Providing Real-Ti

me Scheduling for

Mobile Agents in the JADE Platform

Tatiana Pereira Filgueiras

Department of Automation and Systems Engineering
Federal University of Santa Catarina (UFSC)
Florianopdlis, Brazil
tati_tj@das.ufsc.br

Abstract — For a mobile agent with a time restriction to
accomplish its mission, it is necessary for it to get a deadline.
However, in a distributed system there is the podsiity of

concurrency for the same resource. Treating such agpetition

adequately is very important, especially in a reatime application
scenario. In this article, we adopt an execution nd®el in which
mobile agents compete for the same resource in tlsame host.
The goal of this paper is to propose a middlewarexéension that
allows concurrent mobile agents to achieve their rasions,
providing a real-time scheduling mechanism in the ADE

platform.
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l. INTRODUCTION

A Mobile Agent (MA) is an independent and self-ained
software component able to perform tasks. Also,Aidnot
restricted to the system in which it began its efea, in
other words, the agent is able to migrate autonatyou
through the nodes of a distributed system, contiguits
execution, generating and maintaining their stateotlecting
results. MA is a representative concept of mobide; which
has interesting benefits for distributed systemf {teater
flexibility, scalability and customization; bettarse of the
communication infrastructure and autonomous servic
provision without the need for a permanent conoeactiA
mobile agent can reply more quickly to a stimulod &eep its
interaction with the resource, by migrating to ttesource
host, even if the network connections drop temjlgrarhese
characteristics make MAs attractive for mobile &milon
development, which often must deal with low bandijdhigh
latency and unreliable network links.

For many years, researchers have been working en t
context of MAs [2][3][4][5]. These studies have sho that
the agent paradigm brings several benefits to #mgd of
distributed systems because encapsulate the pietdat
facilitate the interoperability between platfornts,addition to
having their execution asynchronous and autonomdmus.
applications with time constraints, MAs have bedoped in
many areas like medical care [5], e-commerce [4Y an
manufacturing [6], as well as being an alternatifar
distributed system implementation [7].

To facilitate the development of mobile agents i
distributed systems, several research groups havelaped
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middleware platforms [8][9] for this specific purgm The first
middleware for MA have been developed for LAN andMW
networks, such as Grasshopper [10], Aglets [11] 3ADE
[12]. And due to the increasing interest in mobhilevices,
middleware have been proposed for wireless seretaronks
[13] and embedded devices [8]. The latter are desigto
support mobility and communication of AM in wiretes
networks, considering the technical limitations t{é&gy,
processing, memory, etc.) of these devices.

Despite the use of mobile agents in real-time systeave
been widely studied [2][3][14][19][20], there is nmasearch
for the deployment of mobile agents in real-timglegations,
more specifically, the development of a middlewadhat
support mobile agents scheduling. An important éssot
addressed in middleware platforms mentioned eaitigthe
competition aspect (concurrency) of the resourdées remote
host. When multiple agents while visiting this htstuse a
particular resource, there is no real-time scheduli
mechanisms to control the use of this resource dgnis
visitors. That is, what it normally does is theatraent of these
agents in order of arrival (FIFO ordering). In réale
applications, mobile agents should execute theisksta
according to their timing constraints (deadlines)l dased on
this, it is necessary assign scheduling priorita@sthe use of

ese resources, thus allowing higher priority #&gense
resources more quickly.

The search for
mechanism for mobile agents is extremely importéot
applications that need to meet time constraintsabige such
agents are typically asynchronous in relation toafrival and
departure of hosts due to their autonomous charstite
which makes the system do not have a prior cordkar
riorities, allocating inputs and outputs of agesnby in FIFO
policy [12].

