
Designing Fault Tolerant Web Services Using BPEL

Jim Lau1, Lau Cheuk Lung2, Joni da S. Fraga1, Giuliana Santos 2, 3
1DAS/CTC – Universidade Federal de Santa Catarina (UFSC), Florianópolis – SC – Brasil

2PPGIA - Programa de Pós-Graduação em Informática Aplicada

PUC-PR - Pontifícia Universidade Católica do Paraná, Curitiba – Paraná
3Faculdade de Ciências da Universidade de Lisboa

Bloco C6, Piso 3, Campo Grande, 1749-016, Lisboa - Portugal

 (f r aga, j i m) @das. uf sc. br , l au@ppgi a. pucpr . br , gi ul i ana@l asi ge. di . f c. ul . pt

Abstract

The web services technology provides an
approach for developing distributed applications
by using simple and well defined interfaces. Due to
the flexibility of this architecture, it is possible to
compose business processes integrating services
from different domains. This paper presents an
approach, which uses the specification of services
orchestration, in order to create a fault tolerant
model combining active and passive replication
technique. This model supports fault of crash and
value. The characteristics and the results obtained
by implementing this model are described along
this paper.

Keywords: Web services, Fault Tolerance,
Orchestration.

1. Introduction

In the last years, new technologies and standards for
software developing has been presented, providing a
better integration between applications and services
available on the Internet. The web services are part of
this scenery and propose a model of distributed services
that uses simple accessed and well defined interfaces.
Some advantages of this model are:

� Low cost of development: by reusing software
components the systems development become
faster.

� Integration with legacy systems: it allows the
integration with established and operational
systems.

� Better interfaces with commercial partners:
through electronic interchange of low cost data.

A web service is a software component that accepts

requests from other systems through the Internet. The

specifications of the web service were created to
integrate applications, providing support to
synchronous and asynchronous transactions. The web
services model is not the first approach of systems’
integration, other technologies have the same objective.
However, what makes the web services so attractive is
the using of open standards, widely used and
consolidated protocols.

The XML specification (Extensible Markup
Language) is used to perform the data exchange. The
XML is superficial and extensible and it can easily
incorporate business resources as transactions. The web
services are built based on existing communication
standards that make them independent from transport
protocols, being able to be used by HTTP, FTP, SMTP
and other protocols.

In order to explore all potential of the web services
as an integration model, companies like Microsoft, IBM
and BEA have joined efforts to create a standard
specification to define and integrate business process.
This specification was called Business Process
Execution Language for Web Services (BPEL4WS) and
it defines a model and a grammar for describing the
behavior of a business process based on interactions
between the process and its partners. It extends the web
services model and enables the transactions support.
The specification defines an interoperable model that
makes easier the expansion of the integration of
automated processes inside the same corporation and/or
between companies (business-to-business). This
composition of services is also called orchestration and
it includes the business logic and the order of
executions, defined from controls flows that cross
organizations and applications.

Despite of all the flexibility provided by BPEL and
web services architecture, for developing distributed
solutions, it is also necessary the standardization of
support mechanisms for fault tolerant Web Services
that attends the requisites of reliability and availability,
fundamental on critical applications. The set of

standardized specifications by W3C [1] and OASIS [2]
do not contemplate these requirements and has been
motivate some groups of research in the sense of
proposing extensions to add mechanisms for fault
tolerance in these solutions.

In [3],[4],[5], are proposed fault tolerant models
based on the passive replication technique and it
implements simplified mechanisms that detect the fault
and guide future requests to redundant server. In our
previous work [6] we proposed the use of active
replication technique with components that converted
SOAP requests into CORBA object invocations. In [7]
is presented a study using orchestration to implement
fault tolerance for web services however in this solution
the server that executes the business process logic is a
single point of failure. This work represents an initial
effort to implement transparently fault tolerance in web
services orchestration. Our proposal is an architecture
named FTWS-Orch to provide fault tolerance in
services-orientated architectures by using a middleware
based on services orchestration combining active and
passive replication technique.

