
Design of a P2P Infrastructure to Support Plagiarism
Detection Mechanisms

Juan Andrés Mussini
Programa de Pós-Graduação

em Informática Aplicada
Pontifı́cia Universidade
Católica do Paraná
Curitiba–PR, Brasil,

80215-901

juan.mussini@pucpr.br

Lau Cheuk Lung
Departamento de

Informática e Estatı́stica
Universidade Federal de

Santa Catarina
Florianópolis–SC, Brasil,

88040-900

lau.lung@inf.ufsc.br

Fábio Favarim
Departamento de

Automação e Sistemas
Universidade Federal de

Santa Catarina
Florianópolis–SC, Brasil,

88040-900

fabio@das.ufsc.br

ABSTRACT
Nowadays the Internet has become a reference on informa-
tion retrieval. But this can be misused, as one can simply
access information and take it as his own authorship. This
constitutes an act of plagiarism. It has become increasingly
common for people to do this, and tools to prevent this are
in need. In order to help to deal with this relevant problem,
this paper presents the PeerDetect, a new P2P middleware
to support a plagiarism detection system. The proposed
solution is based on a P2P network, where a plagiarism de-
tection mechanism uses PeerDetect to distribute the effort of
doing this detection among peers. The proposed approach
allows us to reach a better performance and scalability.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—Distributed applications

General Terms
Algorithms, Design

Keywords
P2P, Middleware, DHT, Plagiarism Detection, Internet

1. INTRODUCTION
The advent and the expansion of the Internet brought un-
questionable benefits to socialization of information. The
Internet has been essential in the life of many people as it
is very easy to access the unmeasurable amount of informa-
tion. This easiness contributes to an efficient distribution
of the human knowledge and its acquirement [1]. However,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSTST 2008 October 27-31, 2008, Cergy-Pontoise, France
Copyright 2008 ACM 978-1-60558-046-3/08/0003 ...$5.00.

this socialization of information also brought an important
problem: plagiarism.
Plagiarism occurrences have been growing in the last years
[23], and tools to make copies grew also in the same pro-
portion, from a simple search in a content indexer, such
as Google [10], to sites that offer already made work [19,
11]. Many professors, specially the ones that are not from
computer-related areas, do not have information about fraud
detection techniques and tools. Usually, to detect plagia-
rism it is used a manual checking, where a professor selects
some random phrases from the document and use them to
search manually for matching documents using a search en-
gine. However, manual checking is very time-consuming and
laborious process becoming many times impractical.
Nowadays, some software tools have appeared [4, 12] in order
to automate this process. These tools, generally indicates
what is the similarity degree between two documents. If this
degree is considered high, a manual checking by a specialist
(professor, for example) is needed. This manual check is es-
sential, because there is no detection system that guarantees
100% assurance.
Therefore, we propose in this paper a P2P middleware, called
PeerDetect, which is well suited to support a natural lan-
guage written documents plagiarism detection system. PeerDe-
tect uses the Internet as a data source and the P2P network
as a way to ensure load balance among the peers the work
of searching plagiarism on Internet. When the peers join
the P2P network, they mark themselves as peer available
for job. However, when a peer receives a document to be
analyzed, it becomes a main peer which analyzes the doc-
ument size and the number of helper peers. Based on this,
the main peer defines in how many parts the document will
be divided, how many peers on the network will be used and
which will be the peer/part relation. Each part is sent to the
helper peer assigned to that part. These peers do a simple
search using a Internet searching mechanism and then pub-
lishes the pages found. The main peer collects these answers
and presents them to the user for final evaluation.
The remainder of this paper is organized as follows. Sections
2 and 3 present concepts and related technology regarding
the plagiarism detection system – Section 2 presents peer-
to-peer networks and DHTs (Distributed Hash Tables) and
section 3 presents current plagiarism detection techniques.
Section 4 presents related works. Section 5 presents the

PeerDetect Middleware. Section 6 presents performance re-
sults. Finally, Section 7 gives some concluding remarks.

