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Abstract — For a mobile agent with a time restriction to 
accomplish its mission, it is necessary for it to meet a deadline. 
However, in a distributed system there is the possibility of 
concurrency for the same resource. Treating such competition 
adequately is very important, especially in a real-time application 
scenario. In this article, we adopt an execution model in which 
mobile agents compete for the same resource in the same host. 
The goal of this paper is to propose a middleware extension that 
allows concurrent mobile agents to achieve their missions, 
providing a real-time scheduling mechanism in the JADE 
platform. 
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I.  INTRODUCTION  

A Mobile Agent (MA) is an independent and self-contained 
software component able to perform tasks. Also, a MA is not 
restricted to the system in which it began its execution, in 
other words, the agent is able to migrate autonomously 
through the nodes of a distributed system, continuing its 
execution, generating and maintaining their state or collecting 
results. MA is a representative concept of mobile code, which 
has interesting benefits for distributed systems [1]: greater 
flexibility, scalability and customization; better use of the 
communication infrastructure and autonomous service 
provision without the need for a permanent connection. A 
mobile agent can reply more quickly to a stimulus and keep its 
interaction with the resource, by migrating to the resource 
host, even if the network connections drop temporarily. These 
characteristics make MAs attractive for mobile application 
development, which often must deal with low bandwidth, high 
latency and unreliable network links. 

For many years, researchers have been working on the 
context of MAs [2][3][4][5]. These studies have shown that 
the agent paradigm brings several benefits to the design of 
distributed systems because encapsulate the protocols that 
facilitate the interoperability between platforms, in addition to 
having their execution asynchronous and autonomous. In 
applications with time constraints, MAs have been adopted in 
many areas like medical care [5], e-commerce [4] and 
manufacturing [6], as well as being an alternative for 
distributed system implementation [7]. 

To facilitate the development of mobile agents in 
distributed systems, several research groups have developed 

middleware platforms [8][9] for this specific purpose. The first 
middleware for MA have been developed for LAN and WAN 
networks, such as Grasshopper [10], Aglets [11] and JADE 
[12]. And due to the increasing interest in mobile devices, 
middleware have been proposed for wireless sensor networks 
[13] and embedded devices [8]. The latter are designed to 
support mobility and communication of AM in wireless 
networks, considering the technical limitations (battery, 
processing, memory, etc.) of these devices. 

Despite the use of mobile agents in real-time systems have 
been widely studied [2][3][14][19][20], there is no research 
for the deployment of mobile agents in real-time applications, 
more specifically, the development of a middleware that 
support mobile agents scheduling. An important issue not 
addressed in middleware platforms mentioned earlier is the 
competition aspect (concurrency) of the resources of a remote 
host. When multiple agents while visiting this host to use a 
particular resource, there is no real-time scheduling 
mechanisms to control the use of this resource by agents 
visitors. That is, what it normally does is the treatment of these 
agents in order of arrival (FIFO ordering). In real-time 
applications, mobile agents should execute their tasks 
according to their timing constraints (deadlines) and based on 
this, it is necessary assign scheduling priorities for the use of 
these resources, thus allowing higher priority agents use 
resources more quickly. 

The search for solutions to develop a scheduling 
mechanism for mobile agents is extremely important for 
applications that need to meet time constraints, because such 
agents are typically asynchronous in relation to the arrival and 
departure of hosts due to their autonomous characteristic, 
which makes the system do not have a prior control over 
priorities, allocating inputs and outputs of agents only in FIFO 
policy [12]. 

This paper proposes a middleware extension with the aim 
to join code mobility and real-time, treating the MA 
scheduling problem under time constraints. It also proposes a 
JADE platform extension for real-time MA support. The 
proposed extension contains different types of scheduling 
policies, such as: FIFO (First In First Out), LIFO (Last In 
First Out), EDF (Earliest Deadline First), Priority-based 
Scheduling, Deadline Monotonic, and SJF (Shortest Job 
First), offering a wide range of scheduling policies for distinct 



 

requirements of real-time applications using MAs. As far as 
we know, this paper is the first real attempt to propose a real-
time scheduling mechanism for mobile agents in distributed 
systems. For evaluation, many simulations were performed on 
a local network for each policy, allowing an analysis of the 
best potential choices regarding different types of application 
scenarios. 

