

Providing Real-Time Scheduling for
Mobile Agents in the JADE Platform

Tatiana Pereira Filgueiras
Department of Automation and Systems Engineering

Federal University of Santa Catarina (UFSC)
Florianopólis, Brazil
tati_tj@das.ufsc.br

Lau Cheuk Lung, Luciana de Oliveira Rech
Department of Informatics and Statistics (INE)
Federal University of Santa Catarina (UFSC)

Florianópolis, Brazil
{lau.lung, luciana.rech}@inf.ufsc.br

Abstract — For a mobile agent with a time restriction to
accomplish its mission, it is necessary for it to meet a deadline.
However, in a distributed system there is the possibility of
concurrency for the same resource. Treating such competition
adequately is very important, especially in a real-time application
scenario. In this article, we adopt an execution model in which
mobile agents compete for the same resource in the same host.
The goal of this paper is to propose a middleware extension that
allows concurrent mobile agents to achieve their missions,
providing a real-time scheduling mechanism in the JADE
platform.

Keywords: Real Time; Mobile Agents; Scheduling; JADE

I. INTRODUCTION

A Mobile Agent (MA) is an independent and self-contained
software component able to perform tasks. Also, a MA is not
restricted to the system in which it began its execution, in
other words, the agent is able to migrate autonomously
through the nodes of a distributed system, continuing its
execution, generating and maintaining their state or collecting
results. MA is a representative concept of mobile code, which
has interesting benefits for distributed systems [1]: greater
flexibility, scalability and customization; better use of the
communication infrastructure and autonomous service
provision without the need for a permanent connection. A
mobile agent can reply more quickly to a stimulus and keep its
interaction with the resource, by migrating to the resource
host, even if the network connections drop temporarily. These
characteristics make MAs attractive for mobile application
development, which often must deal with low bandwidth, high
latency and unreliable network links.

For many years, researchers have been working on the
context of MAs [2][3][4][5]. These studies have shown that
the agent paradigm brings several benefits to the design of
distributed systems because encapsulate the protocols that
facilitate the interoperability between platforms, in addition to
having their execution asynchronous and autonomous. In
applications with time constraints, MAs have been adopted in
many areas like medical care [5], e-commerce [4] and
manufacturing [6], as well as being an alternative for
distributed system implementation [7].

To facilitate the development of mobile agents in
distributed systems, several research groups have developed

middleware platforms [8][9] for this specific purpose. The first
middleware for MA have been developed for LAN and WAN
networks, such as Grasshopper [10], Aglets [11] and JADE
[12]. And due to the increasing interest in mobile devices,
middleware have been proposed for wireless sensor networks
[13] and embedded devices [8]. The latter are designed to
support mobility and communication of AM in wireless
networks, considering the technical limitations (battery,
processing, memory, etc.) of these devices.

Despite the use of mobile agents in real-time systems have
been widely studied [2][3][14][19][20], there is no research
for the deployment of mobile agents in real-time applications,
more specifically, the development of a middleware that
support mobile agents scheduling. An important issue not
addressed in middleware platforms mentioned earlier is the
competition aspect (concurrency) of the resources of a remote
host. When multiple agents while visiting this host to use a
particular resource, there is no real-time scheduling
mechanisms to control the use of this resource by agents
visitors. That is, what it normally does is the treatment of these
agents in order of arrival (FIFO ordering). In real-time
applications, mobile agents should execute their tasks
according to their timing constraints (deadlines) and based on
this, it is necessary assign scheduling priorities for the use of
these resources, thus allowing higher priority agents use
resources more quickly.

The search for solutions to develop a scheduling
mechanism for mobile agents is extremely important for
applications that need to meet time constraints, because such
agents are typically asynchronous in relation to the arrival and
departure of hosts due to their autonomous characteristic,
which makes the system do not have a prior control over
priorities, allocating inputs and outputs of agents only in FIFO
policy [12].

This paper proposes a middleware extension with the aim
to join code mobility and real-time, treating the MA
scheduling problem under time constraints. It also proposes a
JADE platform extension for real-time MA support. The
proposed extension contains different types of scheduling
policies, such as: FIFO (First In First Out), LIFO (Last In
First Out), EDF (Earliest Deadline First), Priority-based
Scheduling, Deadline Monotonic, and SJF (Shortest Job
First), offering a wide range of scheduling policies for distinct

requirements of real-time applications using MAs. As far as
we know, this paper is the first real attempt to propose a real-
time scheduling mechanism for mobile agents in distributed
systems. For evaluation, many simulations were performed on
a local network for each policy, allowing an analysis of the
best potential choices regarding different types of application
scenarios.

