

Abstract
The web services architecture came as answers to the
search for interoperability among applications. In recent
years there has been a growing interest in deploying on
the Internet applications with high availability and
reliability requirements. However, the technologies
associated with this architecture still do not deliver
adequate support to this requirement. The model
proposed in this article is located in this context and
provides a new layer of software that acts as a proxy
between client requests and service delivery by
providers. The main objective is to ensure client
transparent fault tolerance by means of the active
replication technique. This model supports the following
faults: value, omission and stops. This paper describes
the features and outcomes obtained through the
implementation of this model.

Keywords: Web services, Fault tolerance, FT-CORBA

1. Introduction

As the Internet became popular, several application
development technologies came up offering dynamic and
interactive services, giving rise to e-services, such as:
electronic commerce (e-commerce), electronic
government (e-gov), among others. However, each
technology has its own specific operational environment,
which makes it difficult to integrate the different
applications.

In order to facilitate this integration, with the intent
of defining open standards, groups of specialist
companies pooled together creating consortiums and
defining SOAP (Simple Object Access Protocol) [SOAP,
2003], WSDL (Web Services Description Language)
[WSDL, 2001] and UDDI (Universal Description,

Discovery and Integration) [UDDI, 2002]. These sets of
protocols and standards, along with other related ones
being defined by these consortiums and the Academia,
have characterized a new paradigm in application
development: the web services.

The key word in web services is interoperability,
software components that can be accessed by way of
consolidated and widely used protocols like HTTP
(Hypertext Transfer Protocol) and XML (Extensible
Markup Language)[XML, 2000]. The main advantage
lies in allowing the integration of components that have
already been developed this flexibility would make it
possible to explore the best features of each technology
involved in the process of developing a distributed
application.

Due to an open architecture, web services have
shown themselves to be an excellent option in
programming distributed systems, allowing solutions to
be developed that suited the heterogeneous and complex
nature of these environments. However, in order to fully
explore the potential offered by web services it becomes
necessary to define a development infrastructure
addressing the requirements of reliability and high-level
availability. This infrastructure must be flexible enough
to be able to preserve all the characteristics of web
services.

There still has been little work done in addressing
fault tolerance requirements for web services. The main
problem faced in proposing a fault tolerant infrastructure
in this area is on the fact that web servers do not
maintain an active connection throughout all the client’s
requests and, as a consequence, becoming stateless. For
this reason, critical applications built on Internet
protocols deploy simplified techniques. For example,
they use basic mechanisms that detect the fault and direct
future requests to redundant servers. These mechanisms
are not capable of tolerating faults while processing a
request.

FTWeb: A Fault Tolerant Infrastructure for Web Services

Giuliana Teixeira Santos1, Lau Cheuk Lung1, Carlos Montez2

1Graduate Program in Applied Computer Science- PPGIA
Pontifical Catholic University of Paraná – PUCPR - Curitiba - Brazil

2DAS/UFSC – Department of System Automation – Federal University of Santa Catarina – UFSC
Campus Universitário, Caixa Postal 476 – CEP 88040-900 – Florianópolis – SC – Brazil

 gtsantos@hsbc.com.br, lau@ppgia.pucpr.br, montez@das.ufsc.br

lau
Artigo publicado The 9th IEEE International EDOC Conference (EDOC 2005). 19-23 September 2005, Enschede, The Netherlands

Currently there are no standard specifications
dealing with fault tolerance in web services. The
propositions found in literature [Aghdaie, Tamir, 2002],
[Dialani et. al., 2002], [Deron et. al., 2003] deliver fault
tolerance on web services based on the passive
replication approach [Budhiraja et. al., 1993] and
implement basic fault on primary detection mechanisms
and activation of a secondary.

In this paper, we are proposing the FTWeb
infrastructure for tolerance of faults on web services.
This infrastructure features a set of components and
services, some based on OMG’s FT-CORBA standard’s
models and concepts [OMG, 2002], for the development
of fault tolerant distributed applications. The FTWeb
infrastructure has components responsible for calling
concurrently the service replicas, wait for processing,
analyze the responses processed, and return them to the
client. FT-Web supports the use of the active replication
technique in order to obtain fault tolerance in service-
oriented architectures. The objective of this approach is
to provide tolerance in the following kind of faults: stop,
omission and value.

