
Adapting the UCONABC Usage Control Policies
on CORBASec Infrastructure1

Lau Cheuk Lung, Marcelo Shinji Higashiyama, Rafael R. Obelheiro, Joni da Silva Fraga

Graduate Program in Applied Computer Science - PPGIA
Exact Sciences and Technology Center - CCET

Pontifical Catholic University of Paraná (PUCPR) - Curitiba - Paraná - Brazil
lau@ppgia.pucpr.br, shinji@ppgia.pucpr.br, rro@das.ufsc.br, fraga@das.ufsc.br

1 This work is partially supported by CNPq (Brazilian National Research Council) through processes 481523/2004-9, 506639/2004-5 and
550114/2005-0

Abstract

The JaCoWeb-ABC infrastructure is an extension of
the CORBASec specification that applies the UCONABC
access control model to its security layer. JaCoWeb-
ABC defines configurable access controls that deploy
authorization, obligation and condition policies. These
security policies can be defined in two different
manners. The first one is totally transparent to
applications, for cases where JaCoWeb-ABC has all
the necessary information for the access decision
process, and the second one works together with
applications, in cases where security controls depend
on external information that must be supplied by the
application. Combining these two functionalities
allows for a much more accurate and strict control
over the actions of users within a system, making it
possible to block access in case inappropriate
behavior is identified.

1. Introduction

The popularization of the Internet made it possible
for any company to use this network as a new
communication channel for their business, offering to
their clients virtual services, such as e-commerce,
Internet banking, auctions, etc. For this reason,
companies began to steer systems development towards
client-server applications and to look for solutions
based on middleware, such as CORBA, RMI, DCOM,
and Web Services, that work based on client-initiated
transactions that are executed by a server. These
services have increasingly become victims of
inappropriate behavior by Internet users. In the
beginning, some of these malicious users intended only
to make these services unavailable (DoS – Denial of
Service). But more recently, this practice has been

moving towards digital crimes, leading to huge losses
to companies. This problem has prompted companies
to increase their investments in the security of their
computing systems.

Thus, many security concepts started being studied
and applied to computing systems, like access control
models such as the mandatory (MAC) [1],
discretionary (DAC) [2], role-based (RBAC) [3], and
others. Technologies such as SSL and digital
certificates also became widely used, in particular for
the purpose of ensuring information confidentiality,
integrity and authenticity. Even so, employing these
technologies does not always prevent users from
carrying abusive or even illegal procedures, if there are
no specific security policies to this end.

Focusing on this need, Ravi Sandhu and Jae Hong
Park presented in [4], [5], [6] a new access (usage)
control model, called UCONABC (Usage Control),
which defines Authorization, oBligation and Condition
policies that can be applied dynamically, during the
access to an object (e.g. a system resource). In this
model, subjects and objects have control attributes that
can be altered during the access of a subject to an
object (mutability of attributes). An important
advantage of this model is its capability for adapting a
range of existing access control models to its security
policies. In other words, UCONABC is a framework that
can be used to emulate any traditional control access
model and also allow mutability of attributes. This
way, UCONABC allows a user to be dynamically
controlled for the whole duration of her access to the
system – resulting in this way an usage control more
precise over all resources of the system.

The CORBA Security Service specification
(CORBASec [8]) does not have a specification for
access (or usage) control in its security layer. Actually,
it provides only a definition of a discretionary model

which is not enough to fully control the actions of users
over system resources. To fil l this gap, some proposals
aimed to integrate traditional access control models to
the CORBA architecture [9, 10, 13, 14]. We believe
that a usage control model can be advantageous for
many CORBA distributed applications, such as
workflow and groupware. In this paper, we propose the
JaCoWeb-ABC model that implements usage control
mechanisms in the CORBASec platform. Thus, this
paper proposes to apply the UCONABC model in the
CORBASec infrastructure, so defining a stricter access
control mechanism. This makes it possible to revoke
access privileges, for instance, in cases where the
system identifies a user’s actions as being improper.
The main challenge of this proposal is to define a
specification capable of implementing the UCONABC
security policies in the CORBASec infrastructure in
such a way that authorization, obligation, and
condition policies can be dynamically verified.