II. RELATED WORK

In the field of intelligent distributed computing and dynamic
computer networks, an issue that has attracted much interest is
the use of mobile agents (MA) and Multiagent Systems
(MAS) in distributed systems.

A centralized algorithm using agents to assist two MA
levels (Broker Level MA (BMA) and Supplier Level MA) are
proposed by [4]. The aim of this proposal is the reduction of
time to accomplish missions using MA cloning. One clone is
sent to each Supplier node to meet the same mission. When
the mission is over, the clone sends a reply to the BMA, which
in turn chooses the best of all replies and forwards this to the
Broker. When the transaction completes, a log is sent to the
BMA and this is forwarded to the Broker.

A new method for the dynamic determination of the
itinerary of imprecise mobile agents with time constraints is
proposed in [14][19][20]. This model proposes heuristics for
dynamic adaptation of the itinerary in search of the best
benefit in respect of the MA’s mission deadline.

The middleware Agilla is proposed in [13] to facilitate
inter-agent communication in sensor networks using a tuple
space. [5] proposes a real-time middleware solution with a
reliable mobile message protocol in wireless networks for data
transfer. The goal is to make a healthcare professional able to
send a patient's information by messages (forwarded by MAs)
using mobile devices, like a PDA, to the hospital so that
patients can be treated as efficiently as possible. In [15], a
module is proposed to allow JADE to provide fault tolerance
and security in multiagent systems. The author cites some
features, such as detecting malicious actions on the remote
host and the recreation of the suspected agent of being
malicious by its previous characteristics (rollback) using the
cloning mechanism provided by JADE.

The MRSCC Project [2] aims to produce a real-time
architecture integrated with JADE to enable the creation of
products with MAs for members of the supply chain. Each
time that a user logs on, a dedicated agent is created to handle
the request. The mobile agent migrates in search of products
and the best price, and has the ability to carry out the purchase.
However, the authors did not show clearly the use of a
mechanism of treatment for concurrent requests in real-time.

As in [14], this paper deals with the question of an
imprecise MA with a firm deadline and dynamic itinerary, but
including the handling of concurrency regarding the use of an
exclusively used resource in a particular host. Like [15], this
study proposes a JADE platform improvement that enables
JADE to treat concurrent real-time requests through a
middleware solution. To evaluate this proposal, an architecture
is implemented based on [4]’s model, with a Broker and static

agents in each node to meet the MA requests and manage
resources in the node. Another goal of this research project is
the dynamic assignment of priorities for MAs by scheduling
algorithms.

III. JADE PLATFORM

JADE (Java Agent DEvelopment Framework) [12] is a
structured open-source platform to make the implementation
of multiagent systems faster, in accordance with FIPA
specifications (Foundation for Intelligent Physical Agents).
JADE can be considered as middleware that implements a
development framework and an agent platform, following a
set of libraries for the development of agents in Java. The
JADE platform architecture is based on the coexistence of
several Java Virtual Machine (JVM) being distributed over
several independent machines with different operating systems
(OS). Each JADE platform has one or more containers,
however, all platforms have the main-container that provides
an AMS (Agent Management System) responsible for platform
addressing, send and delivery messages, MA
creation/destruction and receiving mobile agents; a DF
(Directory Facilitator) that provides a yellow pages service,
and a RMI registry to retrieve and record object references
(agents) through their names. The communication between
platforms is performed through the remote method invocation
(Java RMI, Figure 1).

A JADE agent is autonomous, an independent process with
an identification (ID) and requires communication with other
agents by collaboration or competition to complete its goals
[12]. Each JADE agent is an independent execution thread
employing multiple tasks or behaviors, and simultaneous
conversations, and has a private queue with a finite size,
created and stored by the JADE communication subsystem,
which is designed to achieve the lowest cost in the exchange
of messages.

