

Implementing Replicated Services in Open Systems
Using a Reflective Approach

Joni Fraga, Carlos Maziero, Lau C. Lung, Orlando G. Loques Filho*

Laboratório de Controle e Microinformática
Departamento de Engenharia Elétrica - UFSC

88.049-900 Florianópolis SC - BRAZIL
e-mail: { fraga,maziero,lau} @lcmi.ufsc.br

*Pós-Graduação em Computação Aplicada e Automação - UFF

24210-240 Niterói RJ - BRAZIL
e-mail: loques@caa.uff.br

Abstract

 In this paper we evaluate the use of an object-
oriented open platform based on the CORBA standard
[15] for the implementation of replicated services. To
improve the flexibility of the implementation, we use a
reflective approach [13], which allows for separation of
aspects related to the replication model from those re-
lated exclusively to the service being replicated. This
separation makes it possible to modify the replication
protocol according to the fault tolerance level desired,
without any implications for the application code.

Keywords: fault tolerance, object groups, CORBA, com-
putational reflection.

1. Introduction

 Distributed systems have been recently characterized
by their increase in dimensions and their heterogeneity.
These systems have adopted the idea of open architecture,
obtaining the interoperabili ty of their components by the
homogeneity of their corresponding interfaces. An effort
made in terms of open programming is the CORBA stan-
dard (Common Object Request Broker Architecture), the
result of the work of various companies which are part of
the Object Management Group [15], whose aim is the
integration of different programming systems based on
objects. The use of CORBA standards, therefore, permits
the interaction of objects distributed in the system, regard-
less of their coding languages, machine architecture or
operational systems.
 The concept of group processing has been introduced
in distributed programming models with the aim of pro-

viding support for cooperative work (groupware), making
possible an increasing availabili ty of shared resources, or
in replicated processing, due to fault tolerance. The use of
CORBA standards has evolved in recent years in terms of
incorporating group processing services. The Group
Server abstractions are object of specification for inclusion
in the OMA architecture [2]. The purpose of Group Server
is similar to the approach used in ANSA (Advanced Net-
works Systems Architecture) [1], presenting a concentra-
tor element in group communications, which is a handi-
cap in the performance and reliability of a system.
 Furthermore, various prototypes and even products of
CORBA platforms have been developed, offering support
to group processing. Specifically, we may mention the
ORBs (Object Request Brokers) RDO/C++ [11], Or-
bix+Isis [10] and Electra [14]. These platforms make use
of tools such as Isis [5] and Horus [18] that provide group
communication based on the reliable broadcast concept.
The tools cited above offer more reliable bases than the
solutions sought in the specifications of Group Server in
OMG.
 In this article, we have set out to present our work on
the integration of replication techniques into an open
system, according to the patterns of the CORBA proposal,
in order to make available mechanisms of fault tolerance
to the applications distributed on that platform. The im-
plementation of replication techniques is backed by the
use of ORBs presenting a support for group processing.
 With the aim of minimizing the replication reflexes
on the programming of applications, a programming
model was adopted, based on the computational reflection
[13]. This paradigm permits the complete separation of
the coordination mechanisms among the replicas from the
application in itself. This separation, besides simplifying

the programming of the replicated application, introduces
a great flexibil ity into the system by allowing the altera-
tion of the replication protocols, without interfering with
the application functionality, or even involving changes
on the level of execution support, which would be diffi-
cult, considering the nature of open systems.
 The programming model presented was used success-
fully in the integration of different replication techniques.
As an implementation support, use was made of Electra,
an ORB with support to process groups. In the present
article, we wil l present only the active competitive replica-
tion technique described in [17], to illustrate the advan-
tages offered by this model in the environment under
consideration.
 The article is structured as follows: in section 2 we
present the active competitive replication model; in sec-
tion 3 we introduce the concepts of computational reflec-
tion and set out to structure the model according to this
approach; in section 4 we describe the CORBA standard
and the ORB Electra with its extensions for group sup-
port; finally, in section 5, we present in detail the integra-
tion of the reflective model proposed with the CORBA
platform utilized and the results obtained in its implemen-
tation.

