
1

Using Virtualization Technology for Fault-
Tolerant Replication in LAN

Fernando Dettoni1, Lau Cheuk Lung1, Aldelir Fernando Luiz2

1 Departamento de Informática e Estatística, Universidade Federal de Santa Catarina,
Florianópolis, Brazil, {fdettoni, lau.lung}@inf.ufsc.br

2 Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina,
Florianópolis, Brazil, aldelir@das.ufsc.br

Abstract. We present an architecture and an algorithm for Byzantine fault-
tolerant state machine replication. Our algorithm explores the advantages of virtu-
alization to reliably detect and tolerate faulty replicas, allowing the transformation
of Byzantine faults into omission faults. Our approach reduces the total number of
physical replicas from 3f+1 to 2f+1. Our approach is based on the concept of twin
virtual machines, where there are two virtual machines in each physical host, each
one acting as a failure detector of its twin.

1 Introduction

More and more, computing systems are being used in critical systems and have
to operate correctly even under the presence of faults. These faults can be acci-
dental, like crash faults, or arbitrary, called Byzantine [1]. Thus, to ensure that
these systems remain available under fault conditions, it is necessary to develop
Byzantine fault-tolerant (BFT) mechanisms. One of the most used architecture is
the State Machine Replication (SMR)[2], using deterministic state machines to
offers a replicated service. Many BFT SMR-based approaches were developed
(e.g. [3], [4], [5]). Among these, the PBFT [3] is often considered to be a baseline,
being the first practical BFT algorithm and having most of later approaches de-
rived from it.

Another technique consists of using unreliable failure detectors [6]. Despite of
supporting at first just crash faults, some proposals were able to extend the idea to
support Byzantine faults [7][8]. These fault detectors help the system giving some
hints about replicas appearing to be faulty.

The virtualization can also be considered a Byzantine fault-tolerant technique,
because it introduces an isolation level between the virtual machines. Several ap-
proaches use virtualization to protect some components from others’ failure (or
intrusion) [9], [10]. Virtualization techniques are widely accepted by industry, and

2

are largely used, e.g., by cloud computing services as Amazon Web Services and
Windows Azure.

The PBFT and many other BFT SMR-based algorithms have a high implemen-
tation cost having normally the resiliency of n ≥ 3f + 1, i.e., need n > 3f replicas to
tolerate f faulty replicas. To diminish this cost, some approaches emerged using a
trusted component to limit the behavior of faulty replicas using only n ≥ 2f +1
replicas [11], [12], [13]. Other approaches were proposed running only f + 1 repli-
cas, but keeping more 2f replicas waiting in a paused state without consuming any
CPU time until it is activation [14].

We present a new efficient BFT SMR-based architecture based on virtualiza-
tion, called TwinBFT. We reduced the number of required physical machines n
from n ≥ 3f +1 to n ≥ 2f +1 to tolerate f faults. Furthermore, we reduced the num-
ber of communication steps in the normal case from 5 (in PBFT) to 3, without the
client participation in the agreement. To our knowledge, this is the first algorithm
with this number of steps without using a speculative approach [5], [13], involving
the participation of the client in the agreement.

The proposed approach consists of use a set of twin virtual machines, executing
the same application service in each one of the N ≥ 2f+1 physical replicas. We use
a set with only two virtual machines. Every virtual machine executes the same
service, and each set acts as a replica of the state machine replication. The main
idea is to use each virtual machine as a failure detector to its twin: upon sending a
request to a pair of twin virtual machines, both must provide the same answer,
otherwise the whole physical machine hosting the twins is considered faulty and
the messages sent by this replica are ignored by the others. This way, each set of
twin virtual machines will either act correctly or omit messages. This omission,
however, are tolerated by the state machine replication. A crash fault too, is a kind
of omission and, therefore, is also tolerated.

The proposed architecture do not intends to offer the ideal solution too all the
cases. The use of virtual machines is suitable to companies opened to this kind of
technology, as cloud computing companies. It is also recommended when you do
not have trusted components or cannot wait for the activation of sleeping replicas
in the case of failure. In these cases, an efficient BFT SMR with only 2f+1 physi-
cal replicas (4f +2 virtual machines) using virtualization may be suitable.

In Section 2, we give an overview of some related work showing the state of
the art. Then, Section 3 describes our system model and assumptions. A detailed
explanation of the algorithm is given in Section 4. Following, the Section 5 pre-
sents an evaluation of algorithm and the Section 6 summarize our conclusions.