Figure 1. Distributed architecture of a JADE Agent Platform

JADE also supports the mobility of agents in a platform

that can be distributed, having distinct OS, and settings can be
controlled via a remote Graphical User Interface (GUI). A
mobile agent (MA) is transported by a Java Archive (JAR)
that contains the serialized state of the agent, among other
data. Its configuration can be changed during execution,

moving agents between hosts when necessary. An agent
should be able to perform multiple simultaneous tasks in
response to different external events. JADE supports
parallelism, finite-state machine, atomic behavior, sequencing
and concurrency only between the agent’s different states of
behavior; however, the handling of messages exchanged
between agents and the new MA’s arrival to a particular host
is performed by the FIFO scheduling policy.

IV. RT-JADE: M IDDLEWARE FOR REAL-TIME MOBILE

AGENTS

The proposed architecture aims to create a software layer that
allows the JADE middleware to support real-time scheduling,
using best effort policy. In this section we present an MA
execution model, the proposed architecture and algorithms
supported by that middleware.

A. Execution Model of Real-Time Mobile Agents

In this paper, we consider a set of computers connected in a
network. Each host on that network has the RT-JADE
middleware where the MA can migrate, perform its mission
and, finally, leave to go to another host (Figure 2).

One mission is a set of resources that must be consumed.
An itinerary is a hosts’ sequence that an agent must visit to
consume these resources and thus accomplish an application’s
mission. Each host is able to receive a maximum amount of
MAs, limited only by its memory and processing capacity.
Therefore, for real-time applications, it is necessary to
enqueue agents following a scheduling policy, defining the
usage order of the exclusive resource by the agents. For
example, the EDF policy, agents with closer absolute
deadlines, even arriving later, can be positioned in head of the
queue.

The interaction between client and server is accomplished
through the use of MAs, although this is transparent for the
user. For simplicity, we assume each host has only one
resource, and this resource is exclusively used by the currently
authorized MA, which means that this resource may only be
used by another MA when the current MA releases that
resource, through mission accomplishment. Due to the inputs
and outputs of agent dynamics in a host, the solution of agent
scheduling is not trivial. In this proposal we have adopted the
use of “views”, which indicate the current mobile agents set in
a host at a given instant. The MAs at viewi (current view) are
scheduled according to a scheduling algorithm to define the
utilization order of resources by these agents in the current
view. During viewi, the scheduled MA can give up waiting for
the resource and, as a consequence, exit the queue and leave
the host (migrating to another host with less overhead or going
back to the Broker). This dropout occurs when the mobile
agent finds it is unable to complete its mission within the
deadline. During viewi, a new MA can arrive in the host
(waiting agent – Fig. 2, host 3). This agent waits “outside”
viewi, and is thus not scheduled to use the resource at the
moment.

The use of views has the advantage of allowing the
dynamic scheduling of the MAs. For example, suppose a host

has N resources and migrate to this host different mobile
agents – each MA with the goal of using a particular resource
– some of which may have a common goal (using the same
resource), the use of views allows us to organize mobile
agents into groups, that is, the mobile agents wishing to use
the resource 1 will be in group 1, those who wish to use the
resource 2, will be grouped in 2 and so on.

This approach allows, for instance, that each group can be
scheduled with a different scheduling policy. Each group does
control of their own views, including the possibility of a group
using a different scheduling algorithm from another group,
according to the requirements of its application. An approach
using a centralized leader, which would be responsible for
scheduling of all groups, would be no fault-tolerant, if the
leader fails, all groups would be compromised.

The scheduling algorithm (Figure 2, host 3) runs only one
time for a view. A view change (to viewi+1) can happen when a
new MA arrives at the host. Every time an MA in viewi leaves
the host, a check is made of whether the host has any MA
waiting in order to generate a new view (viewi+1). At this
point, if at least one agent is waiting, a new view (viewi+1) is
established and the scheduling algorithm runs to set the new
order in this new view. Depending on the scheduling policy
adopted, the previous view order may be maintained, only
inserting the waiting agents at the end of the queue.

B. RT-JADE Architecture

The architecture consists basically of three stationary agents
(User Interface, Broker Agent and Server Agent) and of
mobile agents (Figure 2). The whole system has up to N
Server Agents and only one Broker Agent. The agents and the
Scheduler run on the JADE platform. The User Interface's
function (client side) is to send and receive replies in
ACLMessage format, in the FIPA standard, from the Broker
Agent.