The paper is organized as follows: a revision of the
Web Services platform in the section 2.In the section 3
is introduced the WS-BPEL specification. In the section
4 it is described the FTWS-Orch model. In the section 5
the implementation of the model. In the section 6 the
tests and the results are presented. Section 7 the related
works are shown and finally in the section 8 the
conclusions of the work.

2. Web Services

In the last years, the model of the service oriented
architecture became well known as a software
architecture that organizes the components of a system
in a distributed environment where there are services
that can be accessed dynamically through the network.

A Web Service can be defined, in a simple way, as
an available and accessible set of operations in global
scale through electronic addresses like URL. Another
definition to define web services as an interface that
describes a collection of operations that are accessible
on the network through a mechanism of XML
messages.

The Figure 1 presents an usual model of Web
Services identifying three types of roles and operations
that are performed. The roles presented in the diagram
are: service provider, service consumer and register
service.

1- Service Provider – responsible for the describing
and publishing an specific Web Service in the service

register. The provider is also responsible for describing
the connection information of the service used for its
call. These information are represented in a XML
document written in WSDL standard language [8].

2 – Service Consumer – responsible for discovering
services, obtaining their description and linking these
services to a service provider, in order to invoke the
web service, through an URL;

3- Services Register - maintains a directory with
information about the services, for instance, name,
provider and category. The standard adopted in SOA
for registering services is the UDDI [9].

The message exchange between services providers
and consumers is done through the SOAP protocol [10].
It is a XML based protocol and it describes the service,
and provides all the details needed in order to interact
with the service, including the format of the message,
the transport protocol and its location

The interaction between the three elements involves:
the publication of the information about specific
service, the discovery of the available services and the
connection between them. The web services architecture
presents some advantages some of them could be
mentioned: support for different types of clients; the
constant need of maintenance; the easy reuse; the
scalability which guarantees the needed architecture
interoperability, moreover the capacity of sharing and
re-using services and resources.

Figure 1. Web Services Conceptual
Model.

3. Business Process

The definition of business process involves
specifying the behavior of each present participant
without revealing its internal execution.

Figure 2. Process Flow and Execution Flow

The separation between public and private aspects
allows the independence of modifying the
implementation without affecting the business protocol.
The basic requirements for describing business
protocols are:

� Business protocols invariably depend on
behavior data.

� Capability of specifying conditions of
exception and their consequences, including
recuperation of sequences.

� Capability of working with long business
interactions, including multiple occurrences.
Each interaction must be seen a work unity
with its own requirements. It must have the
capability of coordinating various work unities
and the concurrent activities in several levels
of granularity.

 The BPEL4WS defines the grammar to describe

the business processes behavior based on the
interaction between the processes and his partners. The
interaction with each partner takes place through web
services interfaces. The process defines how multiple
interactions with its partners will be coordinated to
perform a specific business process. The BPEL4WS
also defines mechanisms to handle exceptions and
faults. It also introduces mechanisms to define how an
individual activity, or a set of them, can be
compensated when exceptions or reverse requests
happen from its partner. This services composition is
also called orchestration.

The orchestration describes an interaction between
services, in the message exchange level, including the
business logic and its order of execution. An
orchestration is a business process executable,
controlled by one of the process members.

Figure 2 presents the execution flow of a BPEL
engine. In the left side is shown the business process
flow. In the right side is shown the execution flow,
controlled by the engine that acts as a "maestro". While
receiving a request, the engine starts to compose the
orchestration according to the process flow, ordering
the execution of each component in sequential or
parallel form. The execution flow is the way the engine
performs each interaction in its process logic.

The execution flow begins when the client sends a
requisition to the engine (1a). In this moment, the first
node, or service, to receive this request from the client
is the web service A. The engine makes invocation to
this service (2a) and it waits for the answer (2b). The
next step is the invocation to a web service B (3a), after
that it waits for the answer of the service (3b). Next, the
engine simultaneously makes a parallel invocation to
web services C and D (4a), and the answers of these
invocations return to the engine (4b). After executing
the process flow an answer, as a result of the execution,
is sent to the client (1b).