2 Related Work

Several works were proposed recently in BFT to produce Byzantine fault-tolerant
services based on SMR. Being the first practical approach for BFT protocols,
PBFT is one of the most successful SMR protocol [3]. Although being practical,

3

the cost for implementing PBFT is quite high, requiring at least 4 replicas (3f+1 to
f = 1) and 5 communication steps. Thus, numerous approaches derive from it with
two goals: reduce the number of required replicas and improve the performance.

Many works offered an alternative to improve the resiliency of PBFT reducing
the number of replicas. Yin et al. introduces an architecture separating the service
in two distinct layers, one responsible for agreement with 3f+1 replicas and anoth-
er one executing the requests with only 2f + 1 replicas [4]. While still need 3f + 1
replicas, the execution replicas are likely to be much more expensive than agree-
ment replicas.

Correia et al. presented the first solution to execute a BFT SMR with only 2f +
1 replicas, using a trusted distributed component [11]. After this, another work
showed the first algorithm of it is kind based in a trusted local component using
the abstraction of attested append-only memory [12]. Veronese et al. [13] pro-
posed two algorithms using a trusted component, which supply unique identifiers
for each message. The first one, MinBFT, reduced the number of necessary repli-
cas to 2f + 1 and the number of communication steps to 4. The second, a specula-
tive version called MinZyzzyva, reduced the communication steps even further, to
3, keeping the number of replicas in 2f + 1.

In another approach, Stumm et al. [15] takes advantage of virtualization tech-
niques to reduce the number of required replicas to 2f +1 since the VMM provides
a secure communication between the replicas. This approach, however, require all
replicas running on the same physical host and, therefore, do not tolerates crash
faults on the physical machine, unlike this paper.

Another work, also based on the idea of two replicas watching each other, is
presented in [16] using a signal-on-fail approach. This approach needs 4f+2 phys-
ical machines and requires a synchronous and trusted communication between
each pair of replicas, which is a difficult assumption to be guaranteed in practice.
In this same line of thought Inayat and Ezhilchevan presented an optimist mul-
ticast BFT protocol with total order based on the signal-on-fail approach. The au-
thors showed that in a normal execution, it is likely to have better performance
than other BFT approaches [17].

Several other works presented solutions to improve the performance of PBFT.
Kotla et al. presented Zyzzyva, an algorithm able to reduce the number of com-
munication steps in the absence of faults [5]. Instead of trying to reach an agree-
ment before sending the reply to the client, the service replies speculatively. The
service needs to execute the request again and reach an agreement only if the re-
plies received by the client differ from each other. This approach takes advantage
of most cases of the execution is free of failure but requires the ability to revert
operations to ensure consistency in case of failures.

As stated in the Introduction, this paper explores another point of the design
space using virtualization to deploy a BFT state machine replication with only 2f
+ 1 physical replicas (and 4f+2 virtual machines) and only 3 communication steps
in the normal case of execution.

Several works use virtualization to isolate components of software. Two of the
first use virtualization to protect the intrusion detector from the intruders [10], and

4

a more recent one uses the same idea to protect a honeypot monitor [9]. Neverthe-
less, the hypervisor security is mandatory to obtain isolation and some works stud-
ied how to improve this security. Murray et al. proposed dissociates the virtualiza-
tion system as a solution to lower the trusted computing base of the system [18].
The NoHype goes further removing the hypervisor of the way and executing the
virtual machines natively [19]. The HyperSafe uses another approach: protects the
hypervisor detecting attacks that modify the control flux, as buffer overflows [20].

3 System Model

The architecture of the system is presented in Figure 1. The system is composed
by a set of n physical machines (e.g. host) H = {h1, h2, . . . , hn} where n ≥ 2f + 1
and f is the maximum number of faulty physical machines at any time. Each host
of the Figure 1 contains a VMM (Virtual Machine Manager) with two virtual ma-
chines, called twins virtual machines, running one process each. Both servers {si,
si'} execute the same service (with different versions because of software diversi-
ty), and communicate between each other to validate each message before send to
other processes.

Fig. 1. TwinBFT - Twin virtual machines architecture.

We assume at most f virtual machines acting Byzantine, but no more than 1 is
faulty in the same physical host. When a virtual machine is arbitrarily faulty, the
validation mechanism transforms this fault to an omission fault. Therefore, we
assume up to f physical hosts can be faulty by crash or omission, accidentally or
due to a failure in one of it is virtual machines. To substantiate the f faults limit we
have to relay in software diversity techniques, i.e., different implementations of
the process at each replica in a physical host [21], [22]. This diversity reduces the

5

chance of more than one virtual machine at the same physical host being attacked
simultaneously. We assume the virtualization provides isolation between the vir-
tual machines and the VMM / Hypervisor.