This paper proposes a middleware extension withathe
to join code mobility and real-time, treating the AM
scheduling problem under time constraints. It gemposes a
JADE platform extension for real-time MA supporthel
proposed extension contains different types of duliey
policies, such as: FIFOF{rst In First Out), LIFO (Last In
First Out), EDF (Earliest Deadline First), Priority-based
Scheduling, Deadline Monotonic, and SJBhoftest Job
First), offering a wide range of scheduling policies digstinct

solutions to develop a scheduling



requirements of real-time applications using MAs far as
we know, this paper is the first real attempt topgmse a real-
time scheduling mechanism for mobile agents inritisted

systems. For evaluation, many simulations wereoperéd on
a local network for each policy, allowing an ana@ysf the

best potential choices regarding different typesmblication

scenarios.

. RELATEDWORK

In the field of intelligent distributed computingné dynamic
computer networks, an issue that has attracted imberest is

agents in each node to meet the MA requests andgean
resources in the node. Another goal of this reseproject is
the dynamic assignment of priorities for MAs by edhling
algorithms.

lll.  JADEPLATFORM

JADE (Java Agent DEvelopment Framework) [12] is a
structured open-source platform to make the imptaaton
of multiagent systems faster, in accordance withPAFI
specifications Foundation for Intelligent Physical Agents).
JADE can be considered as middleware that implesnant

the use of mobile agents (MA) and Multiagent System development framework and an agent platform, falhgwa

(MAS) in distributed systems.

A centralized algorithm using agents to assist WA
levels (Broker Level MA (BMA) and Supplier Level MAare
proposed by [4]. The aim of this proposal is théuion of
time to accomplish missions using MA cloning. Otene is
sent to each Supplier node to meet the same miséibtien
the mission is over, the clone sends a reply tBMé, which
in turn chooses the best of all replies and forwahis to the
Broker. When the transaction completes, a log ¢ & the
BMA and this is forwarded to the Broker.

set of libraries for the development of agents aval The
JADE platform architecture is based on the coemcsteof
several Java Virtual Machine (JVM) being distriltitever
several independent machines with different opegadystems
(OS). Each JADE platform has one or more contajners
however, all platforms have the main-container fhratvides
an AMS (@Agent Management System) responsible for platform
addressing, send and delivery  messages,
creation/destruction and receiving mobile agents;DR
(Directory Facilitator) that provides a yellow pages service,

A new method for the dynamic determination of theand a RMI registry to retrieve and record objedenences

itinerary of imprecise mobile agents with time doasits is
proposed in [14][19][20]. This model proposes hslics for
dynamic adaptation of the itinerary in search oé thest
benefit in respect of the MA’s mission deadline.

The middleware Agilla is proposed in [13] to faite
inter-agent communication in sensor networks usingiple
space. [5] proposes a real-time middleware solutigtn a
reliable mobile message protocol in wireless nektwdor data
transfer. The goal is to make a healthcare prajassiable to
send a patient's information by messages (forwabyedAs)
using mobile devices, like a PDA, to the hospital that
patients can be treated as efficiently as possiblgl15], a
module is proposed to allow JADE to provide faoletance
and security in multiagent systems. The authorscgeme
features, such as detecting malicious actions enrémote
host and the recreation of the suspected agenteaigb
malicious by its previous characteristics (rollbacising the
cloning mechanism provided by JADE.

The MRSCC Project [2] aims to produce a real-time

architecture integrated with JADE to enable theatiom of

products with MAs for members of the supply chdiach

time that a user logs on, a dedicated agent igextda handle
the request. The mobile agent migrates in seargbraducts

and the best price, and has the ability to cartyttoel purchase.
However, the authors did not show clearly the u$eao
mechanism of treatment for concurrent requesteahtime.

As in [14], this paper deals with the question of a
imprecise MA with a firm deadline and dynamic itiagy, but
including the handling of concurrency regarding tise of an
exclusively used resource in a particular hostelik5], this
study proposes a JADE platform improvement thatbkasa
JADE to treat concurrent real-time requests through
middleware solution. To evaluate this proposalaahitecture
is implemented based on [4]'s model, with a Broked static

(agents) through their names. The communicationvdset
platforms is performed through the remote methathéation
(Java RMI, Figure 1).