2. Software component replicated models

 Replication techniques are an alternative that enables
services to continue in distributed systems, even when
failed nodes are present. The unit of replication is a soft-
ware component (objects, processes, etc.), encapsulating
data identified as replica state. The replicas are distrib-
uted among different sites in the network. The coordina-
tion of the replication defines the way the different repli-
cas must interfere in the processing, in terms of maintain-
ing the consistency and transparency of the whole.
 The techniques vary according to the degree of syn-
chronism and the types of replicas involved. In the litera-
ture, passive, active and semi-active replication models
are identified [17]. In the passive replications, a privileged
replica executes the processing referring to the input data,
while the others have their states updated by the privi-
leged one, using checkpointing (state transfer mecha-
nisms). The coordinator-cohort model, presented in [4] is
an example of this type of replication.
 In active replication models, all the components
receive the input data, process them simultaneously and
produce the same outputs. In these models, identified as
State Machine, the consistency of the replica state neces-
sarily implies determinism of replica, which can be ob-
tained by consensus about the input data and its order
[19]. Some authors identify semi-active replications, in

which, although all the replicas work in competition, only
one produces the output. The order of the inputs is im-
posed by a privileged replica. The leader-followers tech-
nique described in [17] is an example of semi-active repli-
cation.
 In [12] exhaustive studies are carried out on replica-
tion techniques and their implementation aspects. In this
text we limit ourselves to the active competitive replica-
tion model described in [17].

2.1 Active competitive replication

 In the competitive replication model all the replicas
are active but only one responds to a given input data
request. The main characteristic of this model is the com-
petition among the replicas: only the fastest replies to the
request. The coordination of the technique is distributed:
each replica has an associated controller, responsible for
receiving, broadcasting and comparing messages, with the
corresponding replica dedicated to request processings. To
guarantee replica consistency, all the messages among
them are transmitted by means of atomic broadcasts. The
competitive replication model can be devised so as to
tolerate two sets of faults [17]: timing faults, involving
semantics of crash, omission and timing errors; arbitrary
faults, that take in the whole spectrum of failure seman-
tics. For clarity and economy of space, we shall l imit
ourselves, in this text, to the first set of faults.

client

group of
servers

fastest replica

broadcast of
the result

rep lica result

resu lt of the
replicated service

controller

associated
replica

figure 1: Competitive replication model for
 temporization faults.

 Figure 1 il lustrates competitive replication, in a sim-
plified manner, under the assumption of timing faults. In
this case, considering the client/server model using a
replicated server, a client request broadcast in the server
group is received by the controllers, which send it to the
corresponding replicas. On receiving the result of a proc-
essing of its associated replica, each controller verifies
whether it has already received the message with the re-
sult of the same processing from another controller of the
group. In the absence of these messages, the controller
concatenates an identifier to the result, and broadcasts the

resulting message to the controllers group. If the control-
ler receives its own message first, it finds out that its rep-
lica is the fastest and therefore is the one responsible for
sending the reply to the client; otherwise its message is
discarded. This algorithm guarantees that only one replica
answers to the client request, because all the messages
broadcast in the group are observed by each member in
the same relative order (a total order imposed by the use
of a atomic broadcast protocol).
 Finally, the broadcast of a message end_of_pro-
cessing, after sending the results to the client, by the con-
troller of the fastest replica, closes the processing cycle in
terms of the client request. This message makes it possible
to work out strategies to detect faults in the fastest replica
controller and its substitution by another controller for
sending results to the client.
 The protocol shown above covers up errors due to
timing faults. Concerning treatment of failed elements,
two detection procedures are foreseen in the original lit-
erature. [17]:

• A weak coupling is perceived between the controller

and its replica. In this case, time-out mechanisms are
maintained in the controller to detect the lack of an as-
sociated replica ;

• Competitive replication gives a privilege to the fastest
replica and, consequently, can lead to considerable
asynchronism in the set of replicas. This asynchronism
is dealt with, by periodically having a rendezvous, in
which all the controllers broadcast the results of their
replicas among themselves and the last to broadcast is
the one which sends the results to the client. This ren-
dezvous is l imited in time, so as to allow for the detec-
tion of failed controllers.