2. P2P ARCHITECTURES
Peer-to-peer (P2P) systems offer resources (services, files,
etc) in a distributed manner, where each peer can search
and provide resources. Differently from conventional sys-
tems, such as client-server model, where services (resources)
are usually kept on the server, P2P systems provide collabo-
ration and access between clients and resources in a disperse
manner, without the need of a central server in a distributed
system. One of P2P properties is to provide to its partici-
pants, called peers, a symmetric role, with the same capa-
bilities and responsibilities.

2.1 JXTA
In the beginning, when some P2P protocols and applica-
tions began to be used, they did not interact with each
other. Aiming to deal with this problem, Sun Microsystems
launched the JXTA platform [22]. JXTA was conceived in
order to standardize a common set of open protocols allow-
ing any device on the network to communicate and collabo-
rate in a P2P manner. The JXTA protocols are defined as
a set of XML messages.
JXTA protocols establish a virtual network overlay over the
Internet, allowing peers to directly interact and self-organize
independently of their underlying network connectivity and
topology. Thus, many Ad-hoc virtual networks can be cre-
ated and dynamically mapped into one single physical net-
work. JXTA defines a minimum set of requirements for peers
to form and join a virtual P2P network. So it is possi-
ble that application developers define the network topology
that is best suited for their application requirements. JXTA
was designed in order to be independent of programming
languages, operational systems, services definitions and net-
work protocols.

2.2 Location in Peer-to-Peer Systems
One of P2P networks most important services is the resource
discovering. This service allows the users to find in the P2P
network the resource (services, files, etc.) they need. In
general, the result consists of list of peers where the resource
can be found. After the resource is found, the requesting
peer can make direct access to the owner of the resource.
Basically, there are three approaches to the content location
in P2P systems: centralized, flooding and DHT based.
In the first approach, a central server maintains an index of
all resources being shared. This index can be accessed by
all client nodes. When a node joins the system, it contacts
the central server and sends a list of the resources that are
available for other nodes. To locate a resource, a client node
sends a query to the central server, which performs a lookup
in its database and replies with a list of peers that have the
desired resource. After querying the central server, it starts
communicating directly with the others nodes in order to
obtain the desired resource.
In the flooding approach, all nodes are autonomous and have
the same role. In this approach, there is not a central server
and each node is responsible for maintaining the index of
the resources it stores. Because the participating nodes are
organized in a non-structured way, each node can commu-
nicate directly with some nodes and indirectly to all nodes
in the network. Thus, a node cannot be aware of which

other nodes are in the network. In this way, in order to per-
form the querying, a limited-scope query message is flooded
to the network. It works as follow: each request is firstly
sent to directly connected nodes, which sends this request
to nodes directly connected to them, and so on, until the lim-
ited scope is reached (usually between 5 to 9 steps). Notice
that, since query messages have limited scope, it is possible
that nodes cannot locate resources even though the files are
available in the network.

2.2.1 Distributed Hash Tables
Distributed Hash Tables (DHTs) are a class of decentralized
distributed systems that perform the functions of a hash ta-
ble. A hash table stores (key, value) pairs and values are
look up through the key. In DHT, the key-space is dis-
tributed among the multiple nodes. Thus, both storage and
lookups are distributed among participating nodes. DHT
are designed to handle with continuously joins, leaves and
failures of nodes. This allows DHTs to scale to large num-
bers of nodes. DHTs can then be used to the implementa-
tion of a diverse variety of peer-to-peer applications, such as
file sharing, distributed file systems, domain name services,
cooperative web caches, and instant messaging.
Unlike traditional P2P lookup mechanisms (centralized and
flooding), the DHT uses a more structured key based lookup
mechanism in order to achieve both the decentralization of
Gnutella and efficiency of results of Napster. However, the
DHT has one drawback, it only supports exact match search
(using the key), rather than keyword search. This function-
ality can be layered on top of a DHT [2].
The first DHTs based infrastructures (CAN [14], Chord [20],
Pastry [17] and Tapestry [24]) were introduced about the
same time in 2001. Since then this area of research has been
quite active.