All invocations in the web services are done from a
WSDL document of each service. With that the engine
can invoke or receive requests to/from these services.
The BPEL offers a standard language that defines:

Figure 3. FTWS-Orch Model.

� Sending XML message to a remote service.
� A structure to manipulate the data XML.
� Receiving asynchronous XML messages to

remote services.
� Events and the exceptions handling.
� Execution of parallel events.

These are the main items to compose a set of
services inside a collaborative and transactional
business process. BPEL is based on XML Schema,
SOAP and WSDL.

4. The FTWS-Orch Model

The main idea for the FTWS-Orch model is use of
the business process specifications in order to define an
architecture for development of fault tolerant
applications using a combination of active and passive
replication.

The replicas of a given service are grouped through
the definition of a business process. All replicas
implement the same service and receive, execute and
reply the requests send by the clients. This model
allows the use of synchronous, asynchronous web
services and services implemented on heterogeneous
platforms or languages (n-version approach).

Through the model specified in this work it is
possible to compose business processes using fault
tolerant services. The components of this solution can
be divided in three principal modules according to their
functionalities: Composition and invocation of services,
Failure detection, and Fault tolerance transparently to
the application’s client.

4.1 Composition and Invocation of Services

In order to create the groups, necessary for the

replication approaches, a tool of business process
management is used and the administrator defines the
flow of execution informing the WSDL documents that
will make part of the service composition. These
documents refer the replicas of a given service. The
flow defines that these replicas will be executed
concurrently according to active replication technique.

In the client view, this composition works in the
same way that a single service, however, these services
are replicated, independents and could be located in
different domains.

In the Figure 3, after the business process
definition, the administrator publishes it in a UDDI
register as a traditional web service.

The client looks in the services register and obtains
the WSDL document of the business process and it
carries out the service invocation (step 1 of the figure
3).

The engine is responsible for the interaction
between the client and the replicated web services (step
2 and 3 of the figure 3). The primary engine obtains
from the client the reference of the web services
composition, the necessary parameters for his
execution, manages the execution in all replicas and
returns a response to the client. In this model a
response is returned to the client when there is at least
a fault free replica.

Figure 4. Business Process Composition Interface

4.2 Failure Detection for Replicated Web Service

Due to the monitoring process interfere in the

solution performance, here, we do not use monitor
components to detect faulty replicas. On the other side,
when a replica fails FTWS-Orch transfer the client
requests dynamically to a standby replica such as the
passive replication technique.

This proposal only work with stateless web services
therefore, we do not implement recovery mechanisms
of replicas state or mechanism to guarantee the service
determinism. In a future work these mechanism will be
added follow the same approach used in [6].

The flexibility presented in the business process
specification allows defining to each replica a specific
standby replica (SS in the figure 3) or define for all
replicas exactly the same standby. According to the
Figure 3 inside of each Engine (Primary and Backup)
has a service composition with a defined standby
replica.

4.3 Fault Tolerance Transparently to the
Application’s Client

The facilities of business process are used also in

the client side to avoid that the Primary Engine be a
critical point of failure. The Primary Engine invocation
could be achieved as a business process and an
exception in the primary engine is dynamically
transferred to Engine Backup using the passive

replication technique. All this operation of redirecting
is carried out by the engine monitor.

Figure 3 presents the normal flow and the flow in
event of failures on Engine Primary. Through a log
mechanism contained in the service replicas it is
possible to check whether the request was already
processed and then the replicas simply return the
response to the Engine Backup and the request is not
re-executed.

4.3 Tolerating Values Faults

In order to tolerate values fault is possible add in the

composition a web service that acts as a voter and
choose the response with the highest number of
occurrences. When this component is used it is
necessary at least 2f + 1 replica to decide and to return
the response to the client, where f is the number of
faulty replicas, otherwise an error message is returned.