This paper is organized as follows: section 2
presents the conceptual model and the standards
comprising web services. Section 3 presents an overview
of OMG’s FT-CORBA specifications, and section 4
presents features the FTWeb infrastructure. Section 5
brings aspects related to the implementation. The
model’s performance assessment is shown in section 6.
Section 7 discusses the related papers and, lastly, section
8 is the conclusion of the paper.

2. Web Services

Web services [WS-ARCH, 2004] are identified by a URI
(Unique Resource Identifier), and are described and
defined using XML. Figure 1 presents the conceptual
model for web services.

The service provider is the entity responsible for
the publishing a web service on a service register. Any
client using a web service created by a provider is called
a service consumer. Usually, consumers survey the
register where the provider has published a description of
the service. Based on this description, consumers can
obtain from the server the binding mechanism, and is
then enabled to perform the desired web service. A
service register is a central location where providers can

publish their web services. Through the central register,
consumers can find the services and then, bind them.

Figure 1. Web Services Conceptual Model.

In order to achieve communication between
applications without taking into account the details of
their implementation, each operation performed by
entities must be standardized. The following standards
were created with a view to achieving interoperability:
Web Service Description Language – a standard that
uses XML to describe web services. Basically, the WSDL
document defines the methods found in the service, input
and output parameters for each one of the methods, data
types, transport protocol and the URL for the web service
host site. The Universal Description, Discover, and
Integration standard that allows service providers to
publish details about web services they provide on a
central register. It also provides a standard to allow
consumers to locate providers and obtain details on their
web services. The Simple Object Access Protocol is an
XML-based protocol, used in exchanging information
among applications, independent of the operational
system, programming language or object model.

3. The FT-CORBA specification

Fault tolerance support for applications developed under
the CORBA distributed object model is specified
according to the Fault Tolerant CORBA (FT-CORBA
[OMG, 2002]) standard. This specification defines a set
of service interfaces for the implementation of replication
techniques in distributed and heterogeneous
environments. The fault tolerance architecture in
CORBA is shown in Figure 2. The service objects that
provide the basic functionalities for building fault
tolerant distributed applications are [Fraga et. al., 2001]:
Replication Management Service, Fault Management
Service and Logging and Recovery Service.

Figure 2. Fault Tolerant CORBA Architecture (FT-CORBA).

The RMS (Replication Management Service)

interacts directly with the Object Group Management
Service, acting dynamically in the input and output of
replicated objects. In the process of creation and removal
of replicas, the object Generic Factory is used interacting
with the Local Factory objects responsible for the
creation and removal of replicas at the stations
comprising the distributed system. The Property
Management Service is responsible for defining the fault
tolerance properties for each object group. This service
defines for the RMS the way in which each group is
managed.

The Fault Management Service performs the
interfaces of the fault monitoring and notification
services. Fault detection is carried out in three levels:
server, object and process. These detectors are based on
timeout mechanisms. The Fault Notification Service
performs the function of informing RMS of the faults
recorded by the detectors. Through this notification,
RMS keeps a consistent list of group members.

The main objective of the Recovery and Logging
Service is registering requests received by the server,
keep the state of the replicas consistent and carry out
recovery procedures on faulty replicas.

4. Description of the FTWeb Infrastructure

The fundamental idea for the FTWeb model is
deploying the active replication technique to achieve

fault tolerance in service oriented architecture. The
replicas for a given service are organized in a group and
all fault free replicas receive, execute and reply to the
requests submitted by the client. In order to implement
the total ordering, necessary for active replication, the
sequencer approach was used [Defago, Shiper, 2000].
Applying this model to web services, already
implemented and operational, is quite simplified,
because it requires only the insertion of replica state
monitoring and recovery methods.

This approach allows replication of objects
distributed on geographically dispersed servers (in
different domains) and delegates their management to
the FTWeb infrastructure. This model absorbs the
functionalities provided by FT-CORBA and supplies
components that invoke CORBA objects in the form of
web services. Figure 3 presents the components of this
model.

A. WSClient Driver
The WSClient Driver component is responsible for

detecting faults in the WSDispatcher Engine component
and transfer request processing to the WSDispatcher
Engine Backup located on an independent server. This
component was defined as an interceptor on the SOAP
layer and is located on the client. The objective for this
approach is to provide fault tolerance transparently to the
application’s clients, thus preventing the WSDispatcher
Engine from becoming a critical fault point.

Figure 3. FTWeb infrastructure.