3. PLAGIARISM DETECTION TECHNI-
QUES

The Plagiarism detection can be classified in two different
types: Source Code Plagiarism Detection and Plagiarism
Detection in Natural Language Documents. In source code
detection there are two methods often used: attribute count-
ing and structures measuring [5]. The source code detection
is more common in the literature than the natural language
approaches. It is expound by the well defined syntax of the
programming languages found in source codes. The natural
language is more complex, where a single expression has dif-
ferent meanings. In this project, the source code plagiarism
detection is out of scope of this paper.

3.1 Plagiarism Detection in Natural Language
Documents

Usually, the plagiarism in documents written in natural lan-
guage is manually detected by professors and tutors. If they
are familiarized to the style of their students, they will be
able to identify irregularities in documents written by them.
This identification can be achieved by comparing the doc-
uments with old ones in order to find expressions and vo-
cabularies different from those the students are accustomed
to. Other distinguishing characteristics that can be used to
help identifying plagiarism in natural language documents
are, for instance [6]:

• Vocabulary: comparing the current vocabulary with

the previous used vocabulary. The highest is the dif-
ference, which means the higher number of new words,
the lowest is the probability of copy. Another point is
the dynamism of the vocabulary. If the current vocab-
ulary often changes in the same document, it probably
means that a copy was done;

• Text incoherence: if the text does not present consis-
tence, it can be an indication of copying;

• Punctuation: the punctuation varies from one text to
another. Similar punctuation can be an evidence of a
copy.

• Text Similarities: texts using the similar terms, names
and definitions, including the order of the similarities.
Continuous grammar mistakes;

• Long sequences of well know texts or documents;

• Dependence on specific words and sentences;

• Readability: using measurement methods, the Gun-
ning FOG[16] for instance, the text can be scored. Dif-
ferent documents must have different scores;

• Missing references: when a reference is mentioned in
the text but it is not in the bibliography.

There are simpler algorithms that try to detect plagiarism
with fewer but important characteristics. These character-
istics can be extracted and compared in another moment –
both documents do not need to be compared at the same
time. An example of this is seen on [8], where the proposed
algorithm consists on finding words that only appear once
in the whole text are detected. These words are called hapax
legomena. Documents with a similar hapax legomena could
be a copy.
Other algorithms explore the document in a deeper level.
They analyze further information, such as document struc-
ture, keywords extraction (substantives, verbs, adjectives
and adverbs) and structure characteristics (document struc-
ture related to keywords), and they need both documents
present to get compared. Documents that have similar char-
acteristics could be a copy. COPS [3], Glatt[9] and SCAM
[18] have these characteristics.
One could reduce the scope of a deeper algorithm aand use
it as a simpler algorithm. For example, instead of exploring
all document characteristics, one could only extract a single
characteristic and compare it.

4. RELATED WORK
There are some plagiarism detection systems, but there is
only one dealing with P2P networks, called DetectIt [21].
For the authors of DetectIt, Elif Tosun and Ben Wellington,
the ideal solution for a plagiarism system is to keep a record
of all written documents so that a new document is sub-
mitted, it is compared with all the other documents in the
database. Therefore, the more users there are, a larger base
there will be. This base, due to its size, would have to be
distributed. DetectIt was developed following these charac-
teristics, written in Java, and using Tapestry as a base. It
uses the concept of fingerprints for documents comparison.
If two documents have similar fingerprints, they could be
potentially a copy. A fingerprint is a sequence of characters

of fixed size n. DetectIt searches both documents, extracts
and publishes a specific amount of fingerprints, and com-
pares them. The tests made with DetectIt show that the
system is fit for the user needs, but the results only show
fingerprint generation times, and not the plagiarism detec-
tion. This makes it hard to compare the efficiency between
DetectIt and PeerDetect. Unfortunately DetectIt was not
further developed, there is only one paper about this sys-
tem, and it was published in 2003.
Most of the traditional plagiarism systems that deals with
documents written in a natural language are paid, such as:
Copycatch [7], Turnitin [12] and Eve [4]. These tools are
based on traditional client-server model. The user sends
a document to the service, which is connected to a huge
database that makes the plagiarism detection process. PeerDe-
tect uses P2P technology for reaching scalability, fault tol-
erance and better performance.

