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Abstract.  We present an architecture and an algorithm for Byzantine fault-
tolerant state machine replication. Our algorithm explores the advantages of virtu-
alization to reliably detect and tolerate faulty replicas, allowing the transformation 
of Byzantine faults into omission faults. Our approach reduces the total number of 
physical replicas from 3f+1 to 2f+1. Our approach is based on the concept of twin 
virtual machines, where there are two virtual machines in each physical host, each 
one acting as a failure detector of its twin. 

1  Introduction 

More and more, computing systems are being used in critical systems and have 
to operate correctly even under the presence of faults. These faults can be acci-
dental, like crash faults, or arbitrary, called Byzantine [1]. Thus, to ensure that 
these systems remain available under fault conditions, it is necessary to develop 
Byzantine fault-tolerant (BFT) mechanisms. One of the most used architecture is 
the State Machine Replication (SMR)[2], using deterministic state machines to 
offers a replicated service. Many BFT SMR-based approaches were developed 
(e.g. [3], [4], [5]). Among these, the PBFT [3] is often considered to be a baseline, 
being the first practical BFT algorithm and having most of later approaches de-
rived from it. 

Another technique consists of using unreliable failure detectors [6]. Despite of 
supporting at first just crash faults, some proposals were able to extend the idea to 
support Byzantine faults [7][8]. These fault detectors help the system giving some 
hints about replicas appearing to be faulty.  

The virtualization can also be considered a Byzantine fault-tolerant technique, 
because it introduces an isolation level between the virtual machines. Several ap-
proaches use virtualization to protect some components from others’ failure (or 
intrusion) [9], [10]. Virtualization techniques are widely accepted by industry, and 
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are largely used, e.g., by cloud computing services as Amazon Web Services and 
Windows Azure. 

The PBFT and many other BFT SMR-based algorithms have a high implemen-
tation cost having normally the resiliency of n ≥ 3f + 1, i.e., need n > 3f replicas to 
tolerate f faulty replicas. To diminish this cost, some approaches emerged using a 
trusted component to limit the behavior of faulty replicas using only n ≥ 2f +1 
replicas [11], [12], [13]. Other approaches were proposed running only f + 1 repli-
cas, but keeping more 2f replicas waiting in a paused state without consuming any 
CPU time until it is activation [14]. 

We present a new efficient BFT SMR-based architecture based on virtualiza-
tion, called TwinBFT. We reduced the number of required physical machines n 
from n ≥ 3f +1 to n ≥ 2f +1 to tolerate f faults. Furthermore, we reduced the num-
ber of communication steps in the normal case from 5 (in PBFT) to 3, without the 
client participation in the agreement. To our knowledge, this is the first algorithm 
with this number of steps without using a speculative approach [5], [13], involving 
the participation of the client in the agreement. 

The proposed approach consists of use a set of twin virtual machines, executing 
the same application service in each one of the N ≥ 2f+1 physical replicas. We use 
a set with only two virtual machines. Every virtual machine executes the same 
service, and each set acts as a replica of the state machine replication. The main 
idea is to use each virtual machine as a failure detector to its twin: upon sending a 
request to a pair of twin virtual machines, both must provide the same answer, 
otherwise the whole physical machine hosting the twins is considered faulty and 
the messages sent by this replica are ignored by the others. This way, each set of 
twin virtual machines will either act correctly or omit messages. This omission, 
however, are tolerated by the state machine replication. A crash fault too, is a kind 
of omission and, therefore, is also tolerated. 

The proposed architecture do not intends to offer the ideal solution too all the 
cases. The use of virtual machines is suitable to companies opened to this kind of 
technology, as cloud computing companies. It is also recommended when you do 
not have trusted components or cannot wait for the activation of sleeping replicas 
in the case of failure. In these cases, an efficient BFT SMR with only 2f+1 physi-
cal replicas (4f +2 virtual machines) using virtualization may be suitable. 

In Section 2, we give an overview of some related work showing the state of 
the art. Then, Section 3 describes our system model and assumptions. A detailed 
explanation of the algorithm is given in Section 4. Following, the Section 5 pre-
sents an evaluation of algorithm and the Section 6 summarize our conclusions. 

2  Related Work 

Several works were proposed recently in BFT to produce Byzantine fault-tolerant 
services based on SMR. Being the first practical approach for BFT protocols, 
PBFT is one of the most successful SMR protocol [3]. Although being practical, 
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the cost for implementing PBFT is quite high, requiring at least 4 replicas (3f+1 to 
f = 1) and 5 communication steps. Thus, numerous approaches derive from it with 
two goals: reduce the number of required replicas and improve the performance. 

