithms based on different
trusted components. The objective of consensus service is to
provide a intrusion-tolerant common infrastructure to agree-
ment problems. The consensus service proposed in [13] is able
to tolerate crash faults, we take it one step further and create
an intrusion tolerant service. Note that, in our proposition, the
clients of this service may suffer Byzantine failures.

Inside the consensus service each process has a role: initia-
tor, client and server. In order to solve a problem, the initiator
process decides that a consensus must be started and reliably
multicast a message to the clients. The clients receive this
message and compute a proposal accordingly. This proposal
is sent to the servers responsible for executing the consensus.

After the servers reach a consensus they reply the decision
value to the clients.

Despite similarities in agreement problems, each one has its
own specificities. To deal with them, Guerraoui and Schiper
use what is called a consensus filter. The consensus filter
is responsible for calculating a proposal to be used in the
consensus protocol, given the data received from clients,
so that the protocol outcome satisfies the given agreement
problem.

Recently there has been a trend trying to achieve greater
resilience [5], [6], [8], [17], [18] despite the existence of
Byzantine faults by trusting in part of the system. With
adequate reliable components [6], [15], [16] it is possibleto
tolerate up tof out ofn = 2f+1 faulty processes and decrease
the number of steps required by an agreement protocol. One
of the problems with this approach is that it requires a trusted
component, therefore some kind of measure has to be taken
to guarantee its inviolability. The generic consensus service
allows us to take advantage of this new trend while not having
to make assumptions on every node of the system. Due to
the complete isolation between the execution of the consensus
protocol from the agreement problem, only those who execute
the consensus are augmented with trusted components.

The rest of the paper is structured as follows. Section III
defines the system model, our assumptions, processes behav-
iors and the architecture. Section IV presents the generic
consensus service, the general algorithms and the internal
working of the framework. Section VI illustrates the use of
the generic consensus service on two agreement problems:
reliable broadcast and atomic broadcast. Section VII presents
algorithms to solve consensus through specially designed
reliable component. Section VIII we show some results and
comparisons. Section IX concludes the paper.

II. RELATED WORKS

This work is based on consensus service introduced by
Guerraoui and Schiper [13] in a crash-only environment. This
consensus service service aims to separate the resolution of
consensus from the specificities of each agreement problem.
It provides a framework upon which crash-tolerant agreement
protocols may be built by defining a consensus filter, respon-
sible for the reduction of an agreement problem to consensus.

Several works proposed the use of consensus protocols as
basis upon which agreement problems could be built [19].

In a Byzantine environment, it has been shown that efficient
consensus based algorithms to solve problems such as vector
consensus and atomic broadcast may be built on top of
consensus algorithms [9].

The use of virtual machines and virtualization technology
to deliver intrusion tolerant services have been researched
recently. The VM-FIT architecture [17] is one of the first
known proposal of the use of virtualization to achieve fault-
tolerance. In this work, several virtual machines run on topof
an only physical system, reducing the implementation cost of
the system. Up until now hardware redundancy was obligatory
to leverage fault tolerance support.

In LBFT1 and LBFT2 [5] it is proposed an approach
in which a virtual system assumes the role of a trusted
component. This trusted component orders the requests made
by clients and delivers them to the service VMs in order to
be executed.

Wormholes abstractions were introduced in [7]. It proposes
the reduction of implementation costs of a distributed fault
tolerant algorithm through the use of a trusted component
called TTCB which gives access to a private system which
has different synchrony and fault models. Using this systemit
is possible to implement reliable broadcast amongn ≥ f +1
participants being up tof Byzantine.

Several other proposals for trusted components have been
made in recent years. In the A2M [6], it is proposed a trusted
log service. In the TrInc [16], a minimal trusted component is
built on top of a Trusted Platform Module [15], [21], easing
the system deployment.

III. SYSTEM MODEL

We consider an asynchronous distributed system composed
by a finite set of processesΠ (Π = {p1, p2, . . . , pn}). These
processes may be classified into correct or faulty during the
execution of the algorithm. A correct process will always
follow its algorithmic specification. Faulty process may suffer
Byzantine failures, i.e., they behave arbitrarily. A faulty pro-
cess may omit or send invalid messages and are not required
to follow the algorithm. Besides that, faulty processes may
coordinate in order to stall the progress of the distributed
system or lead it to an invalid state.

Any two processes are connected through a reliable authen-
ticated asynchronous channel. These properties guarantees that
every sent message is eventually delivered, the sender of a
message is known and the message integrity is guaranteed.
Although we do not make any synchrony assumption in order
to guarantee safety properties of the algorithm, we must
assume eventual synchrony to ensure liveness properties. If the
system was completely asynchronous it would be impossible
to solve consensus, according to the FLP condition [12].