5. PEERDETECT MIDDLEWARE
In this section, we present a natural language written doc-
uments plagiarism detection system named PeerDetect.
PeerDetect is based on the ideas of Web2Peer [15].
Web2Peer is an infrastructure for publication and retrieval
of web pages in a P2P network. PeerDetect has two ap-
proaches. They differ mainly on the data source used for
plagiarism search and also on the algorithm used to per-
form this search. In this paper, due the lack of space, we
only present the decentralized approach.
PeerDetects’ decentralized approach uses both WWW (World
Wide Web) and P2P networks advantages. Regarding the
WWW, it is the data source used to compare the document
submitted for verification. The Web has countless docu-
ments, and indexing mechanisms such as Google are capa-
ble of sweeping a large amount of this information in a few
seconds.
PeerDetect’s uses Google to search for documents with simi-
lar phrases. However, a large document would take too long
to be verified if searched phrase by phrase on Google. This
could mean a large amount of work for a single computer.
This is why we propose to use P2P networks. Document
parts to be searched are distributed among the participat-
ing peers so the work load can be balanced.
Every network peer communicates through DHT. It is used
as a “message board”, where every peer publishes its state
and tasks. Every peer becomes leader when it has a doc-
ument to be verified, and the others will be helper peers.
However, a helper peer can also be a leader peer at the same
time. The decentralized approach consists on two different
process, tasks publishing and tasks checking.

5.1 Tasks publishing
This process is executed by a peer whose owner has submit-
ted a document to be searched. This peer first calculates
the submitted document size and searches in the DHT to
know how many peers are available to work with. With this
information, the owner peer (or main peer) distributes the
tasks for each peer. The tasks consist simply on text parts.
The peer then waits for the analysis results. Peer 0 on Fig-
ure 1 presents the task publishing procedure and each step
is detailed on the sequence.
The owner peer uses a local table to handle the informa-
tion of which document parts has been analyzed. When it
distributed the tasks among the available peers, it updates

Figure 1: Task publishing (Peer 0) and checking
(Peer 1) on the decentralized approach

Table 1: Storage structure used on the DHT for the
decentralized approach

key value
1 availablePeer peerId
2 availablePeerId ownerPeerId@docPart
3 ownerPeerId@docPart result

this table in order to keep track about what peer is working
on which document part. After the peers return the results,
the owner peer updates the table with this information.

1. a) User submits a document to be analyzed to the
owner peer (peer 0). This document is handled by the
“Task manager” module;

2. a) Owner peer searches in the DHT for available peers.
This search is made by searching for the key available-
Peer on the DHT (line 1 of Table 1). The DHT returns
a list of peer ids;

3. a) Owner peer distributes document parts for each
available peer and updates the control table with this
information. This distribution is made by simple di-
viding the number of pages by the number of available
peers;

4. a) Owner peer publishes the task information on the
DHT using the structure presented on line 2 of Table
1 and the “DHT Publisher” interface;

5. a) Owner peer periodically searches for answers us-
ing the “DHT Searcher” interface. It does that by
searching for the concatenation of its own identifier
(ownerId) and the published document part identi-
fier (docPart) (line 3 of Table 1). In case of answers,
updates the control table.

PeerDetect uses TTL (time to live) when it publishes an
information. The TTL is the amount of time an information
will be available in the DHT before it expires and be deleted.
The pending tasks information published by the owner peer
has a medium TTL, because tasks assigned to peers that are
not available anymore should not be left unsolved.

5.2 Tasks checking
The assistant peers (or helper peers), whose owners did not
post any document, take another role. The first action is
to publish in the DHT its state: availablePeer (structure
presented on line 1 of Table 1). This information have a low
TTL, because it must be accurate, so that the responsible
peer when receiving the available peer list does not give a
task to peers that are now busy. After that, the assistant
peers periodically search in the DHT, checking for tasks that
a owner peer could have posted. If the peer finds its own Id
on the DHT, it downloads its task using the JXTA server,
and executes the task, searching Google for phrases. If this
search has some result, the peer publishes this information
using the structure presented on line 3 of Table 1. This
information has a high TTL.
Peer 1 on Figure 1 presents step-by-step the task publishing
procedure and bellow each step is explained.