3. Reflective structure for the competitive
 model

 The computational reflection paradigm allows a
system to execute processing on itself, in order to modify
its behavior. In [13], the reflective paradigm is introduced
into the object oriented programming using the meta-
objects approach. Here, the functional and non-functional
aspects are separated through the use of base-objects and
meta-objects. A meta-object is associated with each base-
object. Through their methods, the base-objects express
the application functionalities, while the associated meta-
objects carry out control procedures that determine the
behavior of their corresponding base-objects. The calls to
the base-object methods are trapped, so as to activate the
meta-methods that make it possible to modify base-objects
behavior or add functionalities to their methods.

 In this study, computational reflection is used to
develop an integration model for replication techniques in
open systems. The reflective paradigm allows us to assign
to the base-object the functionalities of a replicated appli-
cation, while meta-objects execute replica coordination
protocols. This model allows the use of different replica-
tion techniques while the base-objects maintain their char-
acteristics; to this end, all that is needed is to change the
associated meta-objects.
 The structure proposed for incorporating active repli-
cation concepts into the reflective processing model is
presented in figures 2 and 3. Each replica was mapped
under the form of an base-object, with which a meta-
object, assuming the functionality of controller, is associ-
ated. The competitive replication that we use follows a
failure semantic of crash. Since we accept a strong cou-
pling between the controller and the associated replica,
the errors generated wil l be attributed to both; in the crash
failure, the controller and associated replica wil l cease
their execution.

request

reply

trap communication
among

controllers

request reply

client

meta-controller

replica_base

figure 2: Reflective structure for the active
 competitive replication model.

 A request multicast by the client into a group of rep-
licas is trapped to the respective controllers, that, in turn,
have to interact in order to implement the coordination
protocols of the replication scheme used. The actions of a
controller are succinctly described in the code of figure 3.
Each base-object method is associated with a meta-method
in the controller, responsible for its activation (method
base 1 and meta method 1, in the figure cited).
 The meta control method implements the coordina-
tion protocol among the replicas described in the preced-
ing section. The basic behavior of the algorithm consists
of iterating between the choice of a replica for the reply to
the client (first) and the closing procedure, until there
is a confirmation that the reply has actually been sent
(concluded condition of the while loop). It is simple
to verify the termination of the request processing: if, after
multicasting the method closing, the fastest replica
(first) is still alive (into the membership), then the
reply was actually sent. Otherwise, a new replica is chosen
and the process is repeated. This procedure eliminates the

need to multicast a message about the end of the process-
ing. In the algorithm, the activations of the methods
multicast_id and closing are transmitted to all the
replicas of the group, in a totally ordered manner.

class meta_controller {
 // declaration of variables

 method meta_method_1 (parameters) {
 method_base_1 (parameters);
 meta_control (parameters);
 };

 ... // declaration of further meta-methods

 // implementation of the meta-control method
 method meta_control (parameters) {
 first := null ;
 concluded := false ;
 my_id := get_system_id () ;
 while not concluded do
 if (first = null) then
 group.multicast_id (my_id);
 end ;
 if (first = my_id) then
 // first replica to reply
 return ; // return reply to the client
 else
 if not concluded then
 group.closing () ;
 end ;
 end ;
 end ;
 }

 method multicast_id (int id) {
 if (first = null) then
 first := id ; // id of the fastest replica
 end ;
 }

 method closing () {
 if (first ∈ membership) then
 concluded := true ;
 end ;
 first := null ;
 }

figure 3: Competitive replication meta-controller.

 Both the competitive replication model and the sup-
port util ized give a privilege to the fastest replica, what
may cause a lack of synchronism in the slower replicas.
The periodical execution of the global rendezvous tech-
nique, proposed in [17] is not used here, due to its cost
implications in the system performance. The solution
adopted is based on the property of virtual synchronism
[5], maintained by the lower layers of the support used in
this implementation. In this way, as long as the replica
belongs to the membership of the group, it will have the
same messages in the same order as the others. When the
input buffer in the communication support associated with
the slowest coordinator/replica pair, reaches the limit of
its capacity, the support withdraws the replica from the