In case the WSDispatcher Engine should fail after
processing the request, that is, when delivering the
answer to the client, the WSClient Driver component
will transfer the request to the WSDispatcher Engine
Backup that will invoke the replicated services.

Through the log mechanisms contained in the
replicas it is possible to check whether the request has
already been processed and then, the replicas simply
return the answer to the WSDispatcher Engine Backup.
Other mechanisms, such as the Finite State Machine
[Fred Schneider 1990], can be used to avoid re-
processing of requests in case of faults in the
intermediate components. Figure 3 shows both, the
normal flow and the flow in event of faults on
WSDispatcher Engine.

B. WSDispatcher Engine
The WSDispatcher is the central component of the

FTWeb infrastructure having the mechanisms
responsible for replica management, invoking
concurrently the service replicas, analyzing the answers
processed, detecting and initiating the state recovery
process for faulty replicas. The WSDispatcher is
comprised of the following set of components:

Generic Web Service

The Generic Web Service component (Figure 3) is
a generic service responsible for obtaining from the

client the reference for the web service and the
parameters required for its execution. After the
execution, this component is in charge of returning the
response obtained to the client. Its use makes clients
perceive a set of replicated, independent and
geographically dispersed services, as a single service.

In order to create the groups, necessary for the
replication approaches, the service domain concept was
used [Tan et. al., 2004]. A service domain allows
aggregation and sharing of multiple web services
description (WSDL). The binding information refers to
the group, allowing several services to be virtualized as a
single service. Rules can be applied to the domain to
control the behavior of aggregate services. Figure 4
shows the difference between the service domain model
and the conventional web services model (Figure 1).

Figure 4. Service Domain.

WSDispatcher Engine contains a Configuration
System where the service administrator creates the group
and indicates by way of the WSDL documents the
replicas that will be part of the group. In this system, the
replication and fault management properties are also
defined.

WSInvoker

This component is shown on Figure 5. Its operation
and integration with the other components can be
described by a 5-step sequence:

1. The client invokes the Generic Web Service

informing the service group reference, the
method to be executed and the parameters
required to invoke it.

2. The Generic Web Service component invokes
the WSInvoker and passes on the information
obtained from the client.

3. WSInvoker interacts with the Replication
Manager and Replication Properties
components to obtain the location of the
replicas and the fault tolerance properties
defined for the group.

4. WSInvoker invokes the service replicas from
the different domains and manages their
execution.

5. After obtaining the responses from all the
replicas, WSInvoker invokes the Response
Analyzer component that carries out the vote
among the responses obtained. WSInvoker then
returns to the Generic Web Service the
response indicated by the Response Analyzer.

WSInvoker acts as a sequencer and ensures determinism
among the replicas by way of atomic ordering. This
implies in synchronism in service execution, more than
one client cannot execute the same service at the same
time. Through the determinism achieved by the
WSDispatcher Engine model it is possible to use it in
statefull web services, that is, services that maintain their
state information during client requests. Furthermore the
WSInvoker provides guaranteed end-to-end delivery of
messages based on WS-Reliable Messaging Specification
[WS-RM, 2004].

If a replica presents a fault at the moment of its
execution or does not respond within the time limit
established in the service configuration, the WSInvoker
component activates the notification mechanisms so that
the ReplicationManager can remove the faulty replica
from the service group. In this case, the faulty replica
stays out of the group until its state has been
reestablished through the recovery mechanisms.

Response Analyzer

The Response Analyzer component is optional
(Figure 5) and acts as a voter. After all the replicas have
been executed, the WSInvoker component delegates to
the Response Analyzer component the analysis of all
responses obtained. The response with the highest
number of occurrences is assumed. This component can
be used in value fault tolerance.

Replication Manager

The Replication Manager component extends the
FT-CORBA’s replica management functionalities to the
web services. This component controls dynamically the
adding on of new replicas and the removal of faulty
replicas according to the rules defined in the Replication
Properties.

Figure 5. WSInvoker operation.

Replication Properties

This component maps out fault tolerance properties
defined in FT-CORBA for the FTWeb infrastructure. As
mentioned previously, WSDispatcher Engine features a
configuration system (shown in Figure 5 as
Configuration System) that allows the service
administrator to define the replication and fault
management properties. Through the configuration
system, the Replication Properties component obtains
these properties in XML format. These properties are
defined as:

• Replication Style: defines the style of replication
as cold passive replication, hot passive replication
or active replication.

