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Abstract 
 
 In this paper we evaluate the use of an object-
oriented open platform based on the CORBA standard 
[15] for the implementation of replicated services. To 
improve the flexibility of the implementation, we use a 
reflective approach [13], which allows for separation of 
aspects related to the replication model from those re-
lated exclusively to the service being replicated. This 
separation makes it possible to modify the replication 
protocol according to the fault tolerance level desired, 
without any implications for the application code. 
 
Keywords: fault tolerance, object groups, CORBA, com-
putational reflection. 
 
1. Introduction 
 
 Distributed systems have been recently characterized 
by their increase in dimensions and their heterogeneity. 
These systems have adopted the idea of open architecture, 
obtaining the interoperabili ty of their components by the 
homogeneity of their corresponding interfaces. An effort 
made in terms of open programming is the CORBA stan-
dard (Common Object Request Broker Architecture), the 
result of the work of various companies which are part of 
the Object Management Group [15], whose aim is the 
integration of different programming systems based on 
objects. The use of CORBA standards, therefore, permits 
the interaction of objects distributed in the system, regard-
less of their coding languages, machine architecture or 
operational systems.  
 The concept of group processing has been introduced 
in distributed programming models with the aim of pro-

viding support for cooperative work (groupware), making 
possible an increasing availabili ty of shared resources, or 
in replicated processing, due to fault tolerance. The use of 
CORBA standards has evolved in recent years in terms of 
incorporating group processing services. The Group 
Server abstractions are object of specification for inclusion 
in the OMA architecture [2]. The purpose of Group Server 
is similar to the approach used in ANSA (Advanced Net-
works Systems Architecture) [1], presenting a concentra-
tor element in group communications, which is a handi-
cap in the performance and reliability of a system. 
 Furthermore, various prototypes and even products of 
CORBA platforms have been developed, offering support 
to group processing. Specifically, we may mention the 
ORBs (Object Request Brokers) RDO/C++ [11], Or-
bix+Isis [10] and Electra [14]. These platforms make use 
of tools such as Isis [5] and Horus [18] that provide group 
communication based on the reliable broadcast concept. 
The tools cited above offer more reliable bases than the 
solutions sought in the specifications of Group Server in 
OMG. 
 In this article, we have set out to present our work on 
the integration of replication techniques into an open 
system, according to the patterns of the CORBA proposal, 
in order to make available mechanisms of fault tolerance 
to the applications distributed on that platform. The im-
plementation of replication techniques is backed by the 
use of ORBs presenting a support for group processing. 
 With the aim of minimizing the replication reflexes 
on the programming of applications, a programming 
model was adopted, based on the computational reflection 
[13]. This paradigm permits the complete separation of 
the coordination mechanisms among the replicas from the 
application in itself. This separation, besides simplifying 



the programming of the replicated application, introduces 
a great flexibil ity into the system by allowing the altera-
tion of the replication protocols, without interfering with 
the application functionality, or even involving changes 
on the level of execution support, which would be diffi-
cult, considering the nature of open systems. 
 The programming model presented was used success-
fully in the integration of different replication techniques. 
As an implementation support, use was made of Electra, 
an ORB with support to process groups. In the present 
article, we wil l present only the active competitive replica-
tion technique described in [17], to illustrate the advan-
tages offered by this model in the environment under 
consideration.  
 The article is structured as follows: in section 2 we 
present the active competitive replication model; in sec-
tion 3 we introduce the concepts of computational reflec-
tion and set out to structure the model according to this 
approach; in section 4 we describe the CORBA standard 
and the ORB Electra with its extensions for group sup-
port; finally, in section 5, we present in detail the integra-
tion of the reflective model proposed with the CORBA 
platform utilized and the results obtained in its implemen-
tation. 
 