A JADE agent is autonomous, an independent prosghks
an identification (ID) and requires communicatioithaother
agents by collaboration or competition to complétegoals
[12]. Each JADE agent is an independent executivead
employing multiple tasks or behaviors, and simwdtars
conversations, and has a private queue with aefigitze,
created and stored by the JADE communication stdasys
which is designed to achieve the lowest cost inekehange
of messages.
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Figure 1. Distributed architecture of a JADE AgBlgtform

JADE also supports the mobility of agents in a fplab
that can be distributed, having distinct OS, arttirggs can be
controlled via a remote Graphical User InterfacdJ(G A
mobile agent (MA) is transported by a Java Arch{yAR)
that contains the serialized state of the agentpnanother
data. Its configuration can be changed during ei@cu

MA



moving agents between hosts when necessary. Ant agdms N resources and migrate to this host differanbile

should be able to perform multiple simultaneouskgam
response to different external events.
parallelism, finite-state machine, atomic behavsmguencing
and concurrency only between the agent’s diffestates of

agents — each MA with the goal of using a particubgource

JADE support— some of which may have a common goal (using #mees

resource), the use of views allows us to organizsbila
agents into groups, that is, the mobile agents ingsko use

behavior; however, the handling of messages ex@thngthe resource 1 will be in group 1, those who wishuse the

between agents and the new MA'’s arrival to a paldichost
is performed by the FIFO scheduling policy.

IV. RT-JADE:MIDDLEWARE FORREAL-TIME MOBILE
AGENTS

The proposed architecture aims to create a softiages that
allows the JADE middleware to support real-timeestiing,
using best effort policy. In this section we présan MA
execution model, the proposed architecture andrithgas
supported by that middleware.

A. Execution Modd of Real-Time Mobile Agents
In this paper, we consider a set of computers oteden a

resource 2, will be grouped in 2 and so on.

This approach allows, for instance, that each groarp be
scheduled with a different scheduling policy. Egchup does
control of their own views, including the possityilof a group
using a different scheduling algorithm from anotlggoup,
according to the requirements of its application. aoproach
using a centralized leader, which would be resp@sior
scheduling of all groups, would be no fault-toldraif the
leader fails, all groups would be compromised.

The scheduling algorithm (Figure 2, host 3) runk/ ame
time for a view. A view change (toew;.;) can happen when a
new MA arrives at the host. Every time an MAview; leaves
the host, a check is made of whether the host hgsM&A
waiting in order to generate a new viewie(.,). At this

network. Each host on that network has the RT-JADEpOmt’ if at least one agent is waiting, a new vigiewi, ) is

middleware where the MA can migrate, perform itssign
and, finally, leave to go to another host (Figuye 2

One mission is a set of resources that must beucoed.
An itinerary is a hosts’ sequence that an agentt misg to
consume these resources and thus accomplish apajmyl’s
mission. Each host is able to receive a maximumuetof
MAs, limited only by its memory and processing a&pa
Therefore, for real-time applications, it is neeags to
enqueue agents following a scheduling policy, defjinthe
usage order of the exclusive resource by the agédtis

established and the scheduling algorithm runs tdhee new
order in this new view. Depending on the schedufiatjcy
adopted, the previous view order may be maintairoedy
inserting the waiting agents at the end of the queu

B. RT-JADE Architecture

The architecture consists basically of three statip agents
(User Interface, Broker Agent and Server Agent) and of
mobile agents (Figure 2). The whole system has au t

example, the EDF policy, agents with closer absolut Server Agents and only one Broker Agent. The agandsthe

deadlines, even arriving later, can be positiomeddad of the
queue.