A. Process Roles

As consensus service in [13], the generic consensus service
(GCS) proposed here is composed byns server,nc client and
ni initiator processes. The servers are running in separated
nodes than clients and initiators. The sets of clients and

initiators may intersect. Client processes are the ones that
have an agreement problem that needs to be solved in the
context of an distributed application algorithm AP. By solving
a consensus problem, server processes are responsible for
collecting proposals from clients, creating and deciding avalid
vector for replying it to the clients. The initiator processes
start a consensus instance where clients will query servers. As
the name implies, the GCS is general and server processes
are agnostic to the proposals’ and results’ meanings. It is
responsibility of each client to convert the result received from
the servers into a useful value to solve the particular agreement
problem in which the clients are interested in. This conversion
is done through the concept of a consensus filter (CF). This
CF is composed by a deterministic function, calledResult,
that takes the decision calculated by the servers and produces
the value that will be consumed by the client.

During the execution of a consensus instance, there are at
most fs faulty server processes,fc faulty client processes.
In order to support the presence offc faulty clients, our
algorithms require thatnc = 3fc + 1. The resilience of the
set of server processes is dictated by the consensus protocol
used. Through the adoption of a reliable component, it will
be required onlyns = 2fs + 1 processes to supportfs faulty
servers.

The set of initiators may be composed by any number of
processes. These processes must ensure that all correct clients
eventually initiate consensus instances.

B. Virtual Machines

We will employ virtualization technology in part of the
system. The virtual machines run on top of a Virtual Machine
Monitor (VMM). Our objective in using VMs is to isolate the
malicious aspects from the crash fault tolerance. The faults
that may be experienced by a VM are unrestricted, while the
VMM only suffers crash faults.

The VMM provides to all VMs access to trusted compo-
nents, presented in section VII. These components make some
services available to the VMs, which prevents equivocation[6]
of faulty processes. This leads to more resilient algorithms able
to toleratef out of n = 2f + 1 processes instead of3f + 1
required in a traditional Byzantine system model.

The host operating system may have security flaws (vul-
nerabilities), however, they can not be exploited through the
network. This claim is feasible because we assume that the
host operating system is inaccessible. This may be easily
implemented in a real system using a firewall system or
disabling/removing the network drivers of the host operating
system. In our model, only the VMs have direct access to the
network interfaces.

We assume that VMM provides isolation between VMs,
i.e., faults in one VM can not influence another one. This
is assumption is guaranteed by virtualization technology (e.g.
VirtualBox, XEN, VMware, VirtualPC, etc).

C. Communication Primitives

A process may use 2 different communication protocols
for broadcasting a message to a given set of processes:

Rmulticast andMultisend. Multisend is composed
by two operationsMultisend() and Receive(). By
using Multisend, if the sender is faulty, then no assumption
can be made about the reception in the destination pro-
cesses. However, if the sender is correct then every correct
process receives the same message and delivers it through
Receive(). Multisend is built using reliable point-to-
point communication channels.

The Rmulticast protocol ensures a consistent behavior even
when the message sender is faulty. A Rmulticast is composed
by two operationsRmulticast() and Rdeliver(). A
message sent by a correct process throughRmulticast()
will eventually beRdelivered by all correct processes. If
the sender is faulty then correct processes will deliver thesame
message or do not deliver it at all. Reliable multicast and its
primitives are thoroughly studied in the literature in different
model systems [1], [4], [14].

IV. T HE GENERIC CONSENSUSSERVICE PROBLEM

GCS modularizes the implementation of agreement prob-
lems in Byzantine settings. This is done by separating the
consensus protocol execution from the agreement problem
that must be solved by the clients. The GCS is presented
as a framework to clients and initiators. These processes
implement some specific functions and procedures that are
called by the application for solving an agreement problem
using GCS. For instance, the computation of the consensus
instance identification, proposal and processing of the results
are all problem-specific and left open to specializations.

In the GCS model, the roles of initiators and clients may
overlap. The initiator starts a consensus instance by Rmulticast
a SYNC message to the clients. Then, as consequence, the
clients will calculate and send messages with their proposals
to the servers, using Rmultisend. These proposals are specific
to the problem that the clients must solve. The servers collect
the proposals, run a consensus protocol to reach agreement
and reply to the clients an agreed value.

In our approach, two modes of relationships among initia-
tors and clients are distinguished. In the first mode, initiators
and clients are separated and a consensus instance is started
by a Rmulticast of SYNC message. In the second one, the set
of initiators and clients are exactly the same. In this last case,
it is possible to initiate an agreement without using reliable
broadcast. However, it must ensure that all correct processes
send a proposal regarding a specific consensus instance to
server processes. Otherwise, the servers will not be able to
create a valid response to the clients.

Is is important to highlight that a malicious initiator may
perform attacks. However, these attacks are limited by the use
of a reliable multicast to send the synchronization messages.
A malicious initiator may only attempt to start an invalid
consensus instance or exhaust identification values space.The
first attack is application dependent and should be dealt with
according to the specific agreement protocol. The former may
be solved through several techniques such as low and high
watermarks [3].