2. Software component replicated models 
 
 Replication techniques are an alternative that enables 
services to continue in distributed systems, even when 
failed nodes are present. The unit of replication is a soft-
ware component (objects, processes, etc.), encapsulating 
data identified as replica state. The replicas are distrib-
uted among different sites in the network. The coordina-
tion of the replication defines the way the different repli-
cas must interfere in the processing, in terms of maintain-
ing the consistency and transparency of the whole.  
 The techniques vary according to the degree of syn-
chronism and the types of replicas involved. In the litera-
ture, passive, active and semi-active replication models 
are identified [17]. In the passive replications, a privileged 
replica executes the processing referring to the input data, 
while the others have their states updated by the privi-
leged one, using checkpointing (state transfer mecha-
nisms). The coordinator-cohort model, presented in [4] is 
an example of this type of replication.  
 In active replication models, all the components 
receive the input data, process them simultaneously and 
produce the same outputs. In these models, identified as 
State Machine, the consistency of the replica state neces-
sarily implies determinism of replica, which can be ob-
tained by consensus about the input data and its order 
[19]. Some authors identify semi-active replications, in 

which, although all the replicas work in competition, only 
one produces the output. The order of the inputs is im-
posed by a privileged replica. The leader-followers tech-
nique described in [17] is an example of semi-active repli-
cation.  
 In [12] exhaustive studies are carried out on replica-
tion techniques and their implementation aspects. In this 
text we limit ourselves to the active competitive replica-
tion model described in [17]. 
 
2.1 Active competitive replication 
 
 In the competitive replication model all the replicas 
are active but only one responds to a given input data 
request. The main characteristic of this model is the com-
petition among the replicas: only the fastest replies to the 
request. The coordination of the technique is distributed: 
each replica has an associated controller, responsible for 
receiving, broadcasting and comparing messages, with the 
corresponding replica dedicated to request processings. To 
guarantee replica consistency, all the messages among 
them are transmitted by means of atomic broadcasts. The 
competitive replication model can be devised so as to 
tolerate two sets of faults [17]: timing faults, involving 
semantics of crash, omission and timing errors; arbitrary 
faults, that take in the whole spectrum of failure seman-
tics. For clarity and economy of space, we shall l imit 
ourselves, in this text, to the first set of faults. 
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figure 1: Competitive replication model for 
  temporization faults. 
 
 Figure 1 il lustrates competitive replication, in a sim-
plified manner, under the assumption of timing faults. In 
this case, considering the client/server model using a 
replicated server, a client request broadcast in the server 
group is received by the controllers, which send it to the 
corresponding replicas. On receiving the result of a proc-
essing of its associated replica, each controller verifies 
whether it has already received the message with the re-
sult of the same processing from another controller of the 
group. In the absence of these messages, the controller 
concatenates an identifier to the result, and broadcasts the 



resulting message to the controllers group. If the control-
ler receives its own message first, it finds out that its rep-
lica is the fastest and therefore is the one responsible for 
sending the reply to the client; otherwise its message is 
discarded. This algorithm guarantees that only one replica 
answers to the client request, because all the messages 
broadcast in the group are observed by each member in 
the same relative order (a total order imposed by the use 
of a atomic broadcast protocol).  
 Finally, the broadcast of a message end_of_pro-
cessing, after sending the results to the client, by the con-
troller of the fastest replica, closes the processing cycle in 
terms of the client request. This message makes it possible 
to work out strategies to detect faults in the fastest replica 
controller and its substitution by another controller for 
sending results to the client.  
 The protocol shown above covers up errors due to 
timing faults. Concerning treatment of failed elements, 
two detection procedures are foreseen in the original lit-
erature. [17]: 
 
• A weak coupling is perceived between the controller 

and its replica. In this case, time-out mechanisms are 
maintained in the controller to detect the lack of an as-
sociated replica ; 

• Competitive replication gives a privilege to the fastest 
replica and, consequently, can lead to considerable 
asynchronism in the set of replicas. This asynchronism 
is dealt with, by periodically having a rendezvous, in 
which all the controllers broadcast the results of their 
replicas among themselves and the last to broadcast is 
the one which sends the results to the client. This ren-
dezvous is l imited in time, so as to allow for the detec-
tion of failed controllers. 

 
3. Reflective structure for the competitive 
 model 
 
 The computational reflection paradigm allows a 
system to execute processing on itself, in order to modify 
its behavior. In [13], the reflective paradigm is introduced 
into the object oriented programming using the meta-
objects approach. Here, the functional and non-functional 
aspects are separated through the use of base-objects and 
meta-objects. A meta-object is associated with each base-
object. Through their methods, the base-objects express 
the application functionalities, while the associated meta-
objects carry out control procedures that determine the 
behavior of their corresponding base-objects. The calls to 
the base-object methods are trapped, so as to activate the 
meta-methods that make it possible to modify base-objects 
behavior or add functionalities to their methods.  