The interaction between client and server is acdisingd
through the use of MAs, although this is transpifen the
user. For simplicity, we assume each host has amyg
resource, and this resource is exclusively usethéyurrently
authorized MA, which means that this resource nly be

used by another MA when the current MA releaseg the

resource, through mission accomplishment. Due ¢oirtputs
and outputs of agent dynamics in a host, the solutf agent
scheduling is not trivial. In this proposal we hadopted the
use of “views”, which indicate the current mobilgeats set in
a host at a given instant. The MAsvaw; (current view) are
scheduled according to a scheduling algorithm tiindethe
utilization order of resources by these agentshi ¢urrent

view. Duringview;, the scheduled MA can give up waiting for

the resource and, as a consequence, exit the guelikave
the host (migrating to another host with less ogathor going
back to the Broker). This dropout occurs when thebite
agent finds it is unable to complete its missionthimi the

Scheduler run on the JADE platform. The User latesfs
function (client side) is to send and receive pliin
ACLMessage format, in the FIPA standard, from tlrekBr
Agent.
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Figure 2. RT-JADE Execution Model

O Leader of the
current view

The Broker Agent’s function is to receive the ussuests
(Figure 2 — host 1 and host 2) and make one MAefrh

deadline. During view a new MA can arrive in the host received request. Note that a user can have manme ohe

(waiting agent — Fig. 2, host 3). This agent wddstside”

view;, and is thus not scheduled to use the resourdheat

moment.

request within the request tuple, but never moaa thne MA
(except in cases where the user makes anothersteafter the
first has already been sent to the Broker). Thek&ralso

The use of views has the advantage of allowing th&efines the priority elements (deadline and creehnof the

dynamic scheduling of the MAs. For example, supposest

MA depending on the scheduling type used. The &rok



Agent also aims to await the MA’s return and repibre
mission’s results to the application user througk User
Interface.

Server Agent
Resources | | Agents Queue
Membership Service| Linked Hosts

Local ID
Remote ID
Communication
FIPA AGL

Calculation Server

Database ID M

Database

Figure 3. Server Agent Structure

A Server Agent is an interface for the resource agament
of hosts. Its function is to receive MAs, commumécavith
them (to provide estimated wait times for using tégource),
choose a leader for the view from the MA contaiimed, and
provide access to the exclusive resource. Itsnatestructure
(Figure 3) consists of a Remote ID (provided by EARrhich
allows remote agents to communicate), a Local ID@\oed
by JADE, which allows local agents to communicata),
Communication Interface according to the FIPA sfieations
(provided by JADE, which allows agents to followetRIPA
specifications to communicate, regardless of thglemented
platform or programming language), a host resoligte an
agent queue to enqueue MAs in the hostMembership
Service for view treatment, and a host list linked to tuerent
host. Additionally, the Server Agent has a CaldafatServer
instantiated, which contains the database ID focess

purposes (reading, writing, updating, etc.) of dristal and
other data types.
Mobile Agent
S Data Provided by Broker Agent
e §T Mission || UserlD |
T % B :(: Deadline HNeeced Resources Scheduler
§ QE) E| & |[Priority Credential H Scheduling Type ‘ ‘ Sorting Algorithm l Agents Queue]
x E Broker Host Address Priority Element | Ordered View |
&)
Data Provided by Server Agent Leader ID
Available Resources
[ Watting Time in QueueJ Total Gomputation Time |
Visited Hosts List | [ Linked Hosts List || Mission Historical |
@ (b)

Figure 4. (a) Mobile Agent and (b) Scheduler Sttt

In addition to these agents, the system has theckéated
by the Broker Agent and the Scheduler. The MA'scfion is
to migrate to hosts with the objective to compketmission. A
mission is complete only if it is accomplished withthe
deadline. At the end, the MA returns to the Bro&ed notify
it of the result of the mission. The MA’s internstiructure

and the Broker Agent host address. It also has sdate
provided by the Server Agent, such as the list \Hilable
resources on the host, the waiting time in the queu
(estimated) for resource use, and the total contipatdime
(estimated) by the MA to use all the resourcesiredun the
host.

Finally, the Scheduler (Figure 2 — host 3) sorts KAs
inside the view according to the scheduling pobeyng used,
and provides the ID of the MA with the highest pitypto use
the resource to the Server Agent. The Schedules JABDE
FIPA ACL communication, and has the same remotel@cal
ID of the MA Leader (Figure 4b). The scheduler rees a
current view from the MA and inserts it in the Agépueue.
Each scheduler has a distinct priority element.(®Nl =
deadline, PRIO = credential); it sorts accordinghie element
and keeps the ordered view to report it to theesdater.