membership. A replica can detect its exclusion and reinte-
grate itself to the group, through the view change
(view) method, defined in the interface BOA of Electra
and activated automatically by the support for each
change in the membership. The activation of this method
is not preemptive, occurring only after processing the
current method. The body of the method view change
is defined according to the application characteristics. In
this way, in our implementation we carried out a member-
ship test in the body of this method: if the replica has been
excluded (view.number=1), the BOA function join
(group) is activated, thereby effecting its reintegration into
the group.
 Regarding the crashes that may occasionally occur in
the evolution of the system, our implementation provides
procedures for recuperating the degree of replication. If
the number of active replicas in the group falls below a
preestablished l imit, the oldest replica takes the initiative
of producing new replicas, in this way, reestablishing the
ideal number of replicas. The code referring to these recu-
peration procedures is based on a membership test
(view.number < quorum minimum), and it is in-
serted into the view change method cited above.
 Our replica state recovery approach differs from that
proposed in [7], in which the recovery occur through
meta-methods making updates in public attributes of their
associated replicas, with the use of appropriated coordi-
nation protocols. In our approach, we uti lize more sup-
port-provided primitives and fewer coordination protocols,
what simplifies the state recoveries. The state recovery, in
our system, is based on the primitive join, offered by the
support, and activated through the view change
method.
 In object-oriented languages, each meta-object is an
instance of a class on the meta-level that defines its struc-
ture and behavior. In this article we limit ourselves to
talking only about meta-objects because we are interested
in emphasizing the aspects of execution time of the meta-
objects approach. In [8], these aspects added to other
referents to the use of the same approach in real-time
applications, are approached within the structure of a
language that is being developed.

4. The CORBA support utilized

 The implementation of the replication model pre-
sented in section 3 presupposes the existence of an run-
time support that offers facil ities for programming dis-
tributed objects. A platform conceived based on the con-
cepts of the CORBA (Common Object Request Broker
Architecture) standard is to provide the necessary support

for distributed object-oriented applications. In this section
we briefly describe the Electra system, a CORBA platform
util ized in our implementations.

4.1 CORBA architecture

 CORBA specifications form a set of standards and
concepts proposed for open systems by OMG (Object
Management Group) [15]. CORBA architecture is com-
posed of an ORB (Object Request Broker) kernel, that
implements communication abstractions among distrib-
uted objects and an interface management structure that
contains static and dynamic invocation interfaces, object
adapters, interface and implementation repositories (fig-
ure 4).

IDL
skeleton

Dynamic
invocation
skeleton

Object
adapter

Dynamic
invocation
interface

IDL
Stubs ORB

interface

Client
Object implementation

Interfaces
repository Implementation

repository

ORB

figure 4: The CORBA architecture.

 In a CORBA environment, each object has its inter-
face specified through an Interface Description Language
(IDL), a declarative language with syntax and predefined
types based on the language C++. The interactions follow
the client/server model. The CORBA client, in a service
request, uti lizes stubs generated in the compilation of the
IDL specification of the server object, or builds this re-
quest, using the dynamic invocation interface DII. To
allow for dynamic invocations, object interfaces must be
stored in the interface repository. The client’s request is
transmitted over the network, using the ORB, that trans-
fers the control to the object adapter to activate the opera-
tion in the implementation of the server object, by means
of the IDL skeletons.
 The original CORBA proposal does not provide for
adequate support mechanisms to groups of objects. To fill
in this gap, some extensions to the CORBA standard have
been proposed in terms of incorporating this concept.
Electra [14] is a product of these efforts.

4.2 Electra

 Electra [14] is an Object Request Broker (ORB),
compatible with the CORBA standard [15], presenting
support to object groups. This platform combines the

benefits of the CORBA standard with the power of lower
level tools for group processing, such as Horus [18], Isis
[5], and others. Interactions in Electra can occur as reli-
able multicast or point-to-point communications. Order-
ing mechanisms (total, causal and fifo) are offered to
guarantee consistency among members of the object
group. The client makes use of a given method invocation
model, regardless of whether the server is a single object
or a group. These invocations may be synchronous, asyn-
chronous (one-way) or semi-synchronous (deferred-
synchronously), through static or dynamic interfaces. On
multicasting a method call, through a CORBA static or
dynamic invocation interface, the programmer has at his
disposal two modes of group communication in Electra:

• Transparent: the group is seen as a simple and com-

pletely available object, and the client only receives the
final result furnished by the group;

• Non-transparent: permits access, in an invocation, to
the results of each individual member of the group of
objects.

 In the interface BOA (Basic Object Adapter) of Elec-
tra, services referring to group management are added,
such as creating a group of objects, including objects in
the group or excluding them from it, selecting a protocol
of multicast, membership and transfer of state, and so on.
These services are provided by the lower level tools used,
such as Horus or Isis.