5. Implementation

In order to validate our proposal we implemented a
prototype using the BEA Weblogic Workshop 8.11 tools.
A business process was defined varying the number of
services. These services were installed in different

1
http://www.bea.com/framework.jsp?CNT=index.htmFP
=/content/products/Weblogic/workshop

computers in a local network. They implemented access
to the server file system where the web service is
hosted.

The Figure 4 presents the interface of business
process composition tool. Services group is represented
by Web Service A, Web Service B, Web Service C that
are executed concurrently. Differently of other
approaches in our work is not necessary to change web
services already implemented to include methods for
monitoring services. Exceptions on these services are
detected and the request is transferred to
Standby_Service according to specified in on exception
flow.

Through this approach is possible to implement
fault tolerant business process using a composition as a
part of another composition. The model proposed here
allow the administrator to change service groups easily.
The administrator performs changes in service groups
obtaining the WSDL documents of each service and
changing the business process to work with new
services.

After the complete business process definition is
obtained the document XML that will be used by the
engine BPEL for the flow execution Figure 5 presents
the main parts of the BPEL archive defined in the
FTWS-Orch model. Replicas are executed concurrently
using the element flow. The detection of faults in the
primary replicas and the redirecting for standby
replicas is carried out through the element fault
handlers.

<flow name=" Par al l el - Tr ansact i on"

jpd:name=" Par al l el Tr ansact i on" >

 <sequence name=" Br anch" >

 <faultHandlers jpd:name=" OnExcept i on" >

 <catchAll>

 <scope name=" St andby_Ser v i ce" >

 …
 <invoke

 name=" St andby_Ser v i ce"
 partnerLink=" St andby_Ser v i ce"

 portType=" ct r l : FTWS_Or ch. St andby_Ser v i c

 ePT"

 operation=" nome"

 inputVariable=" i nput "

 outputVariable=" out put " / >

 <assign></ assign>…

 </ catchAll>

 </ faultHandlers>

 <scope name=" Web_Ser v i ce_1" >

 …
 </ scope></ sequence>

 <sequence name=" Br anch" >

 <faultHandlers jpd:name=" OnExcept i on" >

 <catchAll>

 <scope name=" St andby_Ser v i ce" >

 …
 <invoke name=" St andby_Ser v i ce"
 partnerLink=" St andby_Ser v i ce"

 portType=" ct r l : FTWS_Or ch. St andby_Ser v i c

 ePT"

 operation=" nome"

 inputVariable=" i nput "

 outputVariable=" out put " / >

 <assign></ assign>…

 </ catchAll>

 </ faultHandlers>

 <scope name=" Web_Ser v i ce_2" >

 …
 </ scope>

 </ sequence>

</ flow>

Figure 5. FTWS-Orch BPEL.

6. Performance Evaluation

In order to check the performance of the proposed
architecture tests were executed in a 100Mbps local
network composed of Intel Pentium 4 2.0GHz with 1Gb
RAM and Windows XP operational system. The
prototype was created in the BEA Weblogic Workshop
tool. The engine FTWS-Orch was installed in two
server, one being backup server. The replicas were
distributed in up to four computers all containing Web
Apache Tomcat version 5.5.12 integrated with the
server Web Service (Axis).

In order to check the response time added by the
FTWS-Orch considering message sizes, tests were
carried out with variation in the messages size from 1
to 32 Kbytes. The limitation in the messages size is
due to platform used that does not allow that messages
bigger than 32 Kbytes be used in the business process
composition.

It is possible to observe in Figure 6 that for message
with up to 4 Kbytes the variation of the number of
replicas comprising the group, does not affect
significantly the service response time. Tests presented
approximately 23% time added in relation to a service
carried out without FTWS-Orch

However, the response time added using the voting
scheme can reach to 90 %, considering message with
32 Kbytes and 4 replicas composing the service group.
The response time using the voting mechanism is
determined by the response time of the lowest replica.