C. Real Time Scheduling Algorithm for Mobile Agents

As explained in section IV.A, scheduling is onlyfoemed
for agents in the current viewiéw;). In the current view, the
Server Agent randomly chooses one MA in the view to
become the view's leadeldader). The elected MA has the
responsibility to schedule itself and other MAstlme current
view, requesting for each one the priority eleméot the
scheduling type, as set by the application.

timeout
<you'e the leader™

higher<Ai>

Server SN Gorer

1eq<ps> replies = <, ps> / 1e0<ps> replies = <i, ps>
Leater/ Leader Yy,
\ / \ \
A / A
T Y 1\ 7
/7 ) |/ i
8 feg<ission 0 \
i i /
mn A i

(@ (b)

Figure 5. (a) Normal run and (b) when Leader crashe

For example, in figure 5a, the Leader requestspti@ity
element for all MAs (A1, A2...An) in the current viewfter
receipt it, chooses the highest priority basedhensicheduling
policy. As such, the MA with the highest prioritgceives
authorization to use the exclusive resource (is thiample,
A2 has the highest priority), and the Leader infettiee Server
Agent of this MA’s ID. After A2 accomplishes its ssion and
leave the host, a new Leader is chosen for theviext

If the Leader crashes, another view is started amew
Leader is chosen for this new view, which avoidssbes in
the whole system. Fig. 5b illustrates the behaofa server in
which the Leader has suffered a crash. If a Leadeply has

(Figure 4a) consists of a Remote ID, a Local ID, anot arrived before the timeout, the Server Agemtdealy

Communication Interface with FIPA specificationsyiaited
host list, a list with hosts linked to the currédmst, and the
mission’s result. Additionally, the MA has data yided by
the Broker Agent, such as a mission to be accotmdisthe
requesting user’'s ID, a deadline for the missionljst of
resources needed to complete the mission,
credential, a scheduling policy identification te employed,

chooses a new Leader to start a new view. If tieentiview
and the previous view are the same, that is, thexs no
incoming MA in the host, a new scheduling is notessary;
therefore, the view’'s Leader communicates the IDhef next
MA for exclusive use of the resource to the SeAgent.

a priorit



Shared Vari abl es:
1. Queue=¢ {MA queue}
2. Leader=9@ {Leader ID}
3. preview_view = @ {Queue with previous view}
4. current_view =@ {Queue with current view}

Server Agent}
Local Vari abl es:
5. newView = false {Be true if view changes}
Mai n Task
6. On arrival of an A
7. enqueue(Queue, A )
8. newView = true

9. On A leave before resource use
10. d equeue(Queue, A )

11. newView = true

12. On A leave after resource use

13. preview_view = current_view
14. current_view = Queue
15. chooseLeader(current_view)

16. newView = false

17. |1 F (preview_view is empty && Leader is empty)
THEN

18. chooselLeader(Queue)

19. ENDIF

Mobi | e Agent }

Local Vari abl es:
20. sch=@ {scheduling type}
Isubr out i ne check(Leader)
21. On receive message “ you're the leader
22. | F (newView() || preview_view is empty)
23. sch.runScheduler()
24. ELSIF resource is free
25. send higher priority A i
critical section
26. ENDI F

Schedul er}

Local Vari abl es:

27. prioQueue=@ {Priority elements’ queue}
Isubr out i ne runScheduler()

28. FOReach A on current_view DO

THEN

in Queue to

29. requestp s forA

30. DO

31. replies ~ wait_replies(A i)
32. UNTIL(t1>t o)

33. enqueue(prioQueue, replies)