• Monitoring Style: defines the style of monitoring
between PULL and PUSH. In the PULL style, the

fault detector periodically sends messages to the
object being monitored checking whether it is
active. In the PUSH style, the object replica
periodically sends messages to the fault detector
indicating that it is active;

• Monitoring Interval And Timeout: defines the
monitoring interval (ping) and the maximum
response time (timeout) of the service being
monitored in order to determine whether it is
faulty;

• Response Timeout: defines the response time limit
(timeout) for the service when invoked by
WSInvoker;

• Recovery: service recovery process indicator. The
state of the service can be automatically recovered
by means of mechanisms supplied by the FTWeb
infrastructure or manually by the administrator.

Fault Detector and Fault Notifier

These components extend the fault detection and
notification functionalities of the FT-CORBA to the web
services. For a web service to be monitored, it is
necessary for it to implement the PullMonitorable
interface containing the isAlive() method. By invoking
this method, the Fault Detector component monitors the
replicas. Monitoring is carried out according to the
properties obtained through Replication Properties and
defined in the configuration system.

When a fault occurs, the Fault Notifier component
receives a fault notification from the Fault Detector.
Fault Notifier notifies Replication Manager that removes
the faulty replica from the web service group. Figure 6
shows fault management of the FTWeb infrastructure.

Figure 6. Fault management.

WSRecovery

This component is responsible for the recovery of
the state of faulty replicas. The WSDispatcher Engine
has a monitoring console that displays all the replicas
that had faults during the request for a transaction or
during the monitoring process. This console allows the
service administrator to initiate the recovery process for
one or more replicas. The administrator can inform the
state of the service in the event of faults in all replicas or
initiate the recovery process for just one of the faulty
replicas, this process is known as manual recovery.

In automatic recovery, the WSRecovery periodically
checks the faulty replicas, obtains the state of the non-
faulty replicas and through the voting mechanism
defined by the Response Analyzer component,
reestablishes the state of the replica at fault. This
component’s operation is similar to WSInvoker’s (Figure
5), however, its functionality is invoked through the
monitoring console or through notification from the
Fault Detector component when a faulty replica is
detected.

C. WSWrapper
In order to explore the integration between the

CORBA and web services technologies, a WSWrapper
component was built to perform the interface between the
WSDispatcher Engine module and the objects that will
process the clients’ requests at the provider. This
component was based on models defined in [Gokhale et.
al 2003] and [Jandl et. al 2003]. Through this
component, SOAP requests are converted into CORBA
object invocations. WSWrapper uses dynamic invocation
interface to invoke objects, and can be used in executing
any CORBA object on the service provider. Through this
approach it is possible to replicate objects on
geographically dispersed servers and delegate their
administration to WSDispatcher Engine.

5. Implementation

The implementation of the FTWeb model was
carried out using Java JDK 1.4.2, GroupPac 1.4 and
JacORB 1.4 languages. The application server used was
IBM WebSphere Application Server 5.1 and all APIs
used in this environment are compliant with the
interoperability standards defined by WS-I Basic Profile
1.0 [WS-I, 2004].

The monitoring console and the configuration
system were developed in Java Server Pages 1.2 and
Java Servlet 2.3 allowing administrators to monitor and
configure services remotely using only a web browser.

Figures 7 and 8, respectively, show the monitoring
console and the configuration system.

Figure 7. Monitoring console.

 Figure 8. Configuration System.

The WSInvoker, Generic Web Service, Response
Analyzer components are made available as a J2EE
application on the application server. The WSInvoker
component executes replicas concurrently using threads
model provided by the Java language. The
ReplicationManager, ReplicationProperties
WSRecovery, FaultDetector and FaultNotifier
components are objects implemented under CORBA
(Grouppac) fault tolerance specifications, interfaces of
objects ReplicationManager, Fault Detector and
ReplicationProperties can be viewed in Figure 9.

In order to carry out the monitoring and recovery
processes, web services must implement interfaces
PullMonitorable and Updateable. These interfaces can
be viewed in Figure 10.

public interface ReplicationProperties
{
 void setProperties(ServiceGroup group,
 Properties props);
 void removeProperties(ServiceGroup group);
 Properties getProperties(ServiceGroup
 group);
}

public interface FaultDetector
{
 void registered(Service service);
 void unregistered(Service service);
}

public interface ReplicationManager
{
 void addServiceGroup(ServiceGroup group);
 void removeServiceGroup(ServiceGroup group);
 void addService(ServiceGroup group, Service
 service);
 void removeService(ServiceGroup group,
 Service service);
 void registerNotify(FaultNotifier fault);
}

Figure 9. Replication Management Interfaces.

public interface Updateable
{
 void setState(State state);
 State getState();
}
public interface PullMonitorable
{
 boolean isAlive():
}

Figure 10. Monitoring and Recovery Interfaces.