 In this study, computational reflection is used to 
develop an integration model for replication techniques in 
open systems. The reflective paradigm allows us to assign 
to the base-object the functionalities of a replicated appli-
cation, while meta-objects execute replica coordination 
protocols. This model allows the use of different replica-
tion techniques while the base-objects maintain their char-
acteristics; to this end, all that is needed is to change the 
associated meta-objects.  
 The structure proposed for incorporating active repli-
cation concepts into the reflective processing model is 
presented in figures 2 and 3. Each replica was mapped 
under the form of an base-object, with which a meta-
object, assuming the functionality of controller, is associ-
ated. The competitive replication that we use follows a 
failure semantic of crash. Since we accept a strong cou-
pling between the controller and the associated replica, 
the errors generated wil l be attributed to both; in the crash 
failure, the controller and associated replica wil l cease 
their execution. 
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figure 2: Reflective structure for the active 
  competitive replication model. 
 
 A request multicast by the client into a group of rep-
licas is trapped to the respective controllers, that, in turn, 
have to interact in order to implement the coordination 
protocols of the replication scheme used. The actions of a 
controller are succinctly described in the code of figure 3. 
Each base-object method is associated with a meta-method 
in the controller, responsible for its activation (method 
base 1 and meta method 1, in the figure cited). 
 The meta control method implements the coordina-
tion protocol among the replicas described in the preced-
ing section. The basic behavior of the algorithm consists 
of iterating between the choice of a replica for the reply to 
the client (first) and the closing procedure, until there 
is a confirmation that the reply has actually been sent 
(concluded condition of the while loop). It is simple 
to verify the termination of the request processing: if, after 
multicasting the method closing, the fastest replica 
(first) is still alive (into the membership), then the 
reply was actually sent. Otherwise, a new replica is chosen 
and the process is repeated. This procedure eliminates the 



need to multicast a message about the end of the process-
ing. In the algorithm, the activations of the methods 
multicast_id and closing are transmitted to all the 
replicas of the group, in a totally ordered manner. 
 
class meta_controller {
   // declaration of variables

   method meta_method_1 (parameters) {
      method_base_1 (parameters);
      meta_control  (parameters);
   };

   ... // declaration of further meta-methods

   // implementation of the meta-control method
   method meta_control (parameters) {
      first := null ;
      concluded := false ;
      my_id := get_system_id () ;
      while not concluded do
         if (first = null) then
            group.multicast_id (my_id);
         end ;
         if (first = my_id) then
            // first replica to reply
            return ; // return reply to the client
         else
            if not concluded then
               group.closing () ;
            end ;
         end ;
      end ;
   }

   method multicast_id (int id) {
      if (first = null) then
         first := id ; // id of the fastest replica
      end ;
   }

   method closing () {
      if (first ∈ membership) then
         concluded := true ;
      end ;
      first := null ;
   }  

 
figure 3: Competitive replication meta-controller. 
 
 Both the competitive replication model and the sup-
port util ized give a privilege to the fastest replica, what 
may cause a lack of synchronism in the slower replicas. 
The periodical execution of the global rendezvous tech-
nique, proposed in [17] is not used here, due to its cost 
implications in the system performance. The solution 
adopted is based on the property of virtual synchronism 
[5], maintained by the lower layers of the support used in 
this implementation. In this way, as long as the replica 
belongs to the membership of the group, it will have the 
same messages in the same order as the others. When the 
input buffer in the communication support associated with 
the slowest coordinator/replica pair, reaches the limit of 
its capacity, the support withdraws the replica from the 