1: procedure REQUIRESTART

2: idC ← CALCULATE ID

3: Rmulticast〈SYNC; idC〉 to clients
4: end procedure
5: procedure REQUIRELOCALSTART(idC)
6: send 〈SYNC; idC〉 to pi
7: end procedure

Fig. 1. Algorithm of initiatorpi

Malicious clients may launch a denial of service attacks,
sending messages with invalid proposals to servers. However,
servers should be able to resume its services after the attack
is finished.

As shown in [10], [11] in order to reduce another agreement
problems, as atomic broadcast to consensus for instance, itis
necessary to define a stronger validity property to the classic
agreement definition for crash failures. In this paper, we are
founded on the definition of vector validity.The servers collect
proposals and agree a vector that satisfies the vector validity
property.

V. A LGORITHMIC BASIS OFGCS

As stated above, the GCS acts as a framework. In this
section we will present the algorithms that form the core of
this framework.

Correctness proofs were developed to the algorithms pre-
sented, unfortunately due to space restrictions we will omit
them. The proofs are available online at: http://www.inf.ufsc.
br/∼pieri/SGCProofs.pdf

Each one of the processes in the agreement problem to be
solved obey an algorithm depending on the role they play in
the GCS. The initiator processes follow the algorithm 1. This
algorithm provides a procedure calledRequireAgreement
to initiate a consensus instance, whose identifier is calculated
through a call to a procedureCalculateId that must be
implemented according to the specific problem to be solved
by GCS. If the client and initiator sets are equal, then the
procedureRequireLocalStart may be used to start an
agreement. This procedure forces the client who has executed
it to send its proposal to the servers. Therefore, the GCS’s
specialization must ensure that all correct clients send their
proposals to the servers. If this constraint is not met, the
servers will not decide and will not reply the clients’ request.
TheRequireStart satisfies this requirement because if one
correct process receives a SYNC message, every other correct
process will receive the same SYNC message and start the
agreement.

GCS clients follow the algorithm 2. On receive a message
SYNC from an initiator process, the client calculates its
proposal and assign it to the variableproposal (line 5). Then,
this variable is sent to the GCS’s server processes through
a Multisend(), concatenated with the consensus instance
identifier idC and a signature (line 8). The client waits
the arrival of the replies from the servers. When the client
receivesfs + 1 responses with the same decision vector from
distinct servers (line 13), it applies the Consensus Filter(CF)

functionResult to the vector (lines 14 and 15) and handles
the control to the application through a call to the method
AgreementFinished.

Init:
1: proposali ← 0; signi ← 0
2: respi ←⊥; v ← 〈⊥;⊥; . . . ;⊥〉
3: received msgsidC

i
← ∅; validMessage← false

4: on Rdelivery 〈SYNC; idC〉 from Initiator
5: proposali ← CALCULATE PROPOSAL(idC)
6: signi ← SIGN(〈idC; proposal〉)
7: reqi ← 〈PROPOSE; idC; proposal; sign〉
8: MultiSend reqi to GCS

9: on receive〈DECIDE; idC; v; signj〉 from sj
10: validMessage← VERIFIEDSIGNATURE(signj , sj)
11: if validMessage then
12: received msgsidC

i
← received msgsidC

i
∪ {v}

13: if (#vreceived msgsidC
i

= fs + 1) then
14: resulti ← RESULT(v)
15: AgreementF inished(idC; resulti)
16: end if
17: end if

Fig. 2. Client processci from the GCS

The server processes follow the algorithm 3. Upon receipt of
nc − fc PROPOSE messages from clients proposing a value
to the same consensus instance (line 10), the server start a
consensus protocol (line 11). Then, the result of this protocol
is relayed to the clients through theMultisend of a message
〈DECIDE; idC; agreedV ector〉 (line 17).

The servers build a vector based on the received proposals.
This vector is certified through a set of messages digitally
signed by the clients. The consensus protocol used, actually, is
a variation of the classical consensus problem named Certified
Initial Value Consensus. This variation of consensus and
an algorithm solving it in presence of Byzantine faults are
introduced in [11]. This problem guarantees that the agreed
value is a certified initial value.

In order to satisfy the needs of server processes and to
guarantee the vector validity properties required, the following
definition of certified vector is made:

Definition 5.1: A server processsi considers a vector
vectoridCi certified in respect of a consensus instanceidC,
if and only if:

1) #⊥vector
idC
i ≤ fc

2) ∀j ∈ [1, nc], ∃msgj ∈ certidCi : vectoridCi [j] 6= ⊥
⇒msgj .proposal = vectoridCi [j]

∧VERIFIEDSIGNATURE(msgi.sign, cj)

∧msgj .idC = idC

The definition 5.1 states that certified vector contains at
least nc − fc clients proposals and is associated with a
certificate composed by a set of digitally signed messages.
Every proposal in the vector must have the respective sender’s
PROPOSAL message in the certificate.