WSWrapper was developed in order to allow

exposure of objects implemented under the CORBA
architecture. This component is a web service that
performs conversion of SOAP requests into invocations
of CORBA objects. Object invocation is performed
through the dynamic invocation interface provided by the
CORBA architecture. Figure 11 presents the WSDL
document of WSWrapper service.

FTWeb does not affect the operability of existing
services, and can coexist in the same environment, web
services managed by FTWeb and traditional web
services. The deployment of the model on existing
operational web services is very simple requiring only the
insertion of methods for replica state monitoring and
recovery. The model can also be used in different types of
web services: statefull, stateless, synchronous and
asynchronous.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://wrapper.corba.services.e
du"
xmlns:impl="http://wrapper.corba.services.edu"
xmlns:intf="http://wrapper.corba.services.edu"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/
soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
<schema elementFormDefault="qualified"
targetNamespace =
"http://wrapper.corba.services.edu"
xmlns = "http://www.w3.org/2001/XMLSchema"
xmlns:impl = "http://wrapper.corba.services.edu"
xmlns : intf = http://wrapper.corba.services.edu
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns : xsd= "http://www.w3.org/2001/XMLSchema">

<element name="execute">
 <complexType>
 <sequence>
 <element name="serviceName"
 nillable="true" type="xsd:string"/>
 <element name="methodName"
 nillable="true" type="xsd:string"/>
 <element maxOccurs="unbounded"
 name="param" type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>
 <element name="executeResponse">
 <complexType>
 <sequence>
 <element name="executeReturn"
 nillable="true"
 type="xsd:anyType"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>

<wsdl:message name="executeResponse">
<wsdl:part element="intf:executeResponse"
 name="parameters"/>
</wsdl:message>
<wsdl:message name="executeRequest">
 <wsdl:part element="intf:execute"
 name="parameters"/>
</wsdl:message>

<wsdl:portType name="WSWrapper">
<wsdl:operation name="execute">
<wsdl:input message="intf:executeRequest"
 name="executeRequest"/>
<wsdl:output
 message="intf:executeResponse"
 name="executeResponse"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="WSWrapperSoapBinding"
 type="intf:WSWrapper">

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"
/>
<wsdl:operation name="execute">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="executeRequest">

<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="executeResponse">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="WSWrapperService">
<wsdl:port
 binding="intf:WSWrapperSoapBinding"
 name="WSWrapper">
<wsdlsoap:address
location="http://localhost:9080/WSWrapper/servic
es/WSWrapper"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Figure 11. WSDL document of WSWrapper service.

6. Performance evaluation

In order to check the performance of the model proposed,
tests were carried out on a 10 Mbps local network
composed of Intel Pentium IV 2.8 GHz with 1Gb RAM
memory and Microsoft 2000 Professional operational
system. WSDipatcher Engine was installed on two
servers, with one being a backup. Replicas were
distributed in up to seven computers, all containing IBM
WebSphere Application Server 5.1.

In order to assess the overhead of Fault Detector,
this component was installed on an independent
computer monitoring groups of web services with 3, 5
and 7 replicas. As shown in Figure 12, for groups
comprised of up to 7 replicas, CPU use percentage is
approximately 4% when the monitoring interval is
defined at 2 seconds. Performance appraisal showed that
for this execution environment, the best monitoring
interval indication for the model is 30 seconds.

Fault Detector Overhead

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

2 10 20 30

Monitoring Interval (s)

C
P

U
 U

ti
liz

at
io

n
 (

%
)

3 services

5 services

7 services

Figure 12. Fault Detector Overhead.

Figure 13. Response Time Considering Message Sizes.

Figure 14. Response Time Considering the Number of Simultaneous Users.

In order to assess the response time added on by
the FTWeb infrastructure, considering message sizes,
tests were carried out with service groups with up to 4
replicas and message size variation between 1 and 256
Kbytes. In order to determine the time added on by the
model, tests were carried out for the same services
without using FTWeb.