5. The integration model of replication
 techniques in open systems

 In the previous section, we could see that the
CORBA/Electra platform offers adequate support for
group processing. In this section, we describe the integra-
tion of the reflective model proposed in section 3 over the
Electra system.

5.1 The integration model in CORBA platforms

 Figure 5 explicits the integration model of replication
techniques within the CORBA context. The access to the
support provided by a CORBA platform is available both
to the server and to the client by entities represented as
meta-objects (client and server) and identified generically
as meta-communication. These entities are actually noth-
ing more than the set of stubs for the client and server,
stubs for the communication among the replicas and the
BOA interfaces providing the group management. All
these stubs are generated by the translation of the IDL
[16] declaration of a server object. The use of the term

“abstract object” given to meta-communication on the
model follows some authors [9] and has the sense of a
simple separation for greater clarity. In reality, these in-
terfaces are generated in Electra as a set of methods that
will be composed of multiple inheritance in the client and
controller meta-objects (section 5.2).
 In the model the client introduces itself within a
client-base structure, that represents the application be-
havior, and a meta-client, that does not present an active
function in our implementation, but that could be used in
managing the replicated client, or to implement mecha-
nisms for handling exceptions in the client. The structure
of each server replica is similar to that of the client: a
replica-base object, carrying out the replicated service,
and a meta-controller, responsible for executing the coor-
dination protocol of the replication, l ike one described in
figure 3.

ORB

base-
client

meta-
client

meta-
communi-

cation

meta-
controller

base
replica

meta-
communi-

cation

m
e
t
a

b
a
s
e

 Client Server
(replicas)

�

�

��

�

�

stubs

manag
.

stubs

manag
..

figure 5: Structure of the model on a CORBA
 support.

 The numbered arrows in figure 5 indicate the normal
way of a client request: The request made by the client
base (1) is then broadcast using a stub appropriated in the
client meta-communication. In each replica, the meta-
communication, by means of a local stub, receives the
request and transfers it to the meta-controller (2), which
then activates the local replica (3). On receiving the reply
(4), the meta-server executes the coordination protocol, by
means of the meta-communication so as to interact with
other replicas. The processing and interactions on the
level of the meta-controllers are conditioned at this time
by the replication model utilized. Later, the reply is then
sent back to the client (5 and 6).
 This model can be used in other replication tech-
niques, the differences centering mainly in server repli-
cated meta-controllers. In some techniques the meta-
communication entities may gain functionality, besides
that of concentrating methods of access to CORBA sup-
porting services. For example, in the use of active replicas
with voter and adjuster mechanisms, the implementation
of voting or adjustment can be programmed on the cli-

ent’s side in a more simplified form. Transparency could
be achieved in this case, implementing these mechanisms
in the client meta-communication entity, which, with the
addition of this functionality, takes on the characteristics
of a real object.

5.2 Building replicated services following
 the integration model

 The first step in the building of a system on a
CORBA/Electra platform is a description in IDL of the
meta-controller interface, following the specification of
the replicated service provided by the server to the client.
Besides this interface, due to some limitations imposed by
the Electra, it is necessary to declare a second one, for
implementing the replica coordination, composed by
methods that provide communications among replicas.

// IDL

interface meta_controller_1
{
 // Description of the data types employed

 // Description of the server methods
 boolean meta_method_1 (parameters);
 ...
 boolean meta_method_n (parameters);
};

interface meta_controlller_2
{
 // Description of the meta_controller methods
 boolean broadcast_id (in int id);
 boolean closing ();
};

figure 6: IDL interface of the replicated server.