VI. A PPLICATIONS

In this section, two examples are presented of using GCS
to solve agreement problems: Reliable Broadcast and Atomic
Broadcasts. Despite of the presentation of just two agreement

Init:
1: certidC

i
← ∅; vectoridC

i
← 〈⊥;⊥; . . . ;⊥〉

2: agreedV ectoridC
i
← 〈⊥;⊥; . . . ;⊥〉

3: resp signi ← 0; validMessage← false
4: on receive〈PROPOSE; idC; proposalj ; signj〉 from cj
5: validMessage← VERIFIEDSIGNATURE(signj , cj)
6: if validMessage ∧ vectoridC

i
[j] = ⊥ then

7: vectoridC
i

[j]← proposalj
8: propidC

i
← {〈PROPOSE; idC; proposalj ; signj〉}

9: certidC
i
← certidC

i
∪ propidC

i

10: if (#⊥vectoridC
i

= fc) then
11: PROPOSE(idC; vectoridC

i
; certidC

i
)

12: end if
13: end if
14: on decide〈idC; agreedV ectori〉
15: resp signi ← SIGN(〈idC; agreedV ectori〉)
16: msgi ← 〈DECIDE; idC; agreedV ectori; resp signi〉
17: MultiSend msgi to clients

Fig. 3. Server processsi from the GCS

Init:
1: proposalidC

i
←⊥

2: procedure R Broadcast(msgi)
3: MultiSend 〈INITIAL,msgi〉 to clients
4: end procedure
5: on receive〈INITIAL,msgj〉 from cj
6: idC ← msgj .id

7: proposalidC
i
← msgj

8: REQUIRELOCALSTART(idC)
9: procedure CALCULATE PROPOSAL(idC)

10: return proposalidC
i

11: end procedure
12: procedure AGREEMENTFINISHED(idC, result)
13: R deliver(〈idC, resulti〉)
14: end procedure

Fig. 4. Client/initiatorci of Reliable Broadcast

problems in this paper, it is by no means the only problems
that may be tackled by the GCS. We have also defined algo-
rithms to solve Strong Consensus, Vector Consensus, Group
Membership, and a hybrid approach to Atomic Non Blocking
Commit.

A. Reliable Broadcast

Reliable Broadcast (RB) is a group communication prob-
lem whose objective is to send a message to all processes
belonging to a group. Two primitives define this problem:
RMulticast() andRDeliver(). The reliable broadcast
ensures that if a correct processRMulticast() a message
then every correct process will deliver this same massage. A
precise definition of validity, agreement and integrity proper-
ties for RB in Byzantine environments may be found in [2].

In the following we assume that, as in [2], message iden-
tifiers are formed by the concatenation of two components
msgj .id = j|sn, wherej is the sender’s identifier andsn is the
messages serial number according to the sender. Algorithms4
and 5 show the needed specializations for implementing a RB
protocol using GCS.”

For building a reliable broadcast protocol, the initiator and
client sets are equal. The algorithm 4 describes the behavior
of RB participant. It exposes a procedureRBroadcast() to
the application that will be used to broadcast a message to the

1: function RESULT(vector)
2: return MAJORITY(vector)
3: end function

Fig. 5. Result Function to Solve Reliable Broadcast

group. A broadcasted message is received by a process when
procedureRDeliver() is invoked.

The algorithm explores the multisend’s property that states
that if the sender of a message is correct, then every correct
process will eventually deliver it. When a correct process
wants to broadcast a message it willMultisend() it. This
message is received by every correct process that will propose
it to the GCS servers. When the servers reach a consensus over
the message identified byid, they will reply the clients with
a vector. This vector goes through the Consensus Filter to the
RB protocol (algorithm 5) that, in this case, will choose the
most frequent message to be delivered. Afterwards, the agreed
messages areRDelivered() to the application.

This algorithm respects all the properties required by the
RB problem. If the sender is correct, then every correct client
will receive the same message through theMultiSend(),
then all correct processes will propose the same message
to the GCS. As the GCS guarantees that there are at least
fc+1 > fc correct values in the agreed vector (vector validity),
the majority function used in the consensus filter will return
the message broadcasted by the client. If a message is sent
by a faulty sender, if a correct process delivers it the GCS
guarantees that all correct processes will deliver the same
message.

B. Atomic Multicast

Atomic Multicast (AM) is a group communication pro-
tocol defined by two primitives:A-Multicast() and
A-Deliver(). AM enforces the same properties as RB,
but additionally requires ordering. Every correct processmust
deliver messages in the same order. As in the RB protocol,
we assume that message identifiers are composed by two parts
msgj .id = j|sn where j is the sender’s identifier andsn a
serial number.