II. RELATED WORK 

In the field of intelligent distributed computing and dynamic 
computer networks, an issue that has attracted much interest is 
the use of mobile agents (MA) and Multiagent Systems 
(MAS) in distributed systems. 

A centralized algorithm using agents to assist two MA 
levels (Broker Level MA (BMA) and Supplier Level MA) are 
proposed by [4]. The aim of this proposal is the reduction of 
time to accomplish missions using MA cloning. One clone is 
sent to each Supplier node to meet the same mission. When 
the mission is over, the clone sends a reply to the BMA, which 
in turn chooses the best of all replies and forwards this to the 
Broker. When the transaction completes, a log is sent to the 
BMA and this is forwarded to the Broker. 

A new method for the dynamic determination of the 
itinerary of imprecise mobile agents with time constraints is 
proposed in [14][19][20]. This model proposes heuristics for 
dynamic adaptation of the itinerary in search of the best 
benefit in respect of the MA’s mission deadline. 

The middleware Agilla is proposed in [13] to facilitate 
inter-agent communication in sensor networks using a tuple 
space. [5] proposes a real-time middleware solution with a 
reliable mobile message protocol in wireless networks for data 
transfer. The goal is to make a healthcare professional able to 
send a patient's information by messages (forwarded by MAs) 
using mobile devices, like a PDA, to the hospital so that 
patients can be treated as efficiently as possible. In [15], a 
module is proposed to allow JADE to provide fault tolerance 
and security in multiagent systems. The author cites some 
features, such as detecting malicious actions on the remote 
host and the recreation of the suspected agent of being 
malicious by its previous characteristics (rollback) using the 
cloning mechanism provided by JADE. 

The MRSCC Project [2] aims to produce a real-time 
architecture integrated with JADE to enable the creation of 
products with MAs for members of the supply chain. Each 
time that a user logs on, a dedicated agent is created to handle 
the request. The mobile agent migrates in search of products 
and the best price, and has the ability to carry out the purchase. 
However, the authors did not show clearly the use of a 
mechanism of treatment for concurrent requests in real-time. 

As in [14], this paper deals with the question of an 
imprecise MA with a firm deadline and dynamic itinerary, but 
including the handling of concurrency regarding the use of an 
exclusively used resource in a particular host. Like [15], this 
study proposes a JADE platform improvement that enables 
JADE to treat concurrent real-time requests through a 
middleware solution. To evaluate this proposal, an architecture 
is implemented based on [4]’s model, with a Broker and static 

agents in each node to meet the MA requests and manage 
resources in the node. Another goal of this research project is 
the dynamic assignment of priorities for MAs by scheduling 
algorithms.  

III.  JADE PLATFORM 

JADE (Java Agent DEvelopment Framework) [12] is a 
structured open-source platform to make the implementation 
of multiagent systems faster, in accordance with FIPA 
specifications (Foundation for Intelligent Physical Agents). 
JADE can be considered as middleware that implements a 
development framework and an agent platform, following a 
set of libraries for the development of agents in Java. The 
JADE platform architecture is based on the coexistence of 
several Java Virtual Machine (JVM) being distributed over 
several independent machines with different operating systems 
(OS). Each JADE platform has one or more containers, 
however, all platforms have the main-container that provides 
an AMS (Agent Management System) responsible for platform 
addressing, send and delivery messages, MA 
creation/destruction and receiving mobile agents; a DF 
(Directory Facilitator) that provides a yellow pages service, 
and a RMI registry to retrieve and record object references 
(agents) through their names. The communication between 
platforms is performed through the remote method invocation 
(Java RMI, Figure 1). 

A JADE agent is autonomous, an independent process with 
an identification (ID) and requires communication with other 
agents by collaboration or competition to complete its goals 
[12]. Each JADE agent is an independent execution thread 
employing multiple tasks or behaviors, and simultaneous 
conversations, and has a private queue with a finite size, 
created and stored by the JADE communication subsystem, 
which is designed to achieve the lowest cost in the exchange 
of messages. 