 Figure 6 presents both IDL declarations of a repli-
cated server in according to the specifications described in
figure 3. The interface meta controller_1 al lows clients
access to the services offered, while the interface meta
controller 2 declares the methods necessary for intra-
replica interactions. It should be pointed out that both
interfaces are actually two facets of the same server (or, in
our case, of the same group of objects).
 In compile-time, the Electra/IDL compiler automati-
cally generates the whole support for communication
(stubs) among the entities involved, including, as well, the
functionalities for group management of the BOA (in
Electra, every object is an instance of a sub-class of the
BOA class). The compiler also generates fi les containing
structures (declarations of variables and methods) for
including the client and server codes. The programmer,

then, is responsible for the implementation of the replicas
(base-objects) and the replica coordination suitable (meta-
objects), by fill ing the bodies of the methods declared in
the interfaces. With this implementation scheme, il lus-
trated in figure 7, the client and server base-objects are
kept devoid of all activities that are not related to the
application itself. All aspects related to the replica coordi-
nation and the interactions in the CORBA context, are
concentrated at the meta-level.
 Our implementation was carried on a UNIX plat-
form, where each associated pair base-object/meta-object
was intended to share the same process, making the inter-
actions between them local, without the need for ORB.
The needs for concurrence between base-objects and meta-
objects within a process are satisfied by the use of a
threads library offered by the Electra support. However,
the current version, (1.0) of this platform does not support
pre-emptive threads, which l imits the degree of concur-
rence in dealing with client requests. As a result of this
restriction, it becomes difficult to implement replication
techniques, which has forced us to seek alternative im-
plementation solutions. The solution adopted consists of
separating the functionalities of the meta-controller into
two UNIX processes.

IDL
compiler compiler

server
implementation

011
10110000
11011100
01101011
01111001

client
implementation

replica
coordination

compiler

code stubs

meta-controller_2

code stubs

client

code stubs

meta-controller_1

IDL interface
meta-controller_1

IDL interface
meta-controller_2

client
specification

server
specification

011
10110000
11011100
01101011
01111001

figure 7: Application building process.

 Due to the fact that the language used (C++) has no
specific constructions to support reflection. The reflection
is implemented artificially, through the direct activation
to the meta-method, in the client code. The use of a lan-
guage supporting reflection, as is the case with Open C++
[6], might eliminate this problem, but in this case, the
IDL compiler of the CORBA environment used should
support this language.

6. Considerations about the results

 Redundancies and fault tolerance implementations

can follow several approaches [7]. The implementation of
fault tolerance techniques by means of runtime support
offers on the application level some degree of transpar-
ency concerning the coordination aspects of the technique
used. The disadvantage is that once the fault assumptions
and the replication technique are chosen in configuration
time, we will have defined a specific execution support.
The approaches of library and languages for the imple-
mentation bring aspects of coordination to the program-
mer level, without, however, separating them from func-
tional application aspects.
 Computational reflection permits independence of
the replica codes in relation to the coordination protocols,
leading to a greater flexibility in the system: changing the
technique or altering it by meeting desired degrees of fault
tolerance, may simply result in switching the coordination
protocols on the meta level, involving no alteration in
application algorithms or in the run-time support what is
suitable in open systems. The use of the reflective comput-
ing for implementing fault tolerance techniques is pro-
posed in [3] [7], and the separation between the coordina-
tion and the replicas has already been recommended in
[17].
 The model presented was used for implementing the
active competitive replication protocol, described in sec-
tion 2. The implementation carried out makes intensive
use of the Electra support facil ities, which makes easier
the coordination needs of the technique implemented.
Furthermore, the uses of a CORBA platform has allowed
the implementation of our application on an heterogene-
ous system (local network of machines running SunOS
4.X and Solaris), facili tating aspects of interoperabil ity.
 The integration structure proposed has proved to be
quite flexible, other replication techniques can be easily
implemented. Up to now, we have implemented the pri-
mary/secondary , leader/followers and cyclic redundancy
techniques, using the same integration model. The neces-
sary changes for the substitution of replication techniques
in the integration model are limited to the IDL meta-
controller interface and their codes that implement the
coordination protocols.
 These replication models were applied in the imple-
mentation of a multimedia application (animation viewer
accepting the MPEG format). Simulations of crashes were
carried out, utilizing these implementations. In all these
replication techniques utilized, the continuity of service
was obtained in case of failures, since the premises of
each technique were respected. At present, we are work-
ing out detailed measurements on the performance of the
replication techniques cited using the Electra platform.
We are also porting our work to the Orbix+Isis platform
[10].