34. ENDFOR

35. schedule()
36. send higher priority A j
exclusive resource

in Queue to

Figure 6. Mobile Agent Scheduling Algorithm

Figure 6 presents the scheduling algorithms. Useations
are presented in TABLE I. The actions of the Ser&gent
algorithm are described in lines 5-19. When the hexseives
an MA, the Server Agent enqueues it and sets the/issv
variable as true (lines 6-8). If an MA leaves tlusthbefore
the exclusive resource is used, this MA is dequearatl the
newView variable is set as true (lines 9-11). & #xclusive
resource is already in use, when it is release&éreer Agent
sets the preview_view variable with the previouswiand
updates the current_view variable with the presees; in
other words, the current MA queue (lines 12—14fgrafvhich
a new Leader is chosen to start a new view (line AS the
schedule runs, the newView variable is set as fafdié a new
MA arrives in the host (line 16). Thus, if an MA &ver

released from the exclusive resource and no othgentahas
migrated to the host, the variable is false, thgeatsuring that
the Mobile Agent function newview() returns to fals
However, if it is the first view, i.e. it is therét time the
algorithm has run and has no Leader, one will therthosen
(lines 17-19).

TABLE |. NOTATIONS

Symbol | Description Symbol Description
A Local MA ty Maximum waiting
time
A Other MA enqueue(q,e) Inserts e in g
e Element dequeue(q,e) Deletes ein g
Ps Priority chooseLeader(q) | Choose_eader to
Element view
q Queut wait_replies(A) Wait g from A
s Scheduler activate(A) JADE function
ID
to Minimum suspend(A)) JADE function
waiting
time

The Mobile Agent’s actions (lines 20-26) consist of
verification that it is the Leader by receiving goli're the
leader" message (line 21) sent by the Server Agenthe
chooselLeader function. If a MA is the Leader, iher verifies
that it has a new view (unlike the previous view),that it
does not have a preview view, indicating that this first time
that the algorithm has run (line 22). If one of tiw® previous
situations is true, the Mobile Agent creates ataimse of the
Scheduler class (line 23). If both are false, sahied is not
necessary because no changes have been madepteviuis
schedule; as such, if the exclusive resource is, filee MA
with the highest priority is authorized to usdiiés 24 to 26).

Finally, the Scheduler actions (lines 27-36) cdnefsa
request to each MA in the current_view (includinge t
instantiated) for the priority elemergs (lines 28-29) that can
be deadline, deadline and credential, or only argdein a
priority-based policy where a deadline is only useévaluate
performance.

After this, the Scheduler awaits agents’' replieeroa
period t1, and such replies are saved into a q@ews 30—
33). If there is a timeout (t1 > t0), the repliewiable will be
null and this value will be queued in the position
corresponding to the MA not replying in time. Theheduler
is started, skipping null values (if there are aagyl the MA
with the highest priority receives authorization use the
exclusive resource (lines 36). The function schegdorts the
received values (line 35) with the Fast Quick Sxgorithm
[21]. For FIFO policy, Leader only requests to emgent to
give to next MA in queue the authorization to ugelégsive
resource.

V. IMPLEMENTATION AND EVALUATION

Six scheduling algorithms were evaluated in thisdgt five
being implemented and one (FIFO) provided by JABEO
(First In First Out); EDF (Earliest Deadline First); LIFO
(Last in First Out); Priority-Based Scheduling (PRIO);



Deadline Monotonic (DM); and SJF (Shortest JobtfirBhe
scheduling policy descriptions are described ifj.[22

Full architectures (MA and stationary agents, Brokgent
and Scheduling Algorithms) are implemented in JA{W®K
1.6.0_19), using the JADE framework (v.4.0.1).
evaluation environment consists of three machiresected
to a LAN through a hub: (i) Intel Core2Duo 2.4GHZLB
RAM, Windows XP Professional 32-bit; (ii) Intel Ge2Duo
1.6GHz, 1.5GB RAM, Windows XP Professional 32-lityd
(iii) Intel Core Quad 3.0GHZ, 4GB RAM, Windows 7-6it.