membership. A replica can detect its exclusion and reinte-
grate itself to the group, through the view change 
(view) method, defined in the interface BOA of Electra 
and activated automatically by the support for each 
change in the membership. The activation of this method 
is not preemptive, occurring only after processing the 
current method. The body of the method view change 
is defined according to the application characteristics. In 
this way, in our implementation we carried out a member-
ship test in the body of this method: if the replica has been 
excluded (view.number=1), the BOA function join 
(group) is activated, thereby effecting its reintegration into 
the group.  
 Regarding the crashes that may occasionally occur in 
the evolution of the system, our implementation provides 
procedures for recuperating the degree of replication. If 
the number of active replicas in the group falls below a 
preestablished l imit, the oldest replica takes the initiative 
of producing new replicas, in this way, reestablishing the 
ideal number of replicas. The code referring to these recu-
peration procedures is based on a membership test 
(view.number < quorum minimum), and it is in-
serted into the view change method cited above. 
 Our replica state recovery approach differs from that 
proposed in [7], in which the recovery occur through 
meta-methods making updates in public attributes of their 
associated replicas, with the use of  appropriated coordi-
nation protocols. In our approach, we uti lize more sup-
port-provided primitives and fewer coordination protocols, 
what simplifies the state recoveries. The state recovery, in 
our system, is based on the primitive join, offered by the 
support, and activated through the view change 
method.  
 In object-oriented languages, each meta-object is an 
instance of a class on the meta-level that defines its struc-
ture and behavior. In this article we limit ourselves to 
talking only about meta-objects because we are interested 
in emphasizing the aspects of execution time of the meta-
objects approach. In [8], these aspects added to other 
referents to the use of the same approach in real-time 
applications, are approached within the structure of a 
language that is being developed. 
 
 
4. The CORBA support utilized  
 
 The implementation of the replication model pre-
sented in section 3 presupposes the existence of an run-
time support that offers facil ities for programming dis-
tributed objects. A platform conceived based on the con-
cepts of the CORBA (Common Object Request Broker 
Architecture) standard is to provide the necessary support 



for distributed object-oriented applications. In this section 
we briefly describe the Electra system, a CORBA platform 
util ized in our implementations. 
 
4.1 CORBA architecture 
 

 CORBA specifications form a set of standards and 
concepts proposed for open systems by OMG (Object 
Management Group) [15]. CORBA architecture is com-
posed of an ORB (Object Request Broker) kernel, that 
implements communication abstractions among distrib-
uted objects and an interface management structure that 
contains static and dynamic invocation interfaces, object 
adapters, interface and implementation repositories (fig-
ure 4). 
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figure 4: The CORBA architecture. 
 
 In a CORBA environment, each object has its inter-
face specified through an Interface Description Language 
(IDL), a declarative language with syntax and predefined 
types based on the language C++. The interactions follow 
the client/server model. The CORBA client, in a service 
request, uti lizes stubs generated in the compilation of the 
IDL specification of the server object, or builds this re-
quest, using the dynamic invocation interface DII. To 
allow for dynamic invocations, object interfaces must be 
stored in the interface repository. The client’s request is 
transmitted over the network, using the ORB, that trans-
fers the control to the object adapter to activate the opera-
tion in the implementation of the server object, by means 
of the IDL skeletons. 
 The original CORBA proposal does not provide for 
adequate support mechanisms to groups of objects. To fill  
in this gap, some extensions to the CORBA standard have 
been proposed in terms of incorporating this concept. 
Electra [14] is a product of these efforts. 
 
4.2 Electra  
 
 Electra [14] is an Object Request Broker (ORB), 
compatible with the CORBA standard [15], presenting 
support to object groups. This platform combines the 

benefits of the CORBA standard with the power of lower 
level tools for group processing, such as Horus [18], Isis 
[5], and others. Interactions in Electra can occur as reli-
able multicast or  point-to-point communications. Order-
ing mechanisms (total, causal and fifo) are offered to 
guarantee consistency among members of the object 
group. The client makes use of a given method invocation 
model, regardless of whether the server is a single object 
or a group. These invocations may be synchronous, asyn-
chronous (one-way) or semi-synchronous (deferred-
synchronously), through static or dynamic interfaces. On 
multicasting a method call, through a CORBA static or 
dynamic invocation interface, the programmer has at his 
disposal two modes of group communication in Electra: 
 
• Transparent: the group is seen as a simple and com-

pletely available object, and the client only receives the 
final result furnished by the group; 

• Non-transparent: permits access, in an invocation, to 
the results of each individual member of the group of 
objects. 

 
 In the interface BOA (Basic Object Adapter) of Elec-
tra, services referring to group management are added, 
such as creating a group of objects, including objects in 
the group or excluding them from it, selecting a protocol 
of multicast, membership and transfer of state, and so on. 
These services are provided by the lower level tools used, 
such as Horus or Isis. 
  