Figure 2. RT-JADE Execution Model

The Broker Agent’s function is to receive the user requests

(Figure 2 – host 1 and host 2) and make one MA for each
received request. Note that a user can have more than one
request within the request tuple, but never more than one MA
(except in cases where the user makes another request after the
first has already been sent to the Broker). The Broker also
defines the priority elements (deadline and credential) of the
MA depending on the scheduling type used. The Broker

Agent also aims to await the MA’s return and report the
mission’s results to the application user through the User
Interface.

Figure 3. Server Agent Structure

A Server Agent is an interface for the resource management

of hosts. Its function is to receive MAs, communicate with
them (to provide estimated wait times for using the resource),
choose a leader for the view from the MA contained in it, and
provide access to the exclusive resource. Its internal structure
(Figure 3) consists of a Remote ID (provided by JADE, which
allows remote agents to communicate), a Local ID (provided
by JADE, which allows local agents to communicate), a
Communication Interface according to the FIPA specifications
(provided by JADE, which allows agents to follow the FIPA
specifications to communicate, regardless of the implemented
platform or programming language), a host resource list, an
agent queue to enqueue MAs in the host, a Membership
Service for view treatment, and a host list linked to the current
host. Additionally, the Server Agent has a Calculation Server
instantiated, which contains the database ID for access
purposes (reading, writing, updating, etc.) of historical and
other data types.

Figure 4. (a) Mobile Agent and (b) Scheduler Structure

In addition to these agents, the system has the MA created

by the Broker Agent and the Scheduler. The MA’s function is
to migrate to hosts with the objective to complete a mission. A
mission is complete only if it is accomplished within the
deadline. At the end, the MA returns to the Broker and notify
it of the result of the mission. The MA’s internal structure
(Figure 4a) consists of a Remote ID, a Local ID, a
Communication Interface with FIPA specifications, a visited
host list, a list with hosts linked to the current host, and the
mission’s result. Additionally, the MA has data provided by
the Broker Agent, such as a mission to be accomplished, the
requesting user’s ID, a deadline for the mission, a list of
resources needed to complete the mission, a priority
credential, a scheduling policy identification to be employed,

and the Broker Agent host address. It also has some data
provided by the Server Agent, such as the list of available
resources on the host, the waiting time in the queue
(estimated) for resource use, and the total computation time
(estimated) by the MA to use all the resources required in the
host.

Finally, the Scheduler (Figure 2 – host 3) sorts the MAs
inside the view according to the scheduling policy being used,
and provides the ID of the MA with the highest priority to use
the resource to the Server Agent. The Scheduler uses JADE
FIPA ACL communication, and has the same remote and local
ID of the MA Leader (Figure 4b). The scheduler receives a
current view from the MA and inserts it in the Agent Queue.
Each scheduler has a distinct priority element (e.g. DM =
deadline, PRIO = credential); it sorts according to this element
and keeps the ordered view to report it to the server later.

C. Real Time Scheduling Algorithm for Mobile Agents

As explained in section IV.A, scheduling is only performed
for agents in the current view (viewi). In the current view, the
Server Agent randomly chooses one MA in the view to
become the view’s leader (Leader). The elected MA has the
responsibility to schedule itself and other MAs in the current
view, requesting for each one the priority element for the
scheduling type, as set by the application.

 (a) (b)

Figure 5. (a) Normal run and (b) when Leader crashes

For example, in figure 5a, the Leader requests the priority
element for all MAs (A1, A2…An) in the current view. After
receipt it, chooses the highest priority based on the scheduling
policy. As such, the MA with the highest priority receives
authorization to use the exclusive resource (in this example,
A2 has the highest priority), and the Leader informs the Server
Agent of this MA’s ID. After A2 accomplishes its mission and
leave the host, a new Leader is chosen for the next view.

If the Leader crashes, another view is started and a new
Leader is chosen for this new view, which avoids crashes in
the whole system. Fig. 5b illustrates the behavior of a server in
which the Leader has suffered a crash. If a Leader’s reply has
not arrived before the timeout, the Server Agent randomly
chooses a new Leader to start a new view. If the current view
and the previous view are the same, that is, there was no
incoming MA in the host, a new scheduling is not necessary;
therefore, the view’s Leader communicates the ID of the next
MA for exclusive use of the resource to the Server Agent.