Many works offered an alternative to improve the resiliency of PBFT reducing 
the number of replicas. Yin et al. introduces an architecture separating the service 
in two distinct layers, one responsible for agreement with 3f+1 replicas and anoth-
er one executing the requests with only 2f + 1 replicas [4]. While still need 3f + 1 
replicas, the execution replicas are likely to be much more expensive than agree-
ment replicas. 

Correia et al. presented the first solution to execute a BFT SMR with only 2f + 
1 replicas, using a trusted distributed component [11]. After this, another work 
showed the first algorithm of it is kind based in a trusted local component using 
the abstraction of attested append-only memory [12]. Veronese et al. [13] pro-
posed two algorithms using a trusted component, which supply unique identifiers 
for each message. The first one, MinBFT, reduced the number of necessary repli-
cas to 2f + 1 and the number of communication steps to 4. The second, a specula-
tive version called MinZyzzyva, reduced the communication steps even further, to 
3, keeping the number of replicas in 2f + 1. 

In another approach, Stumm et al. [15] takes advantage of virtualization tech-
niques to reduce the number of required replicas to 2f +1 since the VMM provides 
a secure communication between the replicas. This approach, however, require all 
replicas running on the same physical host and, therefore, do not tolerates crash 
faults on the physical machine, unlike this paper. 

Another work, also based on the idea of two replicas watching each other, is 
presented in [16] using a signal-on-fail approach. This approach needs 4f+2 phys-
ical machines and requires a synchronous and trusted communication between 
each pair of replicas, which is a difficult assumption to be guaranteed in practice. 
In this same line of thought Inayat and Ezhilchevan presented an optimist mul-
ticast BFT protocol with total order based on the signal-on-fail approach. The au-
thors showed that in a normal execution, it is likely to have better performance 
than other BFT approaches [17]. 

Several other works presented solutions to improve the performance of PBFT. 
Kotla et al. presented Zyzzyva, an algorithm able to reduce the number of com-
munication steps in the absence of faults [5]. Instead of trying to reach an agree-
ment before sending the reply to the client, the service replies speculatively. The 
service needs to execute the request again and reach an agreement only if the re-
plies received by the client differ from each other. This approach takes advantage 
of most cases of the execution is free of failure but requires the ability to revert 
operations to ensure consistency in case of failures. 

As stated in the Introduction, this paper explores another point of the design 
space using virtualization to deploy a BFT state machine replication with only 2f 
+ 1 physical replicas (and 4f+2 virtual machines) and only 3 communication steps 
in the normal case of execution. 

Several works use virtualization to isolate components of software. Two of the 
first use virtualization to protect the intrusion detector from the intruders [10], and 
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a more recent one uses the same idea to protect a honeypot monitor [9]. Neverthe-
less, the hypervisor security is mandatory to obtain isolation and some works stud-
ied how to improve this security. Murray et al. proposed dissociates the virtualiza-
tion system as a solution to lower the trusted computing base of the system [18]. 
The NoHype goes further removing the hypervisor of the way and executing the 
virtual machines natively [19]. The HyperSafe uses another approach: protects the 
hypervisor detecting attacks that modify the control flux, as buffer overflows [20]. 

3 System Model 

The architecture of the system is presented in Figure 1. The system is composed 
by a set of n physical machines (e.g. host) H = {h1, h2, . . . , hn} where n ≥ 2f + 1 
and f is the maximum number of faulty physical machines at any time. Each host 
of the Figure 1 contains a VMM (Virtual Machine Manager) with two virtual ma-
chines, called twins virtual machines, running one process each. Both servers {si, 
si'} execute the same service (with different versions because of software diversi-
ty), and communicate between each other to validate each message before send to 
other processes. 

 

 

Fig. 1. TwinBFT - Twin virtual machines architecture. 

We assume at most f virtual machines acting Byzantine, but no more than 1 is 
faulty in the same physical host. When a virtual machine is arbitrarily faulty, the 
validation mechanism transforms this fault to an omission fault. Therefore, we 
assume up to f physical hosts can be faulty by crash or omission, accidentally or 
due to a failure in one of it is virtual machines. To substantiate the f faults limit we 
have to relay in software diversity techniques, i.e., different implementations of 
the process at each replica in a physical host [21], [22]. This diversity reduces the 
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chance of more than one virtual machine at the same physical host being attacked 
simultaneously. We assume the virtualization provides isolation between the vir-
tual machines and the VMM / Hypervisor.  