This paper is organized as follows: section 2
presents traditional access control models. Sections 3
and 4 provide overviews of the UCONABC model and
the CORBASec specification, respectively. Section 5
presents the JaCoWeb-ABC model. Section 6 reviews
related work. Finally, section 7 concludes the paper.

2. Traditional access control

Traditional access control models [4], such as
discretionary (DAC) [2], mandatory (MAC) [1], and
role-based (RBAC) [3], boil down to a Subject (S)
trying to access a given Object (O). Permissions are
determined based on attributes that characterize the
subject (ATT(S)) and the object (ATT(O)), defining the
corresponding usage rights (R), see Figure 1.

Figure 1. Traditional Access Control

These access control models are based on a static

authorization matrix, that is, once a subject is granted
access rights to a given object, other situations are no
longer taken into account, such as the order in which
objects are accessed, controls for abusive usage, or
allowing access to objects only after certain conditions
and obligations to the system are met. These controls
are, when they become really necessary, usually

implemented and managed within the applications
themselves, and are not always coded in a standardized
manner, coherent and free of possible implementation
errors (bugs) introduced by system developers.

3. The UCONABC usage control model

In the UCONABC usage control model, proposed by
Jaehong Park and Ravi Sandhu in [4], [5], [6], policies
are defined for Authorizations, oBligations, and
Conditions (ABC), making it possible to adapt
different access control models inside a single model,
resulting in a much more accurate and strict control of
the actions granted to a subject in relation to an object.
One important feature is that the access rights granted
to a subject for an object are determined at run time,
and so can be changed according to the actions
performed by the user within the system.

The UCONABC model comprises eight components:
Subjects (S), Subject Attributes (ATT(S)), Objects (O),
Object Attributes (ATT(O)), Rights (R),
Authorizations (A), oBligations (B), Conditions (C), as
shown in Figure 2.

Figure 2. UCONABC Access Control Model

The concepts of Subject and Object are the same as
in traditional access control models. Rights qualify a
subject for accessing an object, in a specific mode, such
as reading or writing. The main features of the
UCONABC model are related to the
changeability/mutability of attributes, wherein the right
is not assessed against an existing static access matrix.
In this process, the decision is made at run time, at the
moment the subject is accessing the object. The ABC
assessment processes are defined below:

�
 Authorizations: requirements that must be
satisfied before (preA) or during (onA)
permission for a Subject to access an Object.
Authorizations are based on subject and object
attributes, which specify the given rights. For
instance, only a group of users of the system can
read a certain file;

�
 oBligations: requirements that the subject must
address before (preB) or during (onB) the access
to a given object. Once a subject addresses and
meets his system obligations, access to further
objects may be granted. For instance, providing
an e-mail address before being able to download a
document from a company’s website;

�
 Conditions: factors related to the system
environment, which allow checking of conditions
before (preC) or during (onC) access is granted to
a subject for a given object. For instance, to allow
a subject access to a specific object only during
regular working hours.

4. CORBASec Specification

The CORBA standard, according to the definition
of the Object Management Group (OMG), specifies a
software architecture that supports distributed
applications and ensures interoperability across
different hardware platforms and operating systems.
The CORBA 1.1 specification defined an IDL
(Interface Definition Language) and an API
(Application Programming Interface) that allows
client-server interaction through an ORB (Object
Request Broker). The CORBA 2.0 [7] specification
underwent a major review process, where several new
features were added, among these, the CORBA security
service specification (CORBASec [8]).