o\ R

Broker Host 01 Host 02

Figure 7. Node configuration for proposal evaluatio

For this paper two Server Agents were simulatedhea
containing only one exclusive resource. The SeAgent in
host 1 has a database search resource, while tiier @gent
in host 2 has a mathematical resource for estimatfsuch as
the price of parts, dimensions, budget, etc.).
configuration is by order of precedence, i.e. th& Meeds to
come to host 1 before host 2; as such it is nosiptesto use
R2 before R1 (Figure 7). The deadline ranges wésen
based on previous historical simulations and coatjmrtal
loads, which justifies the choice of different diaes for the
concurrent MA amount. Each MA has 1 to 3 distincssions
to be used in both resources (R1 and R2). Thessangsare
randomly chosen, so there is the possibility of entbran one
MA having the same mission.

To evaluate this proposal, 100 iterations werefarneach
scheduling policy in each deadline range, totabh@® MAs
for each scheduling policy by deadline range in 005
(IT=iteration; 500 = total MA amount) and 2000 M#sIT2k
(2k = 2000 MA total amount). In addition, we measuMA
amounts for each scheduling policy that have cotagldull
or partial missions as well the failed amounts. nirrthis
information, the algorithms were compared with eatter,
especially with FIFO to determine which deadlinages are
the best for each case. The best algorithm for iamss
accomplishment and the best results were compaitbdtine
JADE default (FIFO).

To evaluate this proposal were performed two tgses:
By Mission Accomplishment (subsection V.A) and By
Throughput (subsection V.B).

A. Performance Evaluation: Mission Accomplishment

We have performed several measurements to evalate
scheduling policies. IT500 is shown in Fig. 8. Byabzing
the results, it is possible to conclude that fayrsdr deadlines
(300-500 ms) LIFO is better in terms of total nossi
accomplishment, and in the range of 300 ms, SJEdstdimg
caused total loss of missions for all MAs. For g0 ms
range PRIO is better, while SJF is least effectimehe 1100

.
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ms range, all algorithms show satisfactory restuhe, worst
being DM and FIFO. Importantly, based on the numbfer
MAs that did not accomplish their mission, eithetatly or
partially, the FIFO algorithm gave some of the woesults in

Themost of the deadline ranges chosen.

Evaluation performance for IT2k is shown in Fig.I®.the
300ms range no MA can accomplish its mission; floeeg we
discarded these results and chose a new deadlge.r&or
the 700ms range, all algorithms had low performandgle in
the 1500-2000ms range the algorithms showed imprewug
with PRIO and EDF proving the better for 1500ms &
and DM the better for 2000ms. It is also worth ngtithat
EDF is one of the better options in both caseshén2500 ms
range, DM allowed all MAs to accomplish their messs. For
this simulation, the FIFO policy has the worst t&ssin three
of the four ranges chosen.

Half mFull mNone (b)

w
N
N
N
N
B kY
N
| I

LIFO SIF
Half mFull mNone (d)

Half mFull mNone(a)

I 6V
.IIIIIIIIII()OS

o o

— 0/
-I.....II- zLe
| Krad
IIIIIIIII- SS¢T
———— |-
(e}

— O€7
—— 0.

LIFO PRIO SIF PRIO EDF FIFO

u None (€)

Ny
2]
o
|8 &
m
o O-O-O.

'Half mFull

00s
00s
00s
96v
434

8

©
5
cflc ocflc oflc cflc o> oH®

SIF b

a8
6SY

-3
m°
LIFO

N

_17 9€v
I 01

o

PRIO FIFO

LFO PRIO SIF FIFO

Figure 8. Five Concurrent MA with deadline rang30 (a), 500 (b), 700 (c)
and 1100ms (d)

Half WFull @None  (b)

=
N
N
~

Half mFull mNone (a)

6€6T
€6¢CT

N
O

I SO
_ 97s
I 77 T
<0s
N 08¢
[ 311
6LT
I S9¢
SE6
Il 317
[ £ 18

ST
0]

[ 6T
T

PRIO

N
<N
©

PRIC

FIFO LFO

LYVT
6T
08T

“«

c09T

i
a
o

I C 03T

=
~
(=}
«
[
N
00

DM

I /T

BTt

N
)
w

)

~

-

LIFO

HsSeT

i
©
~
|

vt

o

EDF FIFO PRIO  SIF LFO  FIFO

Figure 9. Twenty Concurrent MA with deadline rasigé00 (a), 1500 (b),

2000 (c) and 2500ms (d).