Shared Variables:
1. Queue = Ø {MA queue}
2. Leader = Ø {Leader ID}
3. preview_view = Ø {Queue with previous view}
4. current_view = Ø {Queue with current view}

{Server Agent}
Local Variables:

5. newView = false {Be true if view changes}
Main Task

6. On arrival of an Ai
7. enqueue(Queue, A i)
8. newView = true
9. On Ai leave before resource use
10. d equeue(Queue, A i)
11. newView = true
12. On Ai leave after resource use
13. preview_view = current_view
14. current_view = Queue
15. chooseLeader(current_view)
16. newView = false
17. IF (preview_view is empty && Leader is empty)

THEN
18. chooseLeader(Queue)
19. ENDIF

{Mobile Agent}
Local Variables:

20. sch = Ø {scheduling type}
subroutine check(Leader)

21. On receive message “ you’re the leader ”
22. IF (newView() || preview_view is empty) THEN
23. sch.runScheduler()
24. ELSIF resource is free
25. send higher priority A j in Queue to

critical section
26. ENDIF

{Scheduler}
Local Variables:

27. prioQueue=Ø {Priority elements’ queue}
subroutine runScheduler()

28. FOR each Aj on current_view DO
29. request p s for A j
30. DO
31. replies ← wait_replies(A j)
32. UNTIL (t 1 > t 0)
33. enqueue(prioQueue, replies)
34. ENDFOR
35. schedule()
36. send higher priority A j in Queue to

exclusive resource

Figure 6. Mobile Agent Scheduling Algorithm

Figure 6 presents the scheduling algorithms. Used notations
are presented in TABLE I. The actions of the Server Agent
algorithm are described in lines 5–19. When the host receives
an MA, the Server Agent enqueues it and sets the newView
variable as true (lines 6–8). If an MA leaves the host before
the exclusive resource is used, this MA is dequeued and the
newView variable is set as true (lines 9–11). If the exclusive
resource is already in use, when it is released the Server Agent
sets the preview_view variable with the previous view and
updates the current_view variable with the present view; in
other words, the current MA queue (lines 12–14), after which
a new Leader is chosen to start a new view (line 15). As the
schedule runs, the newView variable is set as false until a new
MA arrives in the host (line 16). Thus, if an MA is ever

released from the exclusive resource and no other agent has
migrated to the host, the variable is false, thereby ensuring that
the Mobile Agent function newview() returns to false.
However, if it is the first view, i.e. it is the first time the
algorithm has run and has no Leader, one will then be chosen
(lines 17–19).

TABLE I. NOTATIONS

Symbol Description Symbol Description
Ai Local MA t1 Maximum waiting

time
Aj Other MA enqueue(q,e) Inserts e in q
e Element dequeue(q,e) Deletes e in q
ps Priority

Element
chooseLeader(q) Choose Leader to

view
q Queue wait_replies(Aj) Wait ps from Aj
s Scheduler

ID
activate(Aj) JADE function

t0 Minimum
waiting

time

suspend(Aj) JADE function

The Mobile Agent’s actions (lines 20–26) consist of

verification that it is the Leader by receiving a “you're the
leader" message (line 21) sent by the Server Agent via the
chooseLeader function. If a MA is the Leader, it either verifies
that it has a new view (unlike the previous view), or that it
does not have a preview view, indicating that it is the first time
that the algorithm has run (line 22). If one of the two previous
situations is true, the Mobile Agent creates an instance of the
Scheduler class (line 23). If both are false, scheduling is not
necessary because no changes have been made to the previous
schedule; as such, if the exclusive resource is free, the MA
with the highest priority is authorized to use it (lines 24 to 26).

Finally, the Scheduler actions (lines 27–36) consist of a
request to each MA in the current_view (including the
instantiated) for the priority elements ps (lines 28–29) that can
be deadline, deadline and credential, or only credential in a
priority-based policy where a deadline is only used to evaluate
performance.

After this, the Scheduler awaits agents’ replies over a
period t1, and such replies are saved into a queue (lines 30–
33). If there is a timeout (t1 > t0), the replies variable will be
null and this value will be queued in the position
corresponding to the MA not replying in time. The scheduler
is started, skipping null values (if there are any) and the MA
with the highest priority receives authorization to use the
exclusive resource (lines 36). The function schedule() sorts the
received values (line 35) with the Fast Quick Sort algorithm
[21]. For FIFO policy, Leader only requests to Server Agent to
give to next MA in queue the authorization to use exclusive
resource.