 

 
Figure 1. Distributed architecture of a JADE Agent Platform 

 
JADE also supports the mobility of agents in a platform 

that can be distributed, having distinct OS, and settings can be 
controlled via a remote Graphical User Interface (GUI). A 
mobile agent (MA) is transported by a Java Archive (JAR) 
that contains the serialized state of the agent, among other 
data. Its configuration can be changed during execution, 



 

moving agents between hosts when necessary. An agent 
should be able to perform multiple simultaneous tasks in 
response to different external events. JADE supports 
parallelism, finite-state machine, atomic behavior, sequencing 
and concurrency only between the agent’s different states of 
behavior; however, the handling of messages exchanged 
between agents and the new MA’s arrival to a particular host 
is performed by the FIFO scheduling policy. 

IV.  RT-JADE: M IDDLEWARE FOR REAL-TIME MOBILE 

AGENTS 

The proposed architecture aims to create a software layer that 
allows the JADE middleware to support real-time scheduling, 
using best effort policy. In this section we present an MA 
execution model, the proposed architecture and algorithms 
supported by that middleware. 

A. Execution Model of Real-Time Mobile Agents  

In this paper, we consider a set of computers connected in a 
network. Each host on that network has the RT-JADE 
middleware where the MA can migrate, perform its mission 
and, finally, leave to go to another host (Figure 2). 

One mission is a set of resources that must be consumed. 
An itinerary is a hosts’ sequence that an agent must visit to 
consume these resources and thus accomplish an application’s 
mission. Each host is able to receive a maximum amount of 
MAs, limited only by its memory and processing capacity. 
Therefore, for real-time applications, it is necessary to 
enqueue agents following a scheduling policy, defining the 
usage order of the exclusive resource by the agents. For 
example, the EDF policy, agents with closer absolute 
deadlines, even arriving later, can be positioned in head of the 
queue. 

The interaction between client and server is accomplished 
through the use of MAs, although this is transparent for the 
user. For simplicity, we assume each host has only one 
resource, and this resource is exclusively used by the currently 
authorized MA, which means that this resource may only be 
used by another MA when the current MA releases that 
resource, through mission accomplishment. Due to the inputs 
and outputs of agent dynamics in a host, the solution of agent 
scheduling is not trivial. In this proposal we have adopted the 
use of “views”, which indicate the current mobile agents set in 
a host at a given instant. The MAs at viewi (current view) are 
scheduled according to a scheduling algorithm to define the 
utilization order of resources by these agents in the current 
view. During viewi, the scheduled MA can give up waiting for 
the resource and, as a consequence, exit the queue and leave 
the host (migrating to another host with less overhead or going 
back to the Broker). This dropout occurs when the mobile 
agent finds it is unable to complete its mission within the 
deadline. During viewi, a new MA can arrive in the host 
(waiting agent – Fig. 2, host 3). This agent waits “outside” 
viewi, and is thus not scheduled to use the resource at the 
moment. 

The use of views has the advantage of allowing the 
dynamic scheduling of the MAs. For example, suppose a host 

has N resources and migrate to this host different mobile 
agents – each MA with the goal of using a particular resource 
– some of which may have a common goal (using the same 
resource), the use of views allows us to organize mobile 
agents into groups, that is, the mobile agents wishing to use 
the resource 1 will be in group 1, those who wish to use the 
resource 2, will be grouped in 2 and so on. 

This approach allows, for instance, that each group can be 
scheduled with a different scheduling policy. Each group does 
control of their own views, including the possibility of a group 
using a different scheduling algorithm from another group, 
according to the requirements of its application. An approach 
using a centralized leader, which would be responsible for 
scheduling of all groups, would be no fault-tolerant, if the 
leader fails, all groups would be compromised. 

The scheduling algorithm (Figure 2, host 3) runs only one 
time for a view. A view change (to viewi+1) can happen when a 
new MA arrives at the host. Every time an MA in viewi leaves 
the host, a check is made of whether the host has any MA 
waiting in order to generate a new view (viewi+1). At this 
point, if at least one agent is waiting, a new view (viewi+1) is 
established and the scheduling algorithm runs to set the new 
order in this new view. Depending on the scheduling policy 
adopted, the previous view order may be maintained, only 
inserting the waiting agents at the end of the queue. 

B. RT-JADE Architecture  

The architecture consists basically of three stationary agents 
(User Interface, Broker Agent and Server Agent) and of 
mobile agents (Figure 2). The whole system has up to N 
Server Agents and only one Broker Agent. The agents and the 
Scheduler run on the JADE platform. The User Interface's 
function (client side) is to send and receive replies in 
ACLMessage format, in the FIPA standard, from the Broker 
Agent.  