No assumptions are made about the time needed to compute a request. The
communication between different VMs inside the same host is made through a
shared memory space, called postbox. The processes at different hosts communi-
cate through the local network, by message passing only. This local network can
fail to deliver messages, delay, or duplicate messages.

Each host can assume two different roles: (1) primary host, which is responsi-
ble for defining the order for executing the client requests; and (2) backup host,
which executes the requests following the order proposed by the primary. Within a
primary host, a process can assume two possible roles: (1) leader, which is respon-
sible for assign the sequence number for client’s requests; and (2) follower, which
executes the requests following the order defined. All the processes within backup
hosts are considered followers. The primary host hi are defined by i = v mod |S|
where v is the current view. The primary leader process within a server is, by defi-
nition, si.

We use cryptographic techniques to authenticate messages and ensure authen-
ticity of messages [24]. Each pair of processes share among each other a secret
key used to generate a MAC (Message Authentication Code) vector [3] with a
valid signature for each process.

We assume each physical machine with only two virtual machines (VMs)
where, for a given input, the replies supplied by both should be the same to the
physical machine to not be considered faulty.

4 Algorithm

The service in our algorithm is modeled as a state machine replication, distributed
across the service nodes. The replicas move through a succession of configura-
tions called views. In each view, we have one primary replica, which is responsi-
ble for defining the message order, and forward the request to all service replicas.
As stated by [2], the state machine must be deterministic, and all replicas must
start in the same state, otherwise the safety cannot be guaranteed.

In this section we will discuss our proposal of transformation through a well-
known approach. In this sense, we present an adaptation of PBFT protocol [23] to
our proposed model. In each view, only one replica sj is the primary (or leader),
which is responsible for defining the message order and forward the request to all
service replicas. If a message sent by any replica is signed by both VMs in a host
we assume this message as correct, since we assume that only one VM can fail at
the same time in the same host.

6

4.1 Properties

As a state machine replication, our algorithm must ensure the following properties
to provide a correct service:

• Total Order (safety): a request is executed sequentially and at the

same order on every replica, i.e. despite replication, the operations are
atomically executed in order and the system behaves as a centralized
one;

• Termination (liveness): a request issued by a client eventually com-
plete, regardless of failure.

Our algorithm provides both safety and liveness, assuming that no more than f

= (n - 1)/2 hosts are faulty and there is at least one correct process s in each host.
To ensure that all replicas will execute the requests in the same order, all the repli-
cas follow the order defined by the leader and the leader can be assumed correct if
both processes at the primary host sign the order proposed by the leader. Our pro-
tocol ensures safety regardless of timing but to ensures liveness we need to make
some assumptions about synchrony and message loss.

To ensure that all replicas execute the same requests in the same order, all rep-
licas follow the order defined by primary leader. A consensus algorithm is not
necessary because we can trust the order defined by the primary leader, provided
that our previous assumptions are not violated. This is because after the primary
leader defines the order, this order will not be accepted by the other replicas with-
out the agreement of both processes in primary host.

4.2 Description of Algorithms

In this section, we will discuss our algorithms in detail. First, we show in Figure 2
a diagram-based view of our main algorithm, to make easy to understand it. This
architecture assumes f = 1, where three hosts are required, each one with two
VMs. Each pair of VMs inside the same host communicates between each other
through a trusted FIFO channel called postbox. The postbox can be faster than the
network by using a shared memory abstraction provided by the VMM.

The algorithm works basically as follows:

1. Client issues a request to both VMs in primary host;
2. The primary leader si define a sequence number and post an “OR-

DER” message on postbox;
3. The primary follower si' reads the message from postbox, gets the se-

quence number and posts on postbox an “ORDER” message with the
sequence number received;

7

4. Both VMs sign the “ORDER” read from twin and send to backup rep-
licas;

5. As soon as each VM inside a backup replica receive the message
“ORDER”, they execute the operation, and post a signed “REPLY” on
the postbox;

6. When a VM reads a “REPLY”, it compares with the one computed lo-
cally and if all fields matches, attaches its own signature to the mes-
sage and send to client;

7. If the client receives at least f + 1 correctly signed (by both twin VMs)
replies from distinct physical replicas, it accepts the result.