V. IMPLEMENTATION AND EVALUATION

Six scheduling algorithms were evaluated in this study, five
being implemented and one (FIFO) provided by JADE: FIFO
(First In First Out); EDF (Earliest Deadline First); LIFO
(Last in First Out); Priority-Based Scheduling (PRIO);

Deadline Monotonic (DM); and SJF (Shortest Job First). The
scheduling policy descriptions are described in [22].

Full architectures (MA and stationary agents, Broker Agent
and Scheduling Algorithms) are implemented in JAVA (JDK
1.6.0_19), using the JADE framework (v.4.0.1). The
evaluation environment consists of three machines connected
to a LAN through a hub: (i) Intel Core2Duo 2.4GHz, 1GB
RAM, Windows XP Professional 32-bit; (ii) Intel Core2Duo
1.6GHz, 1.5GB RAM, Windows XP Professional 32-bit; and
(iii) Intel Core Quad 3.0GHZ, 4GB RAM, Windows 7 64-bit.

Figure 7. Node configuration for proposal evaluation

For this paper two Server Agents were simulated, each
containing only one exclusive resource. The Server Agent in
host 1 has a database search resource, while the Server Agent
in host 2 has a mathematical resource for estimations (such as
the price of parts, dimensions, budget, etc.). Node
configuration is by order of precedence, i.e. the MA needs to
come to host 1 before host 2; as such it is not possible to use
R2 before R1 (Figure 7). The deadline ranges were chosen
based on previous historical simulations and computational
loads, which justifies the choice of different deadlines for the
concurrent MA amount. Each MA has 1 to 3 distinct missions
to be used in both resources (R1 and R2). These missions are
randomly chosen, so there is the possibility of more than one
MA having the same mission.

To evaluate this proposal, 100 iterations were run for each
scheduling policy in each deadline range, totaling 500 MAs
for each scheduling policy by deadline range in IT500
(IT=iteration; 500 = total MA amount) and 2000 MAs in IT2k
(2k = 2000 MA total amount). In addition, we measured MA
amounts for each scheduling policy that have completed full
or partial missions as well the failed amounts. From this
information, the algorithms were compared with each other,
especially with FIFO to determine which deadline ranges are
the best for each case. The best algorithm for mission
accomplishment and the best results were compared with the
JADE default (FIFO).

To evaluate this proposal were performed two test types:
By Mission Accomplishment (subsection V.A) and By
Throughput (subsection V.B).

A. Performance Evaluation: Mission Accomplishment

We have performed several measurements to evaluate the
scheduling policies. IT500 is shown in Fig. 8. By analyzing
the results, it is possible to conclude that for shorter deadlines
(300–500 ms) LIFO is better in terms of total mission
accomplishment, and in the range of 300 ms, SJF scheduling
caused total loss of missions for all MAs. For the 700 ms
range PRIO is better, while SJF is least effective. In the 1100

ms range, all algorithms show satisfactory results, the worst
being DM and FIFO. Importantly, based on the number of
MAs that did not accomplish their mission, either totally or
partially, the FIFO algorithm gave some of the worst results in
most of the deadline ranges chosen.

Evaluation performance for IT2k is shown in Fig. 9. In the
300ms range no MA can accomplish its mission; therefore, we
discarded these results and chose a new deadline range. For
the 700ms range, all algorithms had low performance, while in
the 1500–2000ms range the algorithms showed improvement,
with PRIO and EDF proving the better for 1500ms and EDF
and DM the better for 2000ms. It is also worth noting that
EDF is one of the better options in both cases. In the 2500 ms
range, DM allowed all MAs to accomplish their missions. For
this simulation, the FIFO policy has the worst results in three
of the four ranges chosen.

Figure 8. Five Concurrent MA with deadline ranges: 300 (a), 500 (b), 700 (c)
and 1100ms (d)

Figure 9. Twenty Concurrent MA with deadline ranges: 700 (a), 1500 (b),
2000 (c) and 2500ms (d).