 

 
Figure 2.   RT-JADE Execution Model 

 
The Broker Agent’s function is to receive the user requests 

(Figure 2 – host 1 and host 2) and make one MA for each 
received request. Note that a user can have more than one 
request within the request tuple, but never more than one MA 
(except in cases where the user makes another request after the 
first has already been sent to the Broker). The Broker also 
defines the priority elements (deadline and credential) of the 
MA depending on the scheduling type used.  The Broker 



 

Agent also aims to await the MA’s return and report the 
mission’s results to the application user through the User 
Interface. 

 

 
Figure 3. Server Agent Structure 

 
A Server Agent is an interface for the resource management 

of hosts. Its function is to receive MAs, communicate with 
them (to provide estimated wait times for using the resource), 
choose a leader for the view from the MA contained in it, and 
provide access to the exclusive resource. Its internal structure 
(Figure 3) consists of a Remote ID (provided by JADE, which 
allows remote agents to communicate), a Local ID (provided 
by JADE, which allows local agents to communicate), a 
Communication Interface according to the FIPA specifications 
(provided by JADE, which allows agents to follow the FIPA 
specifications to communicate, regardless of the implemented 
platform or programming language), a host resource list, an 
agent queue to enqueue MAs in the host, a Membership 
Service for view treatment, and a host list linked to the current 
host. Additionally, the Server Agent has a Calculation Server 
instantiated, which contains the database ID for access 
purposes (reading, writing, updating, etc.) of historical and 
other data types.  

 

 

Figure 4. (a) Mobile Agent and (b) Scheduler Structure 
 
In addition to these agents, the system has the MA created 

by the Broker Agent and the Scheduler. The MA’s function is 
to migrate to hosts with the objective to complete a mission. A 
mission is complete only if it is accomplished within the 
deadline. At the end, the MA returns to the Broker and notify 
it of the result of the mission. The MA’s internal structure 
(Figure 4a) consists of a Remote ID, a Local ID, a 
Communication Interface with FIPA specifications, a visited 
host list, a list with hosts linked to the current host, and the 
mission’s result. Additionally, the MA has data provided by 
the Broker Agent, such as a mission to be accomplished, the 
requesting user’s ID, a deadline for the mission, a list of 
resources needed to complete the mission, a priority 
credential, a scheduling policy identification to be employed, 

and the Broker Agent host address. It also has some data 
provided by the Server Agent, such as the list of available 
resources on the host, the waiting time in the queue 
(estimated) for resource use, and the total computation time 
(estimated) by the MA to use all the resources required in the 
host. 

Finally, the Scheduler (Figure 2 – host 3) sorts the MAs 
inside the view according to the scheduling policy being used, 
and provides the ID of the MA with the highest priority to use 
the resource to the Server Agent. The Scheduler uses JADE 
FIPA ACL communication, and has the same remote and local 
ID of the MA Leader (Figure 4b). The scheduler receives a 
current view from the MA and inserts it in the Agent Queue. 
Each scheduler has a distinct priority element (e.g. DM = 
deadline, PRIO = credential); it sorts according to this element 
and keeps the ordered view to report it to the server later. 

C. Real Time Scheduling Algorithm for Mobile Agents 

As explained in section IV.A, scheduling is only performed 
for agents in the current view (viewi). In the current view, the 
Server Agent randomly chooses one MA in the view to 
become the view’s leader (Leader). The elected MA has the 
responsibility to schedule itself and other MAs in the current 
view, requesting for each one the priority element for the 
scheduling type, as set by the application.  

 

 
                               (a)                                                                (b)                    

Figure 5. (a) Normal run and (b) when Leader crashes 
 

For example, in figure 5a, the Leader requests the priority 
element for all MAs (A1, A2…An) in the current view. After 
receipt it, chooses the highest priority based on the scheduling 
policy. As such, the MA with the highest priority receives 
authorization to use the exclusive resource (in this example, 
A2 has the highest priority), and the Leader informs the Server 
Agent of this MA’s ID. After A2 accomplishes its mission and 
leave the host, a new Leader is chosen for the next view.  