5. The integration model of replication 
 techniques in open systems 
 
 In the previous section, we could see that the 
CORBA/Electra platform offers adequate support for 
group processing. In this section, we describe the integra-
tion of the reflective model proposed in section 3 over the 
Electra system. 
 
5.1 The integration model in CORBA platforms 
 
 Figure 5 explicits the integration model of replication 
techniques within the CORBA context. The access to the 
support provided by a CORBA platform is available both 
to the server and to the client by entities represented as 
meta-objects (client and server) and identified generically 
as meta-communication. These entities are actually noth-
ing more than the set of stubs for the client and server, 
stubs for the communication among the replicas and the 
BOA interfaces providing the group management. All 
these stubs are generated by the translation of the IDL 
[16] declaration of a server object. The use of the term 



“abstract object”  given to meta-communication on the 
model follows some authors [9] and has the sense of a 
simple separation for greater clarity. In reality, these in-
terfaces are generated in Electra as a set of methods that 
will be composed of multiple inheritance in the client and 
controller meta-objects (section 5.2). 
 In the model the client introduces itself within a 
client-base structure, that represents the application be-
havior, and a meta-client, that does not present an active 
function in our implementation, but that could be used in 
managing the replicated client, or to implement mecha-
nisms for handling exceptions in the client. The structure 
of each server replica is similar to that of the client: a 
replica-base object, carrying out the replicated service, 
and a meta-controller, responsible for executing the coor-
dination protocol of the replication, l ike one described in 
figure 3. 
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figure 5: Structure of the model on a CORBA 
  support. 
 
 The numbered arrows in figure 5 indicate the normal 
way of a client request: The request made by the client 
base (1) is then broadcast using a stub appropriated in the 
client meta-communication. In each replica, the meta-
communication, by means of a local stub, receives the 
request and transfers it to the meta-controller (2), which 
then activates the local replica (3). On receiving the reply 
(4), the meta-server executes the coordination protocol, by 
means of the meta-communication so as to interact with 
other replicas. The processing and interactions on the 
level of the meta-controllers are conditioned at this time 
by the replication model utilized. Later, the reply is then 
sent back to the client (5 and 6).  
 This model can be used in other replication tech-
niques, the differences centering mainly in server repli-
cated meta-controllers. In some techniques the meta-
communication entities may gain functionality, besides 
that of concentrating methods of access to CORBA sup-
porting services. For example, in the use of active replicas 
with voter and adjuster mechanisms, the implementation 
of voting or adjustment can be programmed on the cli-

ent’s side in a more simplified form. Transparency could 
be achieved in this case, implementing these mechanisms 
in the client meta-communication entity, which, with the 
addition of this functionality, takes on the characteristics 
of a real object. 
  
5.2 Building replicated services following 
 the integration model 
 
 The first step in the building of a system on a 
CORBA/Electra platform is a description in IDL of the 
meta-controller interface, following the specification of 
the replicated service provided by the server to the client. 
Besides this interface, due to some limitations imposed by 
the Electra, it is necessary to declare a second one, for 
implementing the replica coordination, composed by 
methods that provide communications among replicas. 
 

// IDL

interface meta_controller_1
{
   // Description of the data types employed

   // Description of the server methods
   boolean meta_method_1 (parameters);
   ...
   boolean meta_method_n (parameters);
};

interface meta_controlller_2
{
   // Description of the meta_controller methods
   boolean broadcast_id (in int id);
   boolean closing ();
};

 
 
figure 6: IDL interface of the replicated server. 
 
 Figure 6 presents both IDL declarations of a repli-
cated server in according to the specifications described in 
figure 3. The interface meta controller_1 al lows clients 
access to the services offered, while the interface meta 
controller 2 declares the methods necessary for intra-
replica interactions. It should be pointed out that both 
interfaces are actually two facets of the same server (or, in 
our case, of the same group of objects). 
 In compile-time, the Electra/IDL compiler automati-
cally generates the whole support for communication 
(stubs) among the entities involved, including, as well, the 
functionalities for group management of the BOA (in 
Electra, every object is an instance of a sub-class of the 
BOA class). The compiler also generates fi les containing 
structures (declarations of variables and methods) for 
including the client and server codes. The programmer, 