4.1. CORBA Security Services Specification

The CORBA security model (CORBASec) is an
open specification for security in distributed object
systems [8, 7]. CORBAsec relates objects and
components in four system stratification levels: the
application level; the middleware level formed by
object services (COSS), ORB services and the ORB
core; the security technology level formed by the
underlying security services; and finally, the basic
protection level comprising operating system and
hardware functionalities.

The CORBASec specification works with security
services at interceptor level, making it possible to
protect objects in a manner that is transparent to the
application. It is composed of object services (COSS),
such as PrincipalAuthenticator, Credential,
AccessPolicy, RequiredRights, AccessDecision,
SecurityManager, PolicyCurrent, Vault and
SecurityContext objects. The PrincipalAuthenticator
object is responsible for principal authentication: its
function is to acquire credentials that will be used to

identify a principal (i.e., a subject) in the system. In
CORBASec, policies are described through the security
attributes of system resources (control attributes) and
of principals (privilege attributes). CORBASec defines
only the corba family that contains four types of rights
— g (get), s (set), m (manage), and u (use) — despite
allowing freedom for definition of other families of
rights.

5. The JaCoWeb-ABC proposal

UCONABC defines a very complete model, allowing
a range of different access control concepts to be
adapted to its functionality. The CORBASec
specification is well known and widely disseminated in
the industrial and academic environments, integrating
a variety of security concepts, such as processes for
authentication, authorization, audit, confidentiality,
and integrity, but its access control layer define only a
simple discretionary model that is not always sufficient
to meet the security needs of CORBA-based
applications. Thus, we propose to integrate the
UCONABC model to the CORBASec specification,
adding these functionalities to its authorization layer,
more precisely by extending the AccessDecision object.

Figure 3 - Analogy ABC x CORBASec.

5.1. Analogy between the UCONABC and
CORBASec models

In order to integrate the UCONABC and CORBASec
models, it is necessary first to identify their
components and create an analogy between the models,
so that an implementation becomes possible. In Figure
3, we have identified that the Subject that represents
the client application can be associated to the
AccessPolicy object, the Object represents the invoked
methods and can be associated to the RequiredRights
object, and the Rights that represents the access rights
can be represented by the AccessDecision object, which
is responsible for the processes of authorization,
obligation, condition, and also mutability of attributes.

5.2. AccessDecisionABC Model

Our proposal for restructuring the CORBASec
model in order to adapt it to the UCONABC model is
introduced in Figure 4. In the conventional CORBASec
model, there are only the AccessDecision,
RequiredRights and AccessPolicy objects. For this
proposal, a model was defined which is capable of
controlling the attributes of both subjects and objects,
authorization, obligation and condition policies, as well
as mutability of object attributes. In order to allow the
Subjects and Objects of the UCONABC model to have a
range of attributes, it was necessary to create the
AttributesManager object, responsible for including
and managing these attributes. In this way, the control
over every attribute of the RequiredRights and
AccessPolicy objects, except their identification
attributes, was transferred to the AttributesManager
object. In Subjects, an attribute called Obligations was
created, which stores a history of every obligation ever
met by the subject. In Objects, one more attribute was
defined to contain all the policies of the UCONABC
model associated to each object (method invoked in the
CORBASec model), such as the authorization,
obligation and condition processes, in addition to the
attribute update policy.

In an access decision process started when a subject
begins to access an object, the AccessDecisionABC
object identifies who is the subject through its

credentials that are in the Current object, which holds
the user credentials, and identifies, through the
invoked method, which is the object of this interaction.
The UCONABC security policies are referenced in the
object itself, which holds the definitions for
authorization, obligation and condition, and also the
policies for mutability of attributes, which can be done
before or after the assessment process.

Figure 5. AccessDecisionABC object.

5.3. ABC policy evaluation process

In order to adapt the access decision process and the
attribute update process of the UCONABC model
(defined in Figure 3) to the AccessDecision object of
CORBASec, we created the AccessDecisionABC
object, shown in Figure 5.