1. b) When entering the P2P network, the peer (peer 1)
does an self-publishing on the DHT using the “DHT
Publisher” interface, informing that it is available. It
does this by publishing the keyword availablePeer
along with its identifier (availablePeerId) (line 1 of
Table 1);

2. b) The assistant peer periodically searches for its
peerId on the DHT. It looks for tasks that a owner
peer (peer 0) may have had assigned for it;

3. b) When there is a task, it downloads the parts through
the JXTA server;

4. b) The assistant peer then searches through the Web
for phrases using Google’s API. The user can define
the phrase length. The search is made using quotes,
meaning that Google will search for that exact phrase;

5. b) Results are published using the structure presented
on line 3 of Table 1.

6. EVALUATION
A good plagiarism detection tool must be, above all, help-
ful. This means that it has to at least point out for the
right direction, so that the specialist has the least amount
of false positives (detected plagiarism that really is not). It
also has to present these results in an acceptable time. In
other words, the tool has to be working in a correct (hits)
and efficient (time) manner. The tests were made using 3
computers, an AMD Turion 1.6 GHz with 1 GB ram as peer
0 and two AMD Athlon XP 2.6 GHz with 512 MB RAM as
peers 1 and 2 in a 100Mb bandwidth network. The software
environment used was the Linux OS 2.6.23 32 bits and JVM
version 1.6.0.03.
On the decentralized approach tests are made to measure
the total time and hit (correct answer) percentage of the
results. The phrase length definition by the user is an im-
portant step, as the smaller the phrase length, the more false
positives are found. Tests showed that a phrase length of 15
words is enough for good results.
Table 2 shows the number of queries executed with a single
computer, using PeerDetect with 2 peers and with 3 peers.
Three documents were used for tests. The amount of queries
consists on every phrase on the document with 15 words. As
the number of pages is divided by the number of peers, the

Table 2: Queries for each test
Document size (pages) Single computer 2 peers 3 peers

13 42 28 22
22 46 23 13
93 390 174 82

Figure 2: Decentralized approach total execution
time

number of queries could increase or decrease depending on
how many 15 words phrases are there on the page. The
values on Table 2 are an average number of queries for each
peer.
Figure 2 presents how much time it took to complete the
whole search in each case. The larger the document, the
more queries there are, and the longer the time. But having
an assistant peer helps bring the total time to nearly half.
The time is related to the number of queries each peer has
to search, meaning that if the document is small, there is no
great advantage of having many peers dividing the tasks. In
the scenario where there are two computers instead of one,
the execution time is not reduced to half, since there is the
task publication time and its answers (overhead).

6.1 Determining query format and size
Let us suppose that the plagiarism author copied the fol-
lowing phrase “The pinball machine is an arcade standard
that most enjoy having a game or two on. There are also
those who have truly mastered its secrets. Find out about
the vagaries and nuances of tilt sensors, replays, matches,
combination shots and more”. Searching Google for this
phrase, the results are presented on Table 3. Among the
presented results, in some cases they do not have any rela-
tion with the query, they only have the query words spread
among the text. These results are not considered to be a
plagiarism. The results in which the phrase is identical as
the query characterizes a plagiarism. Table 4 presents the
hit percent among the presented results. It can be seen that
the use of quotes guarantees a 100% hit rate, using a reason-
able phrase size, for example 13 words. The test consisted
on using 10 different phrases.
The first one consisted on the selection of five words that

Table 3: Result total

Phrase format Full 26 13 9 5
42 words words words words words

Without quotes 127 18500 47000 210000 1720000
With quotes 1 1 1 4 6

Table 4: Results relevance
Phrase format Full 26 13 9 5

42 words words words words words
Without quotes 0.7 0.005 0.002 0.001 0.0004

With quotes 100 100 100 25 17

Table 5: Queries results using quotes
Most frequent Least frequent

Document1 178 searches with 9644 re-
sults total - average 54 re-
sults per search: 6