B. Performance Evaluation: Throughput

For this test, it was stipulated that when a mobiggent
reaches the host, it receives an "internal deddlimdnich
defines the maximum time that the MA has to conepiét
mission within the current node, and is assignety da
compare which scheduling algorithms allow a greatenber
of MAs leaving the host - after the use of the uese - in a
period of 1 second. The purpose of this metrioiddfine the
cost of scheduling mobile agents by a single host.

VI. CONCLUSION

This paper presents an extension to the JADE midiie that
provides real-time support, based on the view qoncthe
proposal was evaluated
performance measures showed that the number of Miks
time constraints that completed their missions witkhe
deadline stipulated using RT-JADE was 1.6 to 96Higher
for five concurrent MAs and 47 to 100% higher faretty
concurrent MAs, as compared to the current scheglydolicy

To measure the throughput, internal deadlines wer¢FIFO) provided by JADE.

stipulated for the server and took place the sitrareof five-

With this study, some prospects for improvementlifedy

and ten concurrent mobile agents, thus allowing th€o be developed, such as MA waiting-time calcutatior

throughput to other quantities of MAs can also bensated.
For five concurrent mobile agents, the applied tiead were
5, 10, 15, 20 and 25 ms, while for ten MAs wer® 22.5 ms
(0.5 ms each increasing in value, up to a totalnidrks).
Looking at Figure 10, for five concurrent mobileeats, both
the FIFO algorithm as the DM did not allow any MA t
accomplish its mission, while the other schedulpdicies
have allowed at least 20% of MA fulfilled.

90%
80%

80% 80%
70%
BO%
60%
50%
40% wis
30% 20%
30%
20%
10%
0% 0% 0% 0%
0%
F DM SIE

ED

]

£l
20%

FIFO LIFO PRIO

=5 to 25ms (5MAs) 21022,5ms (10MAs)

Figure 10. Behavior of non-preemptive schedulirgpathms.

In the second test, performed with ten concurreabife
agents, with deadlines between 5 to 50 ms, the Rlgarithm
allowed 40% of mobile agents complete the missiBg.
reducing this range — until the FIFO get no mong surccess —
by assigning deadlines from 2 to 22.5 ms, thesalteesire
shown in Figure 10, where the x-axis representstheduling
policies used and the y axis the percentage of Nhedt
managed to leave the host before the internal oheadl
stipulated.

Assessing the fulfilment of missions, one can ¢leat
while the FIFO policy did not allow any MA to congpé its
mission, the other algorithms (except for the DMywed at
least 20% of mobile agents to conclude its misdion5
concurrent MAs, and a minimum of 30% to 10 conaurre
MAs. The impact of the number of concurrent MAs rothe
deadline is noticeable in the maximum amount of M#®
completed their mission in the node: 80% to 5 MAd 40%
to 10 concurrent MAs.

using an average based on Queuing Theory, optirmizatf
preemptive scheduling algorithms, and the additidmew
scheduling policies, such as Round Robin. Thesdtsewiill
be reported in a future paper acknowledgement.

One can analyze that the EDF algorithm was amoagah
three results on all ranges of deadline for 20 coent MAs
and among the best three results in two of the fanges of
assigned deadlines to 5 concurrent MAs.

It is also possible to conclude that the algorithwish
better benefits and better throughput were: LIFO 5o
concurrent MAs, and EDF to 10 concurrent MAs. Basad
the analysis of two tests, it is possible to codelthat, for the
simulated scenario, the EDF scheduling algorithesents the
best performance.
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