It is possible to observe in Figure 13 that for
messages with up to 16 Kbytes, variation in the number
of replicas comprising the group, does not affect
significantly the service response time. Tests presented
approximately 25% time added in relation to a service
carried out without FTWeb. However, the time added to
the response time can reach 60%, considering messages
with 256 Kbytes and 4 replicas comprising the service
using the voting scheme. For tests carried out under the
voting scheme, the time was determined by the
execution time for the replica located on the slowest
machine. Tests executed without voting, sending clients

the first message processed, featured equal times, to the
tests performed using FTWeb with only 1 service in the
group.

In order to evaluate the response time added on by
FTWeb, considering the number of simultaneous users
accessing the service, tests were carried out with service
groups with up to 4 replicas and variation between 2
and 20 simultaneous users. Message size used was 4
Kbytes. It is possible to observe in Figure 14 that the
variation in the number of replicas comprising the
group, does not affect significantly service response
time.

The response time is affected when the number of
simultaneous users is incremented due to mechanisms
providing replica determinism. When submitted to 20
simultaneous users, response time added was
approximately 41%.

7. Related Works

Even though availability and reliability are vital
requirements of critical applications, the works related
to propositions for fault tolerant models in service-
oriented architecture are quite recent. The model
approached in [Deron et. al., 2003] proposes extensions
to the SOAP standard allowing deployment of the
passive replication technique to achieve fault tolerance.
This model carries out alterations on the WSDL
document inserting information related to the primary
replica and the backup replicas. Using interceptors in
the SOAP layer at the client allows redirecting of the
requests to replicas in case of fault in the primary. On
the server, interceptors add on components for log
records, detection of faults and replica management.
FTWeb does not perform changes to WSDL documents,
services comprising the group are described in the
configuration system, following the service domain
approach. In the FTWeb infrastructure, using
interceptors is limited to fault detection in the
infrastructure itself, allowing in case of faults on the
primary WSDispatcher Engine requests can be referred
to a WSDispatcher Engine backup.

The model proposed in [Aghdaie, Tamir, 2002]
carries out changes on the kernel of the operating
system and the web server providing a fault tolerance
mechanism that is transparent to the client. In this
model, every request received by the server is registered
and sent to a backup server. Changes carried out in the
kernel of the operating system provide implementation
of a multicast mechanism allowing requests to be sent
to a backup server and the primary server. Alterations
carried out on the web server allow manipulation and
generation of responses to clients. In comparison with
this model, FTWeb is more portable, since it acts as
merely another software layer not requiring changes in
the operational system or the web server.

The work approached in [Dialani et. al., 2002]
[Zhang et. al., 2004][Townend, Xu, 2004] proposes
fault tolerant models for services implemented and
executed under grid service specifications [OGSA,
2003]. In [Dialani et. al., 2002] the main objective of
the architecture proposed is detection and recovery in
fault situations, this model does not deal with fault
tolerance through replication of objects, but rather by
means of checkpoint and rollback mechanisms. In
[Zhang et. al., 2004] the passive replication technique
is used through notification mechanisms provided by
the grid infrastructure. [Townend, Xu, 2004] propose
the implementation of a mechanism that carries out a
set of equivalent web services, but implemented under

different platforms (n-version). After the execution of a
voting scheme, the model acts on the responses
returning the most coincident one.

Despite the theme service grids not being part of
the FTWeb scope, a few similarities can be found
between the models. Similar to service grids, FTWeb
allows using statefull web services and ensures
determinism between the replicas. The diversity of
programs can be used in FTWeb, allowing web services
implemented under different architectures to comprise
the same service group.

8. Conclusion

This paper presented a proposal for deployment of the
active replication technique in order to achieve fault
tolerance in service-oriented architectures. This
approach provides tolerance for the following faults
classes: stop, omission and value. The model proposed
is based on a mechanism called WSDispatcher Engine
comprised of components responsible for: creating
service groups, detecting and recovering fault,
concurrently invoking service replicas, ensuring
determinism among the replicas and establishing voting
schemes for the responses returned by the services.

Replicas comprising the service group can be
located on geographically dispersed servers, avoiding
vulnerability to faults on routers, gateways and other
network interface components. The application of the
model on existing and operating web services is quite
simple requiring only the insertion of replica
monitoring and recovery methods.