Fig. 2. Algorithm’s steps sequence in normal case operation with f = 1.

In a normal execution, a client sends a request to the service and waits until re-
ceives at least f + 1 valid replies from distinct replicas. The request message has
the form <REQUEST, c, seq, opi>σc where c is the client id, seq is a request id on
a client, and op is the operation to be executed on the service. If the client does not
receive f + 1 messages soon enough, it multicast the request to all replicas.

4.3 Normal Case Operation

The algorithm, at normal case operation, running in each one of the replicas has
two concurrent tasks. The Task 1 is responsible for reading the messages received
through network. Task 2 is responsible for reading the messages from postbox,
posted by its twin. The state of each process is composed by the state of the ser-
vice, a message buffer and the current view. This state is shared among the tasks.

When any of processes {si, si'} in primary host receives a request from client, si
generates a new sequence number n and create a message <<ORDER, si, v, n,
dm>σpi>, m> where v is the current view number, and dm is the digest of message

8

m. As soon as si' reads the si “ORDER” message from the postbox and have the
“REQUEST” message in the message buffer, it gets the sequence number pro-
posed by si, creates an “ORDER” message and posts on the postbox. When each
one reads an “ORDER” message from postbox, it verifies if all parameters corre-
spond to the ones computed locally and, if yes, add it is own signature to the twin
message and multicast to backup replicas.

To any “ORDER" message received, the replicas will consider it valid if:
• Message is correctly signed, i.e., if received from network both twin

VM machines on the replica must sign it, and if received from post-
box, its own twin machine must sign it;

• The view in the message is the current view;
• Has not accepted another “ORDER” message with the same sequence

number for a different request.
• The sequence number is between a low and high water marks h and H

(in practice, if this verification is made when the primary follower
reads the “ORDER” message from postbox, a backup replica will nev-
er receive a message outside these water marks).

Upon the receiving of “ORDER” message by both twin processes on a physical
host, each one of {si, si'} verifies if the message is valid and, if yes, it executes the
operation and create a message <REPLY, si, v, seq, c, res>σpi where res is the re-
sult of executing the operation, and posts on the postbox. Once the “REPLY” has
been read from the postbox, it compares each parameter of the message and, if all
parameters are identical to the ones locally computed then sign the message gen-
erated by its twin and send to client.

When the client receives a “REPLY” it accepts as a valid message if the fol-
lowing conditions are true:

• Is signed by both processes {si, si'} on sender host;
• It has not accepted yet a valid message from any of the twin processes

on the sender host.
The client waits until have received at least f + 1 valid messages from the repli-

cas to accept the result. If it could not receive these messages, soon enough, it
multicast the “REQUEST” to all replicas.

5 Analytic Evaluation

In Table 1 we can see a comparison between our approach and state-of-the-art
BFT algorithms in the literature. All numbers considers only gracious executions.
The benefits of using a twin machines approach are visible on the number of repli-
cas and communication steps. While our approach has the lowest number of repli-
cas, along with [11], [12], [13], it has the same number of communication steps of
the speculative algorithms [5], [13] even in case of faults, this is an interesting
achievement. Speculative algorithms, however, require more communication steps

9

in case of faults, additionally involving the client in the protocol, leaving behind
the transparency of the protocol.

 Number of
Replicas

Number of
Processes

Number of
Physical

Machines

Communication
Steps (latency)

Speculative /
Optimist

PBFT[3] 3f+1 3f+1 3f+1 5 no
Zyzzyva[5] 3f+1 3f+1 3f+1 3 / 5 yes
TTCB[11] 2f+1 2f+1 2f+1 5 no
A2M-PBFT-EA[12] 2f+1 2f+1 2f+1 5 no
MinBFT[13] 2f+1 2f+1 2f+1 4 yes
TwinBFT 2f+1 4f+2 2f+1 3 no

Table 1. Comparison of Evaluated BFT Algorithms

As our approach uses two virtual machines at each replica, we have a bigger
number of processes despite of the number of required physical machines being
the same as [11], [12], [13].

6 Conclusions

By exploring some virtualization techniques, we proposed a less expensive alter-
native algorithm to BFT. We show that is possible to implement a reliable 2f + 1
SMR algorithm in an asynchronous environment. Despite of relying in a secure
communication between each pair of virtual machines, we believe that virtualiza-
tion is widely available today and can provide a good isolation between the repli-
cas and the external world. Moreover, we reduced the number of necessary com-
munication steps, reducing the cost of communication.