In order to evaluate the response time considering
the number of simultaneous users, tests were executed
with up to 4 replicas and variation between 2 to 20
users. The message size used to carry out this test was 1
Kbyte. In the Figure 7 it is possible to observe the
response time can reach to 14 seconds with 20
simultaneous users.

Response Time Considering Message Size

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

1K 2K 4K 8K 16K 32K

Message (Kbytes)

R
es

p
o

n
se

 T
im

e
(s

)

1 service (without FTWS-Orch)

1 service (with FTWS-Orch)

2 services (with FTWS-Orch)

3 services (with FTWS-Orch)

4 services (with FTWS-Orch)

Figure 6. Response Time
Considering Message Size

Tests were carried out in order to check the

difference in the total response time of a given service
when a replica presents a fault and the request is
redirected to a standby replica. The average time
observed was 1.2 seconds considering a service group
with 4 replicas and 1 faulty replica. The response time
added for redirecting was 40 % in relation to the time
observed with all operational replicas.

Response Time the Number of Simultaneous Users

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

2 5 10 15 20

Number of Simultaneous Users

R
es

p
o

n
se

 T
im

e
(s

)

1 service (with FTWS-Orch)

2 services (with FTWS-Orch)

3 services (with FTWS-Orch)

4 services (with FTWS-Orch)

Figure 7. Response Time Considering
Simultaneous Users

The response times presented above are bigger than
the expected one mainly when compared with our
previous work [6]. However in our future work we
intend to optimize the BPEL engine in order to reach
better results.

7. Related Work

The fault tolerance in service oriented architecture
is the key to their widespread uptake in mission-critical
applications. There are standards to deal with
dependability at the message-passing level and
clustering mechanism to implement fault tolerance at
the application server. However little emphasis has
been placed upon fault tolerance of the web services
implementation.

The model approached in [5] proposes extensions to
the SOAP standard allowing deployment of the passive
replication technique to achieve fault tolerance. This
model carries out alterations on the WSDL document
inserting information related to the primary replica and
the backup replicas. Using interceptors in the SOAP
layer at the client allows redirecting of the requests to
replicas in case of fault in the primary. On the server,
interceptors add on components for log records,
detection of faults and replica management. FTWS-
Orch does not perform changes to WSDL documents
and works with elements defined in BPEL. Services
groups are created following the services composition
approach.

The model proposed in [3] carries out changes on
the kernel of the operating system and the web server
providing a fault tolerance mechanism that is
transparent to the client. In this model, every request
received by the server is registered and sent to a backup
server. Changes carried out in the kernel of the
operating system provide implementation of a multicast
mechanism allowing requests to be sent to a backup
server and the primary server. Alterations carried out
on the web server allow manipulation and generation of
responses to clients. In comparison with this model,
FTWS-Orch is more portable, since it acts as merely
another software layer not requiring changes in the
operational system or the web server.

The work approached in [4] [11] [12] proposes fault
tolerant models for services implemented and executed
under grid service specifications [13]. In [4] the main
objective of the architecture proposed is detection and
recovery in fault situations, this model does not deal
with fault tolerance through replication of objects, but
rather by means of checkpoint and rollback
mechanisms. In [11] the passive replication technique
is used through notification mechanisms provided by
the grid infrastructure. In [4] proposes the
implementation of a mechanism that carries out a set of
equivalent web services, but implemented under
different platforms (n-version). After the execution of a
voting scheme, the model acts on the responses
returning the most coincident one. Despite the theme
service grids not being part of the FTWS-Orch scope, a
few similarities can be found between the models. The
diversity of programs can be used allowing web

services implemented under different architectures to
comprise the same service group.

The work presented in [7] explores the WS-BPEL
in order to achieve fault tolerance in service oriented
architectures. In our opinion the main weakness of this
approach is not show how faults in the application
server, where the business process is executed, can be
tolerated therefore in this solution BPEL engine is
single point of failure. This work mentioned stateful
web services but does not present how reach the
determinism necessary in the active replication
technique.