If the Leader crashes, another view is started and a new 
Leader is chosen for this new view, which avoids crashes in 
the whole system. Fig. 5b illustrates the behavior of a server in 
which the Leader has suffered a crash. If a Leader’s reply has 
not arrived before the timeout, the Server Agent randomly 
chooses a new Leader to start a new view. If the current view 
and the previous view are the same, that is, there was no 
incoming MA in the host, a new scheduling is not necessary; 
therefore, the view’s Leader communicates the ID of the next 
MA for exclusive use of the resource to the Server Agent. 

 
 



 

Shared Variables:  
1. Queue = Ø         {MA queue} 
2. Leader = Ø        {Leader ID} 
3. preview_view = Ø  {Queue with previous view} 
4. current_view  = Ø {Queue with current view} 

 
{Server Agent} 
Local Variables: 

5. newView = false   {Be true if view changes} 
Main Task 

6. On arrival of an Ai  
7.     enqueue(Queue, A i ) 
8.     newView = true 
9. On Ai leave before resource use  
10.     d equeue(Queue, A i ) 
11.     newView = true 
12. On Ai leave after resource use  
13.     preview_view  = current_view  
14.     current_view  = Queue 
15.     chooseLeader(current_view) 
16.     newView = false 
17. IF (preview_view is empty && Leader is empty) 

THEN 
18.     chooseLeader(Queue) 
19. ENDIF 

 
{Mobile Agent} 
Local Variables: 

20. sch = Ø           {scheduling type} 
subroutine check(Leader) 

21. On receive message “ you’re the leader ” 
22. IF (newView() || preview_view is empty)  THEN 
23.     sch.runScheduler() 
24. ELSIF resource is free  
25.     send higher priority A j  in Queue to 

critical section  
26.     ENDIF 

 
{Scheduler} 
Local Variables: 

27. prioQueue=Ø       {Priority elements’ queue} 
subroutine runScheduler() 

28. FOR each Aj on current_view DO 
29.     request p s  for A j  
30.     DO 
31.          replies ← wait_replies(A j ) 
32.     UNTIL ( t 1 > t 0) 
33.     enqueue(prioQueue, replies) 
34. ENDFOR 
35. schedule() 
36. send higher priority A j  in Queue to 

exclusive resource  
 

Figure 6. Mobile Agent Scheduling Algorithm 
 

Figure 6 presents the scheduling algorithms. Used notations 
are presented in TABLE I. The actions of the Server Agent 
algorithm are described in lines 5–19. When the host receives 
an MA, the Server Agent enqueues it and sets the newView 
variable as true (lines 6–8). If an MA leaves the host before 
the exclusive resource is used, this MA is dequeued and the 
newView variable is set as true (lines 9–11). If the exclusive 
resource is already in use, when it is released the Server Agent 
sets the preview_view variable with the previous view and 
updates the current_view variable with the present view; in 
other words, the current MA queue (lines 12–14), after which 
a new Leader is chosen to start a new view (line 15). As the 
schedule runs, the newView variable is set as false until a new 
MA arrives in the host (line 16). Thus, if an MA is ever 

released from the exclusive resource and no other agent has 
migrated to the host, the variable is false, thereby ensuring that 
the Mobile Agent function newview() returns to false. 
However, if it is the first view, i.e. it is the first time the 
algorithm has run and has no Leader, one will then be chosen 
(lines 17–19). 

 
TABLE I. NOTATIONS 

Symbol Description Symbol Description 
Ai Local MA t1 Maximum waiting 

time 
Aj Other MA enqueue(q,e) Inserts e in q 
e Element dequeue(q,e) Deletes e in q 
ps Priority 

Element 
chooseLeader(q) Choose Leader to 

view 
q Queue wait_replies(Aj) Wait ps from Aj 
s Scheduler 

ID 
activate(Aj) JADE function 

t0 Minimum 
waiting 

time 

suspend(Aj) JADE function 

 
The Mobile Agent’s actions (lines 20–26) consist of 

verification that it is the Leader by receiving a “you're the 
leader" message (line 21) sent by the Server Agent via the 
chooseLeader function. If a MA is the Leader, it either verifies 
that it has a new view (unlike the previous view), or that it 
does not have a preview view, indicating that it is the first time 
that the algorithm has run (line 22). If one of the two previous 
situations is true, the Mobile Agent creates an instance of the 
Scheduler class (line 23). If both are false, scheduling is not 
necessary because no changes have been made to the previous 
schedule; as such, if the exclusive resource is free, the MA 
with the highest priority is authorized to use it (lines 24 to 26). 