No assumptions are made about the time needed to compute a request. The 
communication between different VMs inside the same host is made through a 
shared memory space, called postbox. The processes at different hosts communi-
cate through the local network, by message passing only. This local network can 
fail to deliver messages, delay, or duplicate messages. 

Each host can assume two different roles: (1) primary host, which is responsi-
ble for defining the order for executing the client requests; and (2) backup host, 
which executes the requests following the order proposed by the primary. Within a 
primary host, a process can assume two possible roles: (1) leader, which is respon-
sible for assign the sequence number for client’s requests; and (2) follower, which 
executes the requests following the order defined. All the processes within backup 
hosts are considered followers. The primary host hi are defined by i = v mod |S| 
where v is the current view. The primary leader process within a server is, by defi-
nition, si. 

We use cryptographic techniques to authenticate messages and ensure authen-
ticity of messages [24]. Each pair of processes share among each other a secret 
key used to generate a MAC (Message Authentication Code) vector [3] with a 
valid signature for each process. 

We assume each physical machine with only two virtual machines (VMs) 
where, for a given input, the replies supplied by both should be the same to the 
physical machine to not be considered faulty.  

4 Algorithm 

The service in our algorithm is modeled as a state machine replication, distributed 
across the service nodes. The replicas move through a succession of configura-
tions called views. In each view, we have one primary replica, which is responsi-
ble for defining the message order, and forward the request to all service replicas. 
As stated by [2], the state machine must be deterministic, and all replicas must 
start in the same state, otherwise the safety cannot be guaranteed. 

In this section we will discuss our proposal of transformation through a well-
known approach. In this sense, we present an adaptation of PBFT protocol [23] to 
our proposed model. In each view, only one replica sj is the primary (or leader), 
which is responsible for defining the message order and forward the request to all 
service replicas. If a message sent by any replica is signed by both VMs in a host 
we assume this message as correct, since we assume that only one VM can fail at 
the same time in the same host. 
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4.1 Properties 

As a state machine replication, our algorithm must ensure the following properties 
to provide a correct service: 

 
• Total Order (safety): a request is executed sequentially and at the 

same order on every replica, i.e. despite replication, the operations are 
atomically executed in order and the system behaves as a centralized 
one; 

• Termination (liveness): a request issued by a client eventually com-
plete, regardless of failure. 

 
Our algorithm provides both safety and liveness, assuming that no more than f 

= (n - 1)/2 hosts are faulty and there is at least one correct process s in each host. 
To ensure that all replicas will execute the requests in the same order, all the repli-
cas follow the order defined by the leader and the leader can be assumed correct if 
both processes at the primary host sign the order proposed by the leader. Our pro-
tocol ensures safety regardless of timing but to ensures liveness we need to make 
some assumptions about synchrony and message loss. 

To ensure that all replicas execute the same requests in the same order, all rep-
licas follow the order defined by primary leader. A consensus algorithm is not 
necessary because we can trust the order defined by the primary leader, provided 
that our previous assumptions are not violated. This is because after the primary 
leader defines the order, this order will not be accepted by the other replicas with-
out the agreement of both processes in primary host. 

4.2  Description of Algorithms 

In this section, we will discuss our algorithms in detail. First, we show in Figure 2 
a diagram-based view of our main algorithm, to make easy to understand it. This 
architecture assumes f = 1, where three hosts are required, each one with two 
VMs. Each pair of VMs inside the same host communicates between each other 
through a trusted FIFO channel called postbox. The postbox can be faster than the 
network by using a shared memory abstraction provided by the VMM. 

The algorithm works basically as follows: 
 

1. Client issues a request to both VMs in primary host; 
2. The primary leader si define a sequence number and post an “OR-

DER” message on postbox; 
3. The primary follower si' reads the message from postbox, gets the se-

quence number and posts on postbox an “ORDER” message with the 
sequence number received; 
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4. Both VMs sign the “ORDER” read from twin and send to backup rep-
licas; 

5. As soon as each VM inside a backup replica receive the message 
“ORDER”, they execute the operation, and post a signed “REPLY” on 
the postbox; 

6. When a VM reads a “REPLY”, it compares with the one computed lo-
cally and if all fields matches, attaches its own signature to the mes-
sage and send to client; 

7. If the client receives at least f + 1 correctly signed (by both twin VMs) 
replies from distinct physical replicas, it accepts the result. 

 

 
Fig. 2. Algorithm’s steps sequence in normal case operation with f = 1. 