then, is responsible for the implementation of the replicas 
(base-objects) and the replica coordination suitable (meta-
objects), by fill ing  the bodies of the methods declared in 
the interfaces. With this implementation scheme, il lus-
trated in figure 7, the client and server base-objects are 
kept devoid of all activities that are not related to the 
application itself. All aspects related to the replica coordi-
nation and the interactions in the CORBA context, are 
concentrated at the meta-level. 
 Our implementation was carried on a UNIX plat-
form, where each associated pair base-object/meta-object 
was intended to share the same process, making the inter-
actions between them local, without the need for ORB. 
The needs for concurrence between base-objects and meta-
objects within a process are satisfied by the use of a 
threads library offered by the Electra support. However, 
the current version, (1.0) of this platform does not support 
pre-emptive threads, which l imits the degree of concur-
rence in dealing with client requests. As a result of this 
restriction, it becomes difficult to implement replication 
techniques, which has forced us to seek alternative im-
plementation solutions. The solution adopted consists of 
separating the functionalities of the meta-controller into 
two UNIX processes. 
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figure 7: Application building process. 
 
 Due to the fact that the language used (C++) has no 
specific constructions to support reflection. The reflection 
is implemented artificially, through the direct activation 
to the meta-method, in the client code. The use of a lan-
guage supporting reflection, as is the case with Open C++ 
[6], might eliminate this problem, but in this case, the 
IDL compiler of the CORBA environment used should 
support this language. 
 
6. Considerations about the results 
 
 Redundancies and fault tolerance implementations 

can follow several approaches [7]. The implementation of 
fault tolerance techniques by means of runtime support 
offers on the application level some degree of transpar-
ency concerning the coordination aspects of the technique 
used. The disadvantage is that once the fault assumptions  
and the replication technique are chosen in configuration 
time, we will  have defined a specific execution support. 
The approaches of library and languages for the imple-
mentation bring aspects of coordination to the program-
mer level, without, however, separating them from func-
tional application aspects. 
 Computational reflection permits independence of 
the replica codes in relation to the coordination protocols, 
leading to a greater flexibility in the system: changing the 
technique or altering it by meeting desired degrees of fault 
tolerance, may simply result in switching the coordination 
protocols on the meta level, involving no alteration in 
application algorithms or in the run-time support what is 
suitable in open systems. The use of the reflective comput-
ing for implementing fault tolerance techniques is pro-
posed in [3] [7], and the separation between the coordina-
tion and the replicas has already been recommended in 
[17]. 
 The model presented was used for implementing the 
active competitive replication protocol, described in sec-
tion 2. The implementation carried out makes intensive 
use of the Electra support facil ities, which makes easier 
the coordination needs of the technique implemented. 
Furthermore, the uses of a CORBA platform has allowed 
the implementation of our application on an heterogene-
ous system (local network of machines running SunOS 
4.X and Solaris), facili tating aspects of interoperabil ity. 
 The integration structure proposed has proved to be 
quite flexible, other replication techniques can be easily 
implemented. Up to now, we have implemented the pri-
mary/secondary , leader/followers and cyclic redundancy 
techniques, using the same integration model. The neces-
sary changes for the substitution of replication techniques 
in the integration model are limited to the IDL meta-
controller interface and their codes that implement the 
coordination protocols.  
 These replication models were applied in the imple-
mentation of a multimedia application (animation viewer 
accepting the MPEG format). Simulations of crashes were 
carried out, utilizing these implementations. In all these 
replication techniques utilized, the continuity of service 
was obtained in case of failures, since the premises of 
each technique were respected. At present, we are work-
ing out detailed measurements on the performance of the 
replication techniques cited using the Electra platform. 
We are also porting our work to the Orbix+Isis platform 
[10]. 
 



7. Conclusion 
 
 An integration model for replication techniques in 
open distributed systems was presented in this article. The 
use of computational reflection concepts makes it possible 
to obtain the necessary flexibility for developing and im-
plementing different replication models for fault tolerance 
in these environments. 
 Within this context, the work presented in this article 
continues at present in various directions. The validation 
of the model proposed through application in real situa-
tions and the incorporation of language constructions in 
terms of facili tating the programming of the reflective 
model are some of the current activities involving this 
work.  
 The programming model presented in this article is 
part of a cooperative research project,  sponsored by the 
brazilian state agency CNPq (PROTEM-CC project), and  
has as its aim to build an object-oriented environment that 
supports distributed applications with requirements of 
real-time and fault tolerance. 
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