References

[1] Lamport L, Shosta, R, Pease, M (1982) The Byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst. 4(3):382-401.

[2] Schneider F B (1990) Implementing fault-tolerant services using the state machine approach:
a tutorial. ACM Comput. Surv. 22(4):299-319.

[3] Castro M, Liskov B (1999) Practical Byzantine fault tolerance. In: Proc. of the 3rd OSDI,
Berkeley, CA, USA, USENIX Association. 173-186.

[4]. Yin J, Martin J P, Venkataramani A et al (2003) Separating agreement from execution for
Byzantine fault tolerant services. SIGOPS Oper. Syst. Rev. 37 253-267.

10

[5] Kotla R, Clement A, Wong E et al (2008) Zyzzyva: speculative Byzantine fault tolerance.
Commun. ACM 51 86-95.

[6] Chandra T D, Toueg S (1996) Unreliable failure detectors for reliable distributed systems. J.
ACM 43(2) 225-267.

[7] Doudou A, Garbinato B, Guerraoui R et al (1999) Muteness failure detectors: Specification
and implementation. In: Proc. of the 3rd EDCC, Springer-Verlag 71-87.

[8] Kihlstrom K P, Moser L E, Melliar-Smith P M (2003) Byzantine fault detectors for solving
consensus. The Computer Journal 46.

[9] Jiang X, Wang X (2007) Out-of-the-box monitoring of VM-based high-interaction honey-
pots. In: Proc. of the 10th International Symp. on Recent Advances in Intrusion Detection.

[10] Garfinkel T, Rosenblum M (2003) A virtual machine introspection based architecture for
intrusion detection. In: Proc. of the Network and Distributed Systems Security Symposium.

[11] Correia M, Neves N F, Verissimo P (2004) How to tolerate half less one Byzantine nodes in
practical distributed systems. In: Proc. of the 23rd IEEE SRDS. 174-183.

[12] Chun B G, Maniatis P, Shenker S et al (2007) Attested append-only memory: making ad-
versaries stick to their word. In: Proc. of the 21st ACM SOSP. 189-204.

[13] Veronese G S, Correia M, Bessani A N et al (2013) Eficient Byzantine fault tolerance. IEEE
Transactions on Computers 62(1):16-30.

[14] Wood T, Singh R, Venkataramani A et al (2011) ZZ and the art of practical BFT execution.
In: Proceedings of the 6th ACM SIGOPS/EuroSys European Systems Conference. 123-138.

[15] Stumm V, Lung L C, Correia M et al (2010) Intrusion tolerant services through virtualiza-
tion: A shared memory approach. In: Proc. of the 24th IEEE AINA. 768-774.

[16] Mpoeleng D, Ezhilchelvan P, Speirs N (2003) From crash tolerance to authenticated Byzan-
tine tolerance: A structured approach, the cost and benefits. In: Proceedings of the IEEE/IFIP
33rd International Conference on Dependable Systems and Networks. 227-236.

[17] Inayat Q, Ezhilchelvan P (2006) A performance study on the signal-on-fail approach to
imposing total order in the streets of byzantium. In: In Proc. IEEE DSN. 578-587.

[18] Murray D G, Milos G, Hand S (2008) Improving Xen security through disaggregation. In:
Proceedings of the 4th ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments. 151-160.

[19] Szefer J, Keller E, Lee R B et al (2011) Eliminating the hypervisor attack surface for a more
secure cloud. In: Proceedings of the 18th ACM Conference on Computer and Communica-
tions Security. 401-412.

[20] Wang Z, Jiang X (2010) HyperSafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In: Proc. of the IEEE Security and Privacy Symposium. 380-395.

[21] Bessani A, Daidone A, Gashi I et al (2009) Enhancing fault / intrusion tolerance through
design and configuration diversity. In: Proceedings of the 3rd Workshop on Recent Advances
on Intrusion-Tolerant Systems.

[22] Gashi I, Popov P T, Strigini L (2007) Fault tolerance via diversity for o#-the-shelf products:
A study with SQL database servers. IEEE Transactions on Dependable and Secure Compu-
ting 4(4):280-294.

[23] Castro M, Liskov B (1999) Authenticated Byzantine fault tolerance without public-key
cryptography. Technical report, Cambridge, MA, USA.

[24] M. S. Wangham, L. C. Lung, C. M. Westphall,and J. da Silva Fraga, “Integrating SSL to the
JACOWEB security framework: Project and Implementation,” in IM’01, 2001, pp. 779–792.