The algorithm shown in figure 6 explicit the following
behavior for an Atomic Multicast: when a given process
wants to broadcast a messagemsg it will invoke the pro-
cedureA-Multicast(). This procedure will use a reliable
broadcast to send these messages to all processes. When a
message is RDelivered by the reliable multicast protocol, the
atomic broadcast protocol will include this message in the set
messagesToDeliver. At this point, the order of the messages
must be specified. In order to do this, the client will query the
GCS.

The AM algorithm advances in asynchronous rounds, in
each one it will calculate a set of stable messages to be
delivered. A messagemsg is considered stable if there are
fc + 1 clients reporting thatmsg must delivered. This guar-
antees that at least one correct process received the message
through a R-Multicast protocol. In the beginning of a round,

Init:
1: messagesToDeliver ← ∅; current agreement id← 0
2: agreementStartRequired← false
3: procedure AB Send(ID, message)
4: R Broadcast(ID,message)
5: end procedure
6: procedure RB Deliver(ID, message)
7: messagesToDeliver ← messagesToDeliver ∪
{〈ID,message〉}

8: if agreementStartRequired then
9: REQUIRELOCALSTART(current agreement id)

10: agreementStartRequired← false
11: end if
12: end procedure
13: procedure CALCULATE PROPOSAL(id)
14: if current agreement id < id then
15: return ∅
16: end if
17: proposal← {HASH(m) : m ∈ messagesToDeliver}
18: return proposal
19: end procedure
20: procedure AGREEMENTFINISHED(id, result)
21: wait until (id = current agreement id) ∧ (∀msg ∈ result :

HASH(msg) ∈ messagesToDeliver)
22: msgs← {msg ∈ messagesToDeliver : HASH(msg) ∈ result}
23: for all msg ∈ msgs do
24: AB deliver(msg)
25: end for
26: messagesToDeliver ← messageToDeliver − result
27: current agreement id← current agreement id+ 1
28: agreementStartRequired← true
29: if |messagesToDeliver| > 0 then
30: REQUIRELOCALSTART(current agreement id)
31: agreementStartRequired← false
32: end if
33: end procedure

Fig. 6. Client/Initiatorci of Atomic Broadcast

clients propose to the GCS the set of messages that must
be delivered. Upon the arrival of the GCS consensus, the
Consensus Filter Result function is applied to calculate an
ordered list of stable messages to be delivered. Then, the
clients will deliver this set of messages to application in the
procedureAgreementFinished(). Only after the mes-
sages are delivered a new round is started.

1: function RESULT(vector)

2: allMsgs←

nc⋃

i=1

vector[i]

3: deliverableMsgs← {msg|#msgallMsgs ≥ fc + 1}
4: return DETERMINISTICORDER(deliverableMsgs)
5: end function

Fig. 7. Consensus Filter to solve Atomic Broadcast

VII. C ONSENSUSPROTOCOL WITH TRUSTED

COMPONENTS

The GCS provides separation between the processes re-
sponsible for executing the consensus protocol and the ones
that want to solve an agreement problem. This separation of
concerns allows us to use different fault models, or abstractions
in servers and clients. We explore this property by using
virtualization technology and trusted components to improve
the servers’ resilience to intrusion.

We propose two trusted components. Both components
are used by processes in one VM to broadcast messages.
They differ in the ordering constraints imposed on delivered
messages. This components are implemented inside the VMM,
so their protocols are subject only to crash faults.

The first component, calledpostbox, is the abstraction of an
append-only shared memory region that allow efficient inter
virtual machine communication. A process inside a VM can
append a message to the postbox through aAppend(msg)
operation. Additionally, it may read messages from the post-
box through aRead() operation that returns a message that
was previously appended to the postbox. This component
enforces that every process read the same set of messages in
the same order. This constraint is satisfied by the underlying
append only shared memory. Being all server processes on
top of the same physical host machine, the service will not
tolerate its crash.

The distribution of this component among several physical
machine is computationally expensive, as it requires total
ordering of the messages (i.e., a consensus protocol).

The postbox prevents equivocation of faulty servers, as well
as enforcing a total order to the messages that are read from
it. These guarantees allow the implementation of highly effi-
cient consensus protocols. Under this model, consensus may
be solved in one postbox communication step, and requires
ns = 2fs + 1 processes to tolerate up tofs faults.

The second component is calleddistributed postbox. It re-
laxes the ordering constraints of delivered messages, requiring
that messages sent by a process are delivered in the same order
in which they were sent. This change eases the distribution of
the component among several physical machines.

In order to spread thedistributed postboxamong several
physical machines, it is needed a reliable broadcast among
VMMs in the crash fault model. Thus, thedistributed postbox
is preferable than the postbox if the crash of the physical
machine is to be tolerated.

In the following, we present consensus algorithms based on
the trusted components described previously. They are usedby
the servers of the GCS in order to achieve consensus. These
algorithms are subject to Byzantine faults and may use the
services provided by the trusted components in an arbitrary
way.

A. Postbox-based Algorithm

The algorithm in figure 8 shows how the postbox abstraction
can be used to implement a consensus protocols to be used
among servers with 1 communication step that requiresns =
2fs + 1 servers to tolerate up tofs faulty components.