B. Performance Evaluation: Throughput

For this test, it was stipulated that when a mobile agent
reaches the host, it receives an "internal deadline", which
defines the maximum time that the MA has to complete its
mission within the current node, and is assigned only to
compare which scheduling algorithms allow a greater number
of MAs leaving the host - after the use of the resource - in a
period of 1 second. The purpose of this metric is to define the
cost of scheduling mobile agents by a single host.

To measure the throughput, internal deadlines were
stipulated for the server and took place the simulation of five-
and ten concurrent mobile agents, thus allowing the
throughput to other quantities of MAs can also be estimated.
For five concurrent mobile agents, the applied deadlines were
5, 10, 15, 20 and 25 ms, while for ten MAs were 2 to 22.5 ms
(0.5 ms each increasing in value, up to a total 10 marks).
Looking at Figure 10, for five concurrent mobile agents, both
the FIFO algorithm as the DM did not allow any MA to
accomplish its mission, while the other scheduling policies
have allowed at least 20% of MA fulfilled.

Figure 10. Behavior of non-preemptive scheduling algorithms.

In the second test, performed with ten concurrent mobile

agents, with deadlines between 5 to 50 ms, the FIFO algorithm
allowed 40% of mobile agents complete the mission. By
reducing this range – until the FIFO get no more any success –
by assigning deadlines from 2 to 22.5 ms, these results are
shown in Figure 10, where the x-axis represents the scheduling
policies used and the y axis the percentage of MAs that
managed to leave the host before the internal deadline
stipulated.

Assessing the fulfillment of missions, one can see that
while the FIFO policy did not allow any MA to complete its
mission, the other algorithms (except for the DM) allowed at
least 20% of mobile agents to conclude its mission to 5
concurrent MAs, and a minimum of 30% to 10 concurrent
MAs. The impact of the number of concurrent MAs over the
deadline is noticeable in the maximum amount of MAs who
completed their mission in the node: 80% to 5 MAs and 40%
to 10 concurrent MAs.

VI. CONCLUSION

This paper presents an extension to the JADE middleware that
provides real-time support, based on the view concept. The
proposal was evaluated in the JADE framework and
performance measures showed that the number of MAs with
time constraints that completed their missions within the
deadline stipulated using RT-JADE was 1.6 to 96.1% higher
for five concurrent MAs and 47 to 100% higher for twenty
concurrent MAs, as compared to the current scheduling policy
(FIFO) provided by JADE.

With this study, some prospects for improvement are likely
to be developed, such as MA waiting-time calculation for
using an average based on Queuing Theory, optimization of
preemptive scheduling algorithms, and the addition of new
scheduling policies, such as Round Robin. These results will
be reported in a future paper acknowledgement.

One can analyze that the EDF algorithm was among the top
three results on all ranges of deadline for 20 concurrent MAs
and among the best three results in two of the four ranges of
assigned deadlines to 5 concurrent MAs.

It is also possible to conclude that the algorithms with
better benefits and better throughput were: LIFO to 5
concurrent MAs, and EDF to 10 concurrent MAs. Based on
the analysis of two tests, it is possible to conclude that, for the
simulated scenario, the EDF scheduling algorithm presents the
best performance.

ACKNOWLEDGMENT

This work is supported by CNPq (Brazilian National Research
Council) through processes 482175/2010-9, 560258/2010-0 and
559993/2010-2.

REFERENCES
[1] Fou, J. (2010), “Web Services and Mobile Intelligent Agents -

Combining Intelligence with Mobility,” Available [Online]:
http://www.webservicesarchitect.com/content/articles/fou02.asp.

[2] Shemshadi, A.; Soroor, J. and Tarokh, M. J. (2008)
“Implementing a Multi-Agent System for the Real-time
Coordination of a Typical Supply Chain Based on the JADE
Technology,” IEEE International Conference on System of
Systems Engineering (SoSE '08), pp. 1–6.

[3] Baek, J., Kim G. and Yeom, H. (2002) “Cost-Effective Planning
of Timed Mobile Agents”, International Conference on
Information Technology: Coding and Computing (ITCC'02).

[4] Sahingoz, O. K. and Erdogan, N. (2004), “A Two-Leveled
Mobile Agent System for E-commerce with Constraint-Based
Filtering,” LNCS, Springer-Verlag, vol. 3036 (ICCS 2004), pp.
437–440.