Finally, the Scheduler actions (lines 27–36) consist of a 
request to each MA in the current_view (including the 
instantiated) for the priority elements ps (lines 28–29) that can 
be deadline, deadline and credential, or only credential in a 
priority-based policy where a deadline is only used to evaluate 
performance. 

After this, the Scheduler awaits agents’ replies over a 
period t1, and such replies are saved into a queue (lines 30–
33). If there is a timeout (t1 > t0), the replies variable will be 
null and this value will be queued in the position 
corresponding to the MA not replying in time. The scheduler 
is started, skipping null values (if there are any) and the MA 
with the highest priority receives authorization to use the 
exclusive resource (lines 36). The function schedule() sorts the 
received values (line 35) with the Fast Quick Sort algorithm 
[21]. For FIFO policy, Leader only requests to Server Agent to 
give to next MA in queue the authorization to use exclusive 
resource. 

V. IMPLEMENTATION AND EVALUATION  

Six scheduling algorithms were evaluated in this study, five 
being implemented and one (FIFO) provided by JADE: FIFO 
(First In First Out); EDF (Earliest Deadline First); LIFO 
(Last in First Out); Priority-Based Scheduling (PRIO); 



 

Deadline Monotonic (DM); and SJF (Shortest Job First). The 
scheduling policy descriptions are described in [22]. 

Full architectures (MA and stationary agents, Broker Agent 
and Scheduling Algorithms) are implemented in JAVA (JDK 
1.6.0_19), using the JADE framework (v.4.0.1). The 
evaluation environment consists of three machines connected 
to a LAN through a hub: (i) Intel Core2Duo 2.4GHz, 1GB 
RAM, Windows XP Professional 32-bit; (ii) Intel Core2Duo 
1.6GHz, 1.5GB RAM, Windows XP Professional 32-bit; and 
(iii) Intel Core Quad 3.0GHZ, 4GB RAM, Windows 7 64-bit. 

 

 

Figure 7. Node configuration for proposal evaluation 
 

For this paper two Server Agents were simulated, each 
containing only one exclusive resource. The Server Agent in 
host 1 has a database search resource, while the Server Agent 
in host 2 has a mathematical resource for estimations (such as 
the price of parts, dimensions, budget, etc.). Node 
configuration is by order of precedence, i.e. the MA needs to 
come to host 1 before host 2; as such it is not possible to use 
R2 before R1 (Figure 7). The deadline ranges were chosen 
based on previous historical simulations and computational 
loads, which justifies the choice of different deadlines for the 
concurrent MA amount. Each MA has 1 to 3 distinct missions 
to be used in both resources (R1 and R2). These missions are 
randomly chosen, so there is the possibility of more than one 
MA having the same mission. 

To evaluate this proposal, 100 iterations were run for each 
scheduling policy in each deadline range, totaling 500 MAs 
for each scheduling policy by deadline range in IT500 
(IT=iteration; 500 = total MA amount) and 2000 MAs in IT2k 
(2k = 2000 MA total amount). In addition, we measured MA 
amounts for each scheduling policy that have completed full 
or partial missions as well the failed amounts. From this 
information, the algorithms were compared with each other, 
especially with FIFO to determine which deadline ranges are 
the best for each case. The best algorithm for mission 
accomplishment and the best results were compared with the 
JADE default (FIFO). 

To evaluate this proposal were performed two test types: 
By Mission Accomplishment (subsection V.A) and By 
Throughput (subsection V.B). 

A. Performance Evaluation: Mission Accomplishment 

We have performed several measurements to evaluate the 
scheduling policies. IT500 is shown in Fig. 8. By analyzing 
the results, it is possible to conclude that for shorter deadlines 
(300–500 ms) LIFO is better in terms of total mission 
accomplishment, and in the range of 300 ms, SJF scheduling 
caused total loss of missions for all MAs. For the 700 ms 
range PRIO is better, while SJF is least effective. In the 1100 

ms range, all algorithms show satisfactory results, the worst 
being DM and FIFO. Importantly, based on the number of 
MAs that did not accomplish their mission, either totally or 
partially, the FIFO algorithm gave some of the worst results in 
most of the deadline ranges chosen. 