The consensus algorithm operates by providing a procedure
Propose(). When this procedure is called, the message is
appended to the postbox. This algorithms requires a task to be
running, responsible for monitoring the postbox. Whenever a
proposal from a consensus instance is received, if it is the first
one regarding that consensus instance then it is chosen as the
consensus result.

Algorithm for process pi:
1: procedure PROPOSE(id, proposal, certificate)
2: APPEND(〈PROPOSAL, id, proposal, certificate〉)
3: end procedure

Task 1:
4: decidedid

i
← false

5: loop
6: msg ← READ

7: if msg = 〈PROPOSAL, id′, proposal′, certificate′〉 then
8: validi = CHECKCERT(proposal′, certificate′)
9: if not decidedid

i
∧ validi then

10: decidedid
i
← true

11: DECIDE(proposal′)
12: end if
13: end if
14: end loop

Fig. 8. Consensus algorithm using a postbox

The algorithm correctness is based on the fact that every
server process receives the same set of messages in the same
order from the postbox. Thus a process may decide the first
valid message that arrives. If this process is correct, every
other correct process behaves in exactly the same way.
CheckCert() procedure’s code is omitted here. It is

responsible for not allowing invalid proposal to be chosen as
the consensus result.

B. Distributed Postbox-based Algorithm

The algorithm based on the distributed postbox algorithm
shown in figure 9 is more complex due to weaker guarantees
provided by the trusted component. Under the distributed
postbox approach, each VMM provides access to a distributed
postbox component. These components are interconnected
through a private network avoiding attacks to the crash tolerant
protocols.

Correctness proofs were developed, unfortunately due to
space restrictions we will omit them. The proofs are available
online at: http://www.inf.ufsc.br/∼pieri/SGCProofs.pdf

The algorithm proposed here is round-based. Each round
is asynchronous and has a leader. The leader of roundr

is the process with numberr mod n. In each round, the
leader tries to impose its proposal to the other processes.
The algorithm works as follows: when the roundc starts
its leader sends a message〈PROPOSAL; ri; vidi ; init cert〉
with the round numberri, the leader’s proposalvidi and a
init cert certificate. At the first round,init cert = ∅. When
a processp receives the leader’s proposal, it sends the message
〈PREPARE; ri; proposal〉 whereri is the round number and
proposal is the proposal received from the leader. If a process
receivesf + 1 prepare messages from the same round, it
decidesv and finishes. This behavior occurs when no faulty
process is present and messages are received before any timer
expires.

In order to guarantee liveness in the presence of faults a
view change protocol may take place, causing the processes
to advance to the next round. Whenever a process suspects
that the leader is faulty, or it could not assemblef+1 prepare
messages, it attempts to freeze the current roundri, by sending
a message〈FREEZE, ri, vp, rp〉. If the process sent a message

prepare during roundri, rp = ri and vp is the proposal
confirmed through the prepare message. Otherwise,vp is a
value proposed by the leader of roundrp, correct processes
sendvp andrp equals to the last freeze message that was sent
by them. If no value was proposed yet,v =⊥ e rp = 0.

The view change mechanism relies upon the construction
of a valid init cert (definition 7.1). A init cert is a set of
f + 1 valid freeze messages collected during roundri − 1.

Definition 7.1: An init cert is considered valid by a cor-
rect process if the conditions below are satisfied:

• Being r′ the greatestrp of freeze messages ininit cert.
Given any two messages freeze withrp = r′ in init cert,
namelym e m′, then:m.v =⊥ or m.v′ =⊥ or m.v′ =
m.v.

• All messages have correct signatures
• Given any freeze messages ininit cert in which v 6=⊥,

the leader of roundrp proposedv.
Whenever a new leader proposes a value, it must certify

its proposal with a validinit cert certificate. Aninit cert

certifies values according to definition 7.2. The leader of the
first round does not certify its proposal.

Definition 7.2: Given aninit cert, and beingr′ the great-
estrp among freeze messages ininic cert. The value attested
by init cert is:

• A value v 6=⊥ of a message freeze withrp = r′

• If all messages freeze in whichrp = r′ havev =⊥, the
any value is attested.

In order to simplify the specification of the algorithm, some
verifications are isolated in a module, calledfault detection
module, responsible for detecting faulty processes analyzing
the history of received messages. When a faulty process is
detected all future messages from it are dropped, before the
algorithm process them. After passing through this module,
the following behavior is ensured:

• Round number of messages sent by one process are
strictly increasing.

• If the primary proposesv in round r, then the primary
must preparev.

• If a process that has preparedv in round r freezes, if
must freeze with valuev and roundr.

• If a process have not prepared in roundr, it can only
freeze a valuew with round rp < r. Beingw the value
proposed by the leader of roundr.