Figure 4 - Components of the AccessDecisionABC Model.

The AccessDecisionABC object allows the ABC
assessment process to be performed together with the
pre-update and post-update processes.

In order to integrate both models (CORBASec and
UCONABC), we identified the need to adapt the use of
the AccessDecisionABC object in two different points.
Many applications are security-unaware, and thus can
rely on the ORB to transparently perform security
policy evaluation. In other cases, however, UCONABC
policies depend on specific application-supplied data;
in such cases, the application must cooperate with the
security infrastructure, providing the necessary data to
the AccessDecisionABC object and granting or
denying access according to the result (true or false) of
policy evaluation. Figure 6 presents the separation of
these activities, creating two extensions to the
AccessDecisionABC object:

AccessDecisionABC_ORB: ABC access control
at middleware level, operating transparently for
the application, which requires configuring the
security policies that will be controlled by the
object. In this case, the decision process depends
only on subject and object attributes;

Figure 6. AccessDecisionABC Object

AccessDecisionABC_IDL: ABC access control at
application level, with application and
infrastructure cooperating in the decision process.
In order for this to be possible, the JaCoWeb-
ABC architecture provides an API that must be
used during the implementation of the IDL
(server object), so that it will be able to work
together with its authorization layer. This API,
called access_allowed, must receive four
parameters: Current, which holds the subject
credentials; ObjectImplemented, is the name of
the object interface; nameMethod, is the name of

the invoked method; and Vector. Vector is an
object that allows adding a list of variables that
will be used in the policies defined by JaCoWeb-
ABC. In this situation, the IDL (Server) must
capture external information to this object, such
as, for instance, parameters received by the
invoked method, prepare these data items to be
added into Vector, make the call to
access_allowed() and treat its return value, true
(access granted) or false (access denied), thus
continuing with the decision process. The ABC
policies can refer to this parameters specifying
the reserved word “parm[<index>]” , where index
means the sequence number of the object added
into the vector, starting in 1.

5.4. Mutable attributes

As with the 16 basic models of the ABC family, we

have also defined a table containing the six models
(abcORB1, abcORB0, abcORB3, abcIDL1, abcIDL0,

abcIDL3) for UCONABC in CORBASec (table 1).

 (0) (1) (2) (3)
abcORB Y Y N/Y Y
abcIDL Y Y N/Y Y

(0) – Immutable, (1) – preUpdate,
(2) – onUpdate, (3) – postUpdate

Table 1. JaCoWeb-ABC family

In this table, we have unified the entire ABC

assessment process (Figure 5) in two distinct points:
abcORB and abcIDL (see Figure 6). Since the CORBA
communication model is based on method invocation,
the abstraction of ongoing assessment can not be
applied directly, as communication starts and ends in
the same invocation. However, this abstraction can be
applied in CORBA when an application needs a set of
invocations to be completed, for instance, a
transaction. This way, the first invocation can be
considered a pre-access (preA, preB and preC), and
subsequent invocations can be seen as ongoing access
decision processes (onA, onB and onC).

6. Related work

There are some papers that discuss the
implementation of different access control models in
CORBASec. In [10], an RBAC model is implemented,
allowing the assignment of one or more roles to a
principal, which are activated in accordance with the
access requirements.

The Resource Access Decision Facility (RAD) [11]
is an access control model specified by the OMG. It
defines access administration and control policies at
application level, which is required when the decision
process must be based on external parameters or
information that cannot be intercepted by the
AccessDecision object during the invocation method,
and that take business logic into account.

An important related paper that comes close to the
UCONABC model is the Ponder language [12], which
uses a declarative language based on objects to define
access control policies for authorization and
obligation, providing a simple interface for the
specification of abstract policies. Ponder authorization
policies can be implemented on a range of access
control mechanisms such as operating systems,
firewalls, and databases.