Evaluation performance for IT2k is shown in Fig. 9. In the 
300ms range no MA can accomplish its mission; therefore, we 
discarded these results and chose a new deadline range. For 
the 700ms range, all algorithms had low performance, while in 
the 1500–2000ms range the algorithms showed improvement, 
with PRIO and EDF proving the better for 1500ms and EDF 
and DM the better for 2000ms. It is also worth noting that 
EDF is one of the better options in both cases. In the 2500 ms 
range, DM allowed all MAs to accomplish their missions. For 
this simulation, the FIFO policy has the worst results in three 
of the four ranges chosen. 

 

 

Figure 8.  Five Concurrent MA with deadline ranges: 300 (a), 500 (b), 700 (c) 
and 1100ms (d) 

 

 

Figure 9.  Twenty Concurrent MA with deadline ranges: 700 (a), 1500 (b), 
2000 (c) and 2500ms (d). 



 

B. Performance Evaluation: Throughput 

For this test, it was stipulated that when a mobile agent 
reaches the host, it receives an "internal deadline", which 
defines the maximum time that the MA has to complete its 
mission within the current node, and is assigned only to 
compare which scheduling algorithms allow a greater number 
of MAs leaving the host - after the use of the resource - in a 
period of 1 second. The purpose of this metric is to define the 
cost of scheduling mobile agents by a single host. 

To measure the throughput, internal deadlines were 
stipulated for the server and took place the simulation of five-
and ten concurrent mobile agents, thus allowing the 
throughput to other quantities of MAs can also be estimated. 
For five concurrent mobile agents, the applied deadlines were 
5, 10, 15, 20 and 25 ms, while for ten MAs were 2 to 22.5 ms 
(0.5 ms each increasing in value, up to a total 10 marks). 
Looking at Figure 10, for five concurrent mobile agents, both 
the FIFO algorithm as the DM did not allow any MA to 
accomplish its mission, while the other scheduling policies 
have allowed at least 20% of MA fulfilled. 

 

 
Figure 10. Behavior of non-preemptive scheduling algorithms. 

 
In the second test, performed with ten concurrent mobile 

agents, with deadlines between 5 to 50 ms, the FIFO algorithm 
allowed 40% of mobile agents complete the mission. By 
reducing this range – until the FIFO get no more any success – 
by assigning deadlines from 2 to 22.5 ms, these results are 
shown in Figure 10, where the x-axis represents the scheduling 
policies used and the y axis the percentage of MAs that 
managed to leave the host before the internal deadline 
stipulated. 

Assessing the fulfillment of missions, one can see that 
while the FIFO policy did not allow any MA to complete its 
mission, the other algorithms (except for the DM) allowed at 
least 20% of mobile agents to conclude its mission to 5 
concurrent MAs, and a minimum of 30% to 10 concurrent 
MAs. The impact of the number of concurrent MAs over the 
deadline is noticeable in the maximum amount of MAs who 
completed their mission in the node: 80% to 5 MAs and 40% 
to 10 concurrent MAs. 

VI.  CONCLUSION 

This paper presents an extension to the JADE middleware that 
provides real-time support, based on the view concept. The 
proposal was evaluated in the JADE framework and 
performance measures showed that the number of MAs with 
time constraints that completed their missions within the 
deadline stipulated using RT-JADE was 1.6 to 96.1% higher 
for five concurrent MAs and 47 to 100% higher for twenty 
concurrent MAs, as compared to the current scheduling policy 
(FIFO) provided by JADE. 

With this study, some prospects for improvement are likely 
to be developed, such as MA waiting-time calculation for 
using an average based on Queuing Theory, optimization of 
preemptive scheduling algorithms, and the addition of new 
scheduling policies, such as Round Robin. These results will 
be reported in a future paper acknowledgement.  

One can analyze that the EDF algorithm was among the top 
three results on all ranges of deadline for 20 concurrent MAs 
and among the best three results in two of the four ranges of 
assigned deadlines to 5 concurrent MAs. 

It is also possible to conclude that the algorithms with 
better benefits and better throughput were: LIFO to 5 
concurrent MAs, and EDF to 10 concurrent MAs. Based on 
the analysis of two tests, it is possible to conclude that, for the 
simulated scenario, the EDF scheduling algorithm presents the 
best performance.  
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