• During a round, processes may send only one of these
messages in the following order: proposal, prepare and
freeze. The proposal must be made only by the round
leader. A process may decide at any time.

• After freezing the roundr, the next message a process
send must regard the next roundr′ = r + 1.

• After the leader sends a propose, it must prepare. It can’t
freeze before preparing.

• All messages have valid certificates and signatures.

VIII. C OMPARISONS ANDRESULTS

First of all, it is important to notice that, in order to achieve
generality the GCS sacrifices some possible performance op-

Init:
1: rid

i
← 0; init certid

i
← 〈∅,⊥, . . . ,⊥〉

2: vp ←⊥; rp ←⊥
3: procedure CONSENSUS(id, proposal, certificate)
4: loop
5: if roundid

i
mod n = i then

6: WRITEPOSTBOX(〈PROPOSAL, ri, vidi , init certid
i
[rid

i
]〉)

7: end if
8: wait until proposalsid

i
[rid

i
] 6=⊥ or timed out

9: proposal received← proposalsid
i
[rid

i
] 6=⊥

10: if proposal received then
11: WRITEPOSTBOX(〈PREPARE, ri, proposalsidi [rid

i
]〉)

12: rp ← ri
13: vp ← proposalsid

i
[rid

i
]

14: end if
15: wait until timed out
16: WRITEPOSTBOX(〈FREEZE, ri, vp, rp〉)
17: wait until init certid

i
[rid

i
] 6=⊥

18: rid
i
← rid

i
+ 1

19: end loop
20: on receive〈PROPOSAL, rj , vj , init certid

j
〉 from pj

21: proposalsid
i
[rj]← vj

22: UPDATEINITCERT(id, rj)

23: on receive〈PREPARE, rj , proposal〉 from pj
24: preparesid

i
[rj]← preparesid

i
[rj]∪〈PREPARE, rj , proposal〉

25: if #proposalprepares
id
i
[rj] = f + 1 then

26: DECIDE(proposal.v)
27: end if
28: UPDATEINITCERT(id, rj)

29: on receive〈FREEZE, ri, vp, rp〉 from pj
30: freezesid

i
[rj]← freezesid

i
[rj] ∪ 〈FREEZE, ri, vp, rp〉

31: UPDATEINITCERT(id, rj)

32: end procedure
33: procedure UPDATEINITCERT(id, rj)
34: if init certid

i
[rj] =⊥ then

35: x ← {c ⊆ freezesid
i
[rj] : |c| = f + 1 ∧ ∀e ∈ c :

e.proposal = ⊥ ∨ proposalsid
i
[e.proposal.r] = e.proposal.v}

36: if |x| > 0 then
37: init certid

i
[rj]← any element ofx

38: end if
39: end if
40: end procedure

Fig. 9. Distributed postbox-based consensus algorithm

timizations. For instance, it requires that some messages must
be digitally signed, which is widely known to be a common
bottleneck in the system performance.

Another point is the fact that some specific implementations
may optimize common cases, leading to faster implementa-
tions in certain scenarios. For instance, the Byzantine consen-
sus protocol in [20] solves agreement in one communication
step under favorable conditions.

Assuming a GCS based consensus, we notice that GCS is
more resilient to intrusion than classical consensus algorithms
such as PBFT [3], requiring2f + 1 acceptors to execute the
protocol. The latency required by GCS is two communication
steps plus an access to the trusted component, instead of three
required by PBFT.

In order to assess the performance of the proposed scheme,
a prototype was implemented using Java 1.6. The test bed
is composed by a Core 2 Quad CPU host machine, with 8
GB of RAM, running Debian GNU/Linux 5.0, kernel 2.6.26-
2, and VirtualBox 2.2.4. Each virtual machines has 1 GB of
RAM and access to one processor. Inside each VM, there is a

server running Ubuntu GNU/Linux 9.10, kernel 2.6.31-15. The
clients run Ubuntu GNU/Linux 9.10 Desktop, kernel 2.6.31-15
in a Core 2 Duo CPU with 4 GB of RAM.

It was made micro-benchmarks in which each client pro-
posed zero length messages to the consensus service. The
consensus servers used the Postbox as the trusted component.

In the first experiment, we let the number of clients constant
and increased the number of virtual machines. We observed
that the throughput and response time remained constant, about
40 requests per second and 25ms respectively, until the limit
of seven virtual machines were reached. At this point the
throughput diminishes, while the response time increased.We
believe that this happens because the computational power
of the host machine starts to exhaust. There are eight cores,
seven of them are processing the requests and the other one
is managing the VMs and the postbox.

After that, we did the opposite: we let the number of
servers constant while increasing the number of clients. In
this scenario, the throughput decreases while the responsetime
increases as the number of clients increases, as expected. The
number of messages and signatures needed to be verified by
the servers increases linearly with the number of clients, caus-
ing the the throughout to diminish linearly and the response
time to increase linearly.