[5] Arunachalan, B. and Light, J. (2008) “Agent-based Mobile
Middleware Architecture (AMMA) for Patient-Care Clinical
Data Messaging Using Wireless Networks”. Proceedings of 12th
IEEE/ACM International Symposium on Distributed Simulation
and Real-Time Applications.

[6] Wang, S.; He, D. and Goh, M. W. T. (2006) “An Intelligent
Manufacturing System: Agent Lives in Adhesive Slice,”
International Journal of Computer Science and Network
Security, vol.6 , no.5A.

[7] Ca, J.; Wang, X.; Lo, S. and Das, K. (2002) “A Consensus
Algorithm for Synchronous Distributed Systems using Mobile
Agent”, Proceedings of the PRDC.

[8] Chen, B.; Cheng, H. and Palen, J. (2006), “Mobile-C: A Mobile
Agent Platform for Mobile C/C++ Code,” Software - Practice &
Experience, Vol. 36, Issue 15, pp. 1711-1733.

[9] Wierlemann, T.; Kassing, T. and Harmer, J. (1997). “The
OnTheMove Project: Description of Mobile Middleware and
Experimental Results”, Springer Book Series, Vol 435, pp.21-
35.

[10] Bäumer, C.; Magedanz, T. (1999), “Grasshopper - A Mobile
Agent Platform for Active Telecommunication,” IATA '99
Proceedings of the 3th Int. Workshop on IATA, pp. 19-32.

[11] Lange, D. B.; Oshima, M.; Karjoth, G. and Kosaka, K. (1997),
"Aglets: Programming mobile agents in Java, " In WWCA, Vol.
1274, pp. 253-266.

[12] Caire, G.; Bellifemine, F.; Greenwood, D. (2007), “Developing
Multi-Agent Systems with JADE”, (Wiley Series in Agent
Technology). vol. 1, pp. 10-113. ISBN: 978-0-470-05747-6.

[13] Fok, C.; Roman, G. and Lu, C. (2006), “Mobile Agent
Middleware for Sensor Networks: An Application Case Study”,
Information Processing in Sensor Networks, pp. 382 – 387.

[14] Rech, L. O.; Oliveira, R.S. and Montez, C. (2008), “Itinerary
Determination of Imprecise Mobile Agents with Firm
Deadlines”, Web Intelligence and Agent Systems, An
International Journal, vol. 6, no 4 , pp. 421–439.

[15] Leung, K.K, (2010). “FTS Framework for JADE”, em:
http://www.cse.cuhk.edu.hk/~kwng/FTS.html.

[16] Barland, I.; Greiner, J. and Vardi, M. (2005), “Concurrent
Processes: Basic Issues”, [Connexions Web site]. October 6,
2005. Available [Online]: http://cnx.org/content/m12312/1.16/.

[17] Shrivastava, S. K. and Banatre, J. P. (1978), "Reliable Resource
Allocation Between Unreliable Processes," IEEE Transactions
on Software Engineering, vol. 4, no. 3, pp. 230–241.

[18] Chang, J.; Zhou,W.; Song, J. and Lin, Z. (2010), “Scheduling
Algorithm of Load Balancing Based on Dynamic Policies”,
ICNS'10 Sixth International Conference on Networking and
Services, pp. 363-367.

[19] Magalhães, A. P.; Rech, L. O.; Lung, L. C.; Oliveira, R. S. de
(2010). Using Intelligent Mobile Agents to Dynamically
Determine Itineraries with Time Constraints. In: 15th IEEE
International Conference on Emerging Technologies and
Factory Automation, Bilbao, Spain. pp. 1-8.

[20] Magalhães, A. P.; Lung, L. C.; Rech, L. O (2010). Decentralized
Services Orchestration using Adaptive Mobile Agents with
Deadline Restrictions. In: 6th IFIP Conference on Artificial
Intelligence Applications & Innovations, Larnaca, Cyprus.
Boston, MA, USA. v. 339. p. 246-253.

[21] Ahrens, D.(2005),“Fast Quick Sort for JAVA,” Avaiable
[Online]: http://people.cs.ubc.ca/~harrison/Java.

[22] Ramamrithan, K.; Stankovic, J.A. (1994), "Scheduling
Algorithms and Operating Systems Support for Real-Time
Systems," Proceedings of the IEEE, Vol. 82, nº 1, pp. 55-67