Since UCONABC is quite a recent model, we have
not found yet any references in the academic
community about implementations of the UCONABC
model in applications. However, from the potential
displayed, we believe that it will gain widespread
adoption as a reference for the implementation of a
higher level of access control.

7. Conclusion

The UCONABC model is a new generation in access
control that allows stricter control of the usage made
by users of the objects in a system. The JaCoWeb-ABC
model introduced significant changes in relation to the
latest CORBASec specifications published by OMG
[8]. No changes were made to the client-side
implementation of CORBA objects as well as issues
related to the administration of the security policies.

JaCoWeb-ABC defines a model capable of
segregating the activities carried out by an access
control layer, in such a way that certain accesses could
be controlled in a way that is transparent to the
application (abcORB). In other cases, an application
will have to work together with JaCoWeb-ABC
(abcIDL), due to the access decision for certain objects
depending on external information that must be
supplied by the application to the JaCoWeb-ABC layer
(application-level). The combination of these concepts
allows systems to have more accurate and strict
control over the actions of users, making it possible to
separate the access control logic from the business
logic, simplifying the implementation of applications
and reducing the possibility of introducing security-
related bugs in them.

Since CORBA relies on remote method invocation,
we believe that the same solutions proposed in this
paper can also be used in the security layers of similar
technologies, such as RMI, DCOM and WebServices,
in addition to web servers, such as IBM WebSphere or
Microsoft IIS. For these implementations to be
possible, these technologies need to be analyzed, in
order to identify and associate their components to the
UCONABC model.

References

[1] R. S. Sandhu. Lattice-based access control models. IEEE
Computer, 26(11) 9-19, November 1993.
[2] D. D. Downs, J. R. Rub, K. C. Kung, and C. S. Jordan.
Issues in discretionary access control. In IEEE Symposium
on Security and Privacy, pp. 208-218, April 1985.
[3] R. S. Sandhu. Role-Based Access Control. Advances in
Computer Science, vol. 46, Academic Press, 1998.
[4] J. Park and R. S. Sandhu. The UCONABC usage control
model. ACM Transactions on Information and System
Security (TISSEC), Feb. 2004
[5] R. S. Sandhu and J. Park. Usage control: A vision for
next generation access control. In 2nd Int. Workshop
Mathematical Methods, Models and Architectures for
Computer Networks Security (MMM-ACNS), 2003, St.
Petersburg, Russia.
[6] X. Zhang, J. Park, F. Parisi-Presicce, and R. S. Sandhu.
A logical specification for usage control. In 9th ACM Symp
on Access Control Models and Technologies, 2004.
[7] Object Management Group. “The Common Object
Request Broker 2.0/IIOP Specification” , Revision 2.0, OMG
Document 96-08-04, 1996.
[8] OMG. Security Service Specification, v1.8. OMG Doc.
02-03-11, Mar. 2002
[9] C. M. Westphall and J. S. Fraga. A large-scale system
authorization scheme proposal integrating Java, CORBA
and Web security models and a discretionary prototype. In
Proc. IEEE LANOMS’99, pp. 14–25, December 1999.
[10] R. R. Obelheiro and J. S. Fraga. Role-based access
control for CORBA distributed object systems In 7th IEEE
International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS’2002), 2002, San Diego,
CA.
[11] OMG. Resource Access Decision Facility, v1.0. OMG
Doc. 99-03-02, Mar. 1999
[12] Damianou et al. 2001. The Ponder Policy Specification
Language. In Proceedings of the Workshop on Policies for
Distributed Systems and Networks (Policy’2001).
[13] K. Beznosov, Y. Deng., B. Blakley., C. Burt, and J.
Barkley. A resource access decision service for CORBA-
based distributed systems. In 15th Annual Computer
Security Applications Conf, Phoenix, Arizona, USA. 1999.
[14] K. Beznosov, L. Espinal, and Y. Deng. Performance
considerations for CORBA-based application authorization
service. In PODC Middleware Symposium, 2000.