 
In a normal execution, a client sends a request to the service and waits until re-
ceives at least f + 1 valid replies from distinct replicas. The request message has 
the form <REQUEST, c, seq, opi>σc where c is the client id, seq is a request id on 
a client, and op is the operation to be executed on the service. If the client does not 
receive f + 1 messages soon enough, it multicast the request to all replicas. 

4.3 Normal Case Operation 

The algorithm, at normal case operation, running in each one of the replicas has 
two concurrent tasks. The Task 1 is responsible for reading the messages received 
through network. Task 2 is responsible for reading the messages from postbox, 
posted by its twin. The state of each process is composed by the state of the ser-
vice, a message buffer and the current view. This state is shared among the tasks. 

When any of processes {si, si'} in primary host receives a request from client, si 
generates a new sequence number n and create a message <<ORDER, si, v, n, 
dm>σpi>, m> where v is the current view number, and dm is the digest of message 
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m. As soon as si' reads the si “ORDER” message from the postbox and have the 
“REQUEST” message in the message buffer, it gets the sequence number pro-
posed by si, creates an “ORDER” message and posts on the postbox. When each 
one reads an “ORDER” message from postbox, it verifies if all parameters corre-
spond to the ones computed locally and, if yes, add it is own signature to the twin 
message and multicast to backup replicas. 

To any “ORDER" message received, the replicas will consider it valid if: 
• Message is correctly signed, i.e., if received from network both twin 

VM machines on the replica must sign it, and if received from post-
box, its own twin machine must sign it; 

• The view in the message is the current view; 
• Has not accepted another “ORDER” message with the same sequence 

number for a different request. 
• The sequence number is between a low and high water marks h and H 

(in practice, if this verification is made when the primary follower 
reads the “ORDER” message from postbox, a backup replica will nev-
er receive a message outside these water marks). 

Upon the receiving of “ORDER” message by both twin processes on a physical 
host, each one of {si, si'} verifies if the message is valid and, if yes, it executes the 
operation and create a message <REPLY, si, v, seq, c, res>σpi where res is the re-
sult of executing the operation, and posts on the postbox. Once the “REPLY” has 
been read from the postbox, it compares each parameter of the message and, if all 
parameters are identical to the ones locally computed then sign the message gen-
erated by its twin and send to client. 

When the client receives a “REPLY” it accepts as a valid message if the fol-
lowing conditions are true: 

• Is signed by both processes {si, si'} on sender host; 
• It has not accepted yet a valid message from any of the twin processes 

on the sender host. 
The client waits until have received at least f + 1 valid messages from the repli-

cas to accept the result. If it could not receive these messages, soon enough, it 
multicast the “REQUEST” to all replicas. 

5 Analytic Evaluation 

In Table 1 we can see a comparison between our approach and state-of-the-art 
BFT algorithms in the literature. All numbers considers only gracious executions. 
The benefits of using a twin machines approach are visible on the number of repli-
cas and communication steps. While our approach has the lowest number of repli-
cas, along with [11], [12], [13], it has the same number of communication steps of 
the speculative algorithms [5], [13] even in case of faults, this is an interesting 
achievement. Speculative algorithms, however, require more communication steps 
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in case of faults, additionally involving the client in the protocol, leaving behind 
the transparency of the protocol. 

 
 

 Number of 
Replicas 

Number of 
Processes 

Number of 
Physical 

Machines 

Communication 
Steps (latency) 

Speculative / 
Optimist 

PBFT[3] 3f+1 3f+1 3f+1 5 no 
Zyzzyva[5] 3f+1 3f+1 3f+1 3 / 5 yes 
TTCB[11] 2f+1 2f+1 2f+1 5 no 
A2M-PBFT-EA[12] 2f+1 2f+1 2f+1 5 no 
MinBFT[13] 2f+1 2f+1 2f+1 4 yes 
TwinBFT 2f+1 4f+2 2f+1 3 no 

Table 1. Comparison of Evaluated BFT Algorithms 

  

As our approach uses two virtual machines at each replica, we have a bigger 
number of processes despite of the number of required physical machines being 
the same as [11], [12], [13]. 

6 Conclusions 

By exploring some virtualization techniques, we proposed a less expensive alter-
native algorithm to BFT. We show that is possible to implement a reliable 2f + 1 
SMR algorithm in an asynchronous environment. Despite of relying in a secure 
communication between each pair of virtual machines, we believe that virtualiza-
tion is widely available today and can provide a good isolation between the repli-
cas and the external world. Moreover, we reduced the number of necessary com-
munication steps, reducing the cost of communication. 
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