Tests carried out on the prototype show that
performance costs are acceptable considering the gains
in availability and reliability afforded by the model.
Configuration and monitoring of the replicas
comprising the service can be performed remotely
through a system provided by the FTWeb infrastructure,
using only a web navigator. Aiming future work, there
is the implementation of other replication techniques
and the integration of the FTWeb model with the
specifications of service grids [WS-RF, 2004].

References
Aghdaie, N., Tamir, Y. (2002). Implementation
and Evaluation of Transparent Fault-Tolerant
Web Service with Kernel-Level Support.
Proceedings of the IEEE International Conference
on Computer Communications and Networks
Miami, Florida, pp. 63-68

Budhiraja, N., Marzulo, K., Schneider, F. B. e
Toueg, S. (1993). Distributed Systems, chapter 4.
The Primary-Backup Approach. Addison Wesley.
2nd edition.

Cheuk, L., Padilha, R., Souza, L., Fraga, J.
(2001). FT-CORBA Implementation, Technical
Report, LCMI-DAS-UFSC,
(http:/www.lcmi.ufsc.br/grouppac).

Defago, X., Schiper, A., Urban, P. (2000). Totally
Ordered Broadcast and Multicast Algorithms.
Technical Report DSC/2000/036, Dept. of
Communication Systems, EPFL.

Deron L., Fang, C., Chen, C., Lin, F. (2003). FT-
SOAP: A Fault-Tolerante Web Service. Tenth
Asia-Pacific Tenth Asia-Pacific Software
Engineering Conference Software Engineering
Conference, Chiang Mai Thailand pp.310

Dialani, V., Miles, S., Moreau, L. De Roure, D.,
Luck, M. (2002). Transparent Fault Tolerance for
Web Services Based Architectures. Euro-Par
2002. Parallel Processing: 8th International Euro-
Par Conference Paderborn, Germany Proceedings.
Volume 2400

Gokhale, A., Kumar, B., Sahuguet A. (2002).
“CORBAWeb Services”, Proceedings of the 11th
International World Wide Web Conference,
Honolulu, Hawaii.

Jandl, M., Radinger, W., Goeschka, K. M. (2003).
Integration of CORBA with Directory Services
and Web Services, ACM/IFIP/USENIX
International Middleware Conference, Rio de
Janeiro, Brasil

OGSA Open Grid Services Architecture (2003)
www.globus.org/ogsa/

OMG FT-CORBA Specification (2002). Common
Object Request Broker Architecture:
CoreSpecification Chapter 23. www.omg.org.

OMG WSDL - SOAP to CORBA Interworking
(2003) OMG Document. http://www.omg.org

Schneider, F. B. (1990). Implementing Fault-
Tolerant Service Using the State Machine
Approach: A Tutorial, ACM Computing Survey,
22(4):299-319.

SOAP Simple Object Access Protocol (2003) –
World Wide Web Consortium
http://www.w3c.org/TR/soap/

Tan, S., Vellanki, V., Xing, J., Topol B., Dudley
G. Service Domains (2004). IBM System Journal
VOL 43, N4.

Townend, P., Xu, J. (2004). Replication-based
Fault Tolerance in a Grid Environment,
Proceedings of the UK e-Science All Hands
Meeting

UDDI Universal Description, Discovery and
Integration (2002) – OASIS http://www.oasis-
open.org/committees/uddi-
spec/doc/contribs.htm#uddiv1

WSDL Web Services Description Language
(2001) – World Wide Web Consortium
http://www.w3c.org/TR/wsdl/

WS-ARCH Web Services Architecture (2004)
W3C World Wide Web Consortium
http://www.w3.org/TR/ws-arch/

WS-I Web Service Interoperability Organization
Basic Profile 1.0 (2004). http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html

WS-RF OGSI - Open Grid Services Specification
(2004). 1.0 http://www-
128.ibm.com/developerworks/library/ws-
resource/ws-wsrf.pdf

WS-RM - Web Services Reliable Messaging
Specification (2004). 1.0
ftp://www6.software.ibm.com/software/developer/
library/ws-reliablemessaging200502.pdf

XML Extensible Markup Language (2000) –
World Web Consortium
http://www.w3.org/TR/2000/REC-xml-20001006

Zhang, X., Zagorodnov, D., Hiltunen, M. (2004).
Fault-Tolerant Grid Services Using Primary-
Backup: Feasibility and Performance. Cluster
2004, San Diego, California.