7. Conclusion

 An integration model for replication techniques in
open distributed systems was presented in this article. The
use of computational reflection concepts makes it possible
to obtain the necessary flexibility for developing and im-
plementing different replication models for fault tolerance
in these environments.
 Within this context, the work presented in this article
continues at present in various directions. The validation
of the model proposed through application in real situa-
tions and the incorporation of language constructions in
terms of facili tating the programming of the reflective
model are some of the current activities involving this
work.
 The programming model presented in this article is
part of a cooperative research project, sponsored by the
brazilian state agency CNPq (PROTEM-CC project), and
has as its aim to build an object-oriented environment that
supports distributed applications with requirements of
real-time and fault tolerance.

Acknowledgment

 We would thank S. Maffeis, author of the Electra
system [14], for his kind attention helping us to solve our
main difficulties in the beginning of this work.

References

[1] E. Oskiewicz, N. Edwards, “ A Model for Inter face

Groups” , ANSA Phase III technical report APM.1002.01,
Cambridge-UK, may 1994.

[2] R. M. Adler, “ Group-Or iented Coordination Extensions
to OMG´s OMA/CORBA” , OMG Presentation, San Jose
- CA, June 1995.

[3] G. Agha, S. Frolund, R. Panwar, D. Sturman, “ A Linguis-
tic Framework for Dynamic Composition of Depend-
ability Protocols” , Proceedings of the DCCA-3, 1993.

[4] K. Birman, T. Joseph, F. Schmuck, “ ISIS - A Distr ibuted
Programming Users Guide and Reference Manual” ,
The ISIS Project, Department of Computer Science, Cor-
nell University, Ithaca - NY, march 1988.

[5] K. P. Birman, " The Process Group Approach to Reli-
able Distr ibuted Computing" , Technical Report TR 91-
1216, Cornell University Computer Science Department,
Ithaca, N.Y., July 1991.

[6] S. Chiba, “ Open C++ Programmer ’s Guide” , Technical
Report 93-3, Department of Information Science, Univer-
sity of Tokio, 1993.

[7] J. Fabre, V. Nicomette, T. Pérennou, R. J. Stroud and Z.
Wu, “ Implementing Fault Tolerant Applications using
Reflective Obj ect-Or iented Programming” , Proceed-
ings of the 25th IEEE International Symposium on Fault-

Tolerant Computing, Pasadena (CA), June 1995.
[8] J. Fraga, J.-M. Farines, O. Furtado, F. Siqueira, “A pro-

gramming model for real-time applications in open dis-
tr ibuted systems” . Proc. of the 2nd IEEE Workshop on
Future Trends in Distributed Computing Systems, august
1995.

[9] O. Hagsand, H. Herzog, K.P. Birman, R. Cooper, “ Ob-
j ect-Or iented Reliable Distr ibuted Computing” , 2nd
IEEE International Workshop on Object-Orientation in
Operational Systems, 1992.

[10] Isis Distributed Systems Inc., IONA Technologies, Ltd.
" Orbix+Isis Programmer ’s Guide" , 1995. Document
D070-00.

[11] Isis Distributed Systems Inc., " RDO/C++ Tutor ial Re-
lease 1.0.3" , Apr. 1994.

[12] M. C. Little, “ Obj ect Replication in a Distr ibuted Sys-
tem” , PhD. Thesis, University of Newcastle upon Tyne
Computing Laboratory, September 1991.

[13] P. Maes, “ Concepts and Exper iments in Computational
Reflection” , OOPSLA 87 Proceedings, pp. 147-156, Oc-
tober 1987.

[14] S. Maffeis, " Adding Group Communication and Fault-
Tolerance to CORBA" , In Proceedings of the 1995
USENIX Conference on Object-Oriented Technologies,
Monterey - CA, June 1995.

[15] Object Management Group, " The Common Obj ect Re-
quest Broker : Architecture and Specification" , Revi-
sion 1.2, OMG Document, December 1993.

[16] Object Management Group, “ IDL C++ Language Map-
ping Specification” , OMG Document 94-9-14, 1994.

[17] D. Powell, “ Delta-4 Architecture Guide” , Esprit II
P2252, Delta-4 Phase 3, August 1991.

[18] Robbert V. Renesse and Kenneth P. Birman, " Protocol
Composition in Horus" Dept. of Computer Science of the
Cornell University, Mar 1995.

[19] F. B. Schneider, “ Implementing Fault-Tolerant Service
Using the State Machine Approach: A Tutor ial” , ACM
Computing Survey, 22(4):299-319, Dec 1990.