In our work the flexibility of BPEL standard is
extended to implement a business process in the client
side allowing in case of faults on the primary FTWS-
Orch requests can be referred to a Engine backup. In
our previous work the infrastructure FTWEB [6]
executes replicas concurrently using threads model and
has mechanisms to detect faulty replicas. FTWS-Orch
manages the execution of replicas using the BPEL
engine and combines the use of active and passive
replication in order to detect and substitute faulty
replicas.

The WS-FTM (Web Service-Fault Tolerance
Mechanism) [14] is based on [4] and applies N-version
technique to the domain of Web Services to achieve
increases in system dependability. Differently of our
approach all components in this infrastructure are
located in the client side.

8. Conclusion

This paper explores the flexibility provided by business
process specification and combines the use of active
and passive replication technique in order to achieve
fault tolerance in service oriented architectures. This
approach works with elements of business process
specification and provides tolerance for crash and value
faults. Our work does not implement monitor system in
contrast when a faulty replica is detected requests
automatically are referred to standby replicas. Through
this approach administrators can choose what services
are more critical and define only replicas for these
services or choose one standby replica for the entire
group, these strategies allow reduce the system cost. In
other solutions the application server, where are located
the web services, represent a single point of failure. We
solved this problem extend our model to the client side
doing the FTWS-Orch invocation as a service
composition.

Tests carried out on the prototype, without voting
mechanism, show that performance costs are acceptable
considering the gains in availability and reliability

afforded by the model. However this work is at an early
stage and in the future we intend provide a complete
model including statefull web services.

References

[1] W3C, "World Wide Web Consortiom,"

www.w3c.org, 2005.
[2] OASIS, "Organization fot the Advancement of

Structured Information Standards,"
www.oasis.open.org, 2005.

[3] N. Aghdaie and Y. Tamir, "Implementation and
Evaluation of Transparent Fault-Tolerant Web
Service with Kernel-Level Support," presented at
Proc. IEEE Intl. Conf. on Computer
Communications and Networks, 2002.

[4] V. Dialani, S. Miles, L. Moreau, D. D. Roure, and
M. Luck, "Transparent Fault Tolerance for Web
Services based Architrectures " presented at Eighth
International Europar Conference (EURO-PAR'02),
2002.

[5] D. Liang, C.-L. Fang, C. Chen, and F. Lin, "Fault
tolerant web service," Jornal of Systems
Architecture, 2006.

[6] G. T. Santos, L. C. Lung, and C. Montez, "FTWeb:
A Fault Tolerant Infrastructure for Web Services,"
presented at Ninth IEEE International EDOC
Enterprise Computing Conference (EDOC’05),
2005.

[7] G. Dobson, "Using WS-BPEL to Implement
Software Fault Tolerance for Web Services,"
presented at Proceedings of the 32nd
EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO-
SEAA'06), 2006.

[8] WSDL: http://www.w3.org/TR/wsdl 2001.
[9] UDDI, "Universal Description, Discovery and

Integration,"
http://www.uddi.org/specification.html, 2001.

[10] SOAP, "Simple Object Access Protocol," in W3C
World Wide Web Consortium.:
www.w3c.org/TR/soap, 2003.

[11] X. Zhang, D. Zagorodnov, and M. Hiltunen, "Fault-
Tolerant Grid Services Using Primary-Backup:
Feasibility and Performance," presented at Cluster,
San Diego, California, 2004.

[12] P. Townend and J. Xu, "Fault Tolerance within a
Grid Environment," presented at Engineering and
Physical Sciences Research Council (EPSRC´05),
2005.

[13] OGSA, "Open Grid Services Architecture,"
www.globus.org/ogsa, 2003.

[14] N. Looker and M. Munro, "WS-FTM: A Fault
Tolerance Mechanism for Web Services," Technical
Reports, 2005.