In order to assert the trusted component impact, we run one
server (fs = 0). In the first run we used the algorithm as is,
using the postbox, however in the second run we changed the
algorithm to not use the postbox. We observed a 10% decrease
in throughput when using the postbox.

IX. CONCLUSIONS

This paper introduces the Generic Consensus Service, an
extension of the previous consensus service towards the tol-
erance of Byzantine faults. We presented how the Generic
Consensus Service works and how to specialize it to solve
distinct agreement problems.

The separation of consensus protocol from agreement prob-
lems allowed the adoption of virtualization in part of the
system, leading to the possibility of separating crash fault tol-
erance and malicious behavior treatment. We took advantage
of this to implement a consensus agreement protocols that
toleratesf malicious processes out of2f + 1 increasing the
server’s resilience to intrusion.

Besides that, we proposed two trusted components, and
one consensus protocol for each trusted component. These
trusted components increases the resilience of the system and
allows to choose a tradeoff between crash fault tolerance and
efficiency.

Finally, we commented the implementation of the GCS
and compared some characteristics of a GCS based consensus
algorithm to PBFT. Future works are focused on improving the
initial prototype and the algorithms, solving other agreement
problems with the GCS.

The main contributions of this paper are:

• Generalization of the consensus service presented by
Guerraoui and Schiper to a Byzantine environment

• Definition of two trusted components implementable us-
ing virtualization technology

• Two Byzantine tolerant consensus protocols based on
these trusted components

• Separation in tolerating crash and malicious faults
through the use of the distributed postbox

REFERENCES

[1] G. Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol.
In PODC ’84: Proceedings of the third annual ACM symposium on
Principles of distributed computing, pages 154–162, New York, NY,
USA, 1984. ACM.

[2] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient
asynchronous broadcast protocols. InCRYPTO ’01: Proceedings of
the 21st Annual International Cryptology Conference on Advances in
Cryptology, pages 524–541, London, UK, 2001. Springer-Verlag.

[3] M. Castro and B. Liskov. Practical byzantine fault tolerance and
proactive recovery.ACM Trans. Comput. Syst., 20(4):398–461, 2002.
571640.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectorsfor reliable
distributed systems.J. ACM, 43(2):225–267, 1996. 226647.

[5] B.-G. Chun, P. Maniatis, and S. Shenker. Diverse replication for single-
machine byzantine-fault tolerance. 2008. 1404038 287-292.

[6] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.Attested
append-only memory: making adversaries stick to their wordum. 2007.
1294280 189-204.

[7] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo. Efficient
byzantine-resilient reliable multicast on a hybrid failuremodel. 2002.
831132.

[8] M. Correia, N. F. Neves, L. C. Lung, and P. Verı́ssimo. Low complexity
byzantine-resilient consensus.Distrib. Comput., 17(3):237–249, 2005.
1151559.

[9] M. Correia, N. F. Neves, and P. Verı́ssimo. From consensus to atomic
broadcast: Time-free byzantine-resistant protocols without signatures.
Comput. J., 49(1):82–96, 2006. 1183871.

[10] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper.Muteness Fail-
ure Detectors: Specification and Implementation, pages 71–87. 1999.

[11] A. Doudou and A. Schiper. Muteness detectors for consensus with
byzantine processes. 1998. 277772 315.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process.J. ACM, 32(2):374–382,
1985. 214121.

[13] R. Guerraoui and A. Schiper. The generic consensus service. IEEE
Trans. Softw. Eng., 27(1):29–41, 2001. 359565.

[14] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant
broadcasts and related problems. Technical report, Ithaca,NY, USA,
1994.

[15] S. Kinney. Trusted platform module basics: using TPM in embedded
systems. Newnes, 2006.

[16] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. Trinc:
small trusted hardware for large distributed systems. InNSDI’09:
Proceedings of the 6th USENIX symposium on Networked systems design
and implementation, pages 1–14, Berkeley, CA, USA, 2009. USENIX
Association.

[17] H. P. Reiser and R. Kapitza. Vm-fit: Supporting intrusiontolerance with
virtualisation technology. 2007.

[18] H. P. Reiser and R. Kapitza. Fault and intrusion tolerance on the basis
of virtual machines. 2008.

[19] F. B. Schneider and L. Lamport. Paradigms for distributedprograms. In
Distributed Systems: Methods and Tools for Specification, An Advanced
Course, April 3-12, 1984 and April 16-25, 1985 Munich, pages 431–480,
London, UK, 1985. Springer-Verlag.

[20] Y. J. Song and R. Renesse. Bosco: One-step byzantine asynchronous
consensus. InDISC ’08: Proceedings of the 22nd international sym-
posium on Distributed Computing, pages 438–450, Berlin, Heidelberg,
2008. Springer-Verlag.

[21] A. Tomlinson. Introduction to the TPM. InSmart Cards, Tokens,
Security and Applications, pages 155–172. 2008.

[22] P. Zieliński. Paxos at war. Technical report, 2004.