3 searches with 518 results
total - average 172 results
per search

Document2 44 searches with 50 results
total - average 1 result per
search

17 searches with 21 results
total - average 1 result per
search

Document3 23 searches with 71 results
total - average 3 results per
search

1 search with 2 results total
- average 2 results per search

Document4 95 searches with 116 results
total - average 1 result per
search

4 searches with 4 results to-
tal - average 1 result per
search

Document5 6 searches with 1655 results
total - average 275 results
per search

0 searches with 0 results to-
tal

Document6 119 searches with 128 results
total - average 1 result per
search

5 searches with 6 results to-
tal - average 1 result per
search

were the most frequent word on the text and also the five
words that were the least frequent on the text. The phrases
which these words were part of the selected and then search-
ed on Google. To illustrate this search, on a given document
the most frequent words were: period, would, were, United,
and states. Some of the phrases in which the first of this
words (period) takes part are:

• “(...)brackets by time period. The following discussion
provides(...)”

• “(...)history of the time period in which it occurred
and(...)”

• “(...)with bracket I covering the period from 1789-
1850,(...)”

These phrases were all searched on Google using quotes.
Queries which resulted in more than 1.000 results were ig-
nored. The results are presented on Table 5. There is basi-
cally no difference using between phrases with least frequent
words and most frequent words. All of these results in an
average of 1 result per search. Thus, the use of quotes is de-
termining. Documents 1 and 5, since they are essays about
common topics (one is a Windows XP help guide and the
other is about the film Titanic), had a large number of re-
sults.
The tests using no quotes consisted on selecting the 30 words
most frequent and the 30 words least frequent on the text.
These words were then searched on Google without quotes.
The results are presented on Table 6.

Table 6: Queries results using no quotes
Most frequent Least frequent

Document1 25500 7
Document2 23300 0
Document3 281 0
Document4 146000 0
Document5 3 0
Document6 527 1

The results show that using the most frequent words there
is a larger number of results, making it hard for a man-
ual inspection. This can be explained by the simple fact
that common words are more likely to be found on a great
amount of documents. If there is no restriction filter (like
the quotes), the results will be large. Using the least fre-
quent words there are few or none results, perhaps due to
Google indexing mechanism, but the relevance of the results
if any, are high. Thus, we believe that using no quotes is
not a confident way of finding plagiarism.

7. CONCLUSIONS
The main objective of this work is to offer an efficient plagia-
rism detection middleware. The decentralized approach uses
the WWW as data source, but also uses the P2P network to
load balance the work of Internet searching among the peers.
This method uses a set of existing technologies and mecha-
nisms, like DHT and JXTA. The decentralized approach has
the advantage of giving a quick answer for evident plagia-
rism. The evaluation section presented the performance of
the proposed middleware, showing the applicability of the
system.
The authors are planning to use PeerDetect as an official
plagiarism detection tool in the University, where the anti-
plagiarism culture is not well known and many professors
have no idea how to do that. The authors hope that PeerDe-
tect will help the professors is such a task. The PUCPR
University uses a collaborative teaching system called Eu-
reka [13] where professors and students have virtual classes.
This system provides many functionalities, like the online
homework delivering, allowing students to upload their work
through a web browser and professor to take them also from
a web browser, for evaluation process. This would be a good
data source to PeerDetect. Thus, if PeerDetect is used with
a similar system in other universities, each university would
become a peer in the P2P network providing its documents.

8. REFERENCES
[1] P. G. Armour. The five orders of ignorance.

Communications of the ACM, 43(10):17–20, 2000.

[2] H. Balakrishnan, M. F. Kaashoek, D. Karger,
R. Morris, and I. Stoica. Looking up data in p2p
systems. Communications of ACM, 46(2):43–48, 2003.

[3] S. Brin, J. Davis, and H. Garćıa-Molina. Copy
detection mechanisms for digital documents. SIGMOD
Rec., 24(2):398–409, 1995.

[4] CaNexus. EVE Plagiarism Detection System. Last
Checked: 2008-06-16, available from:
http://www.canexus.com.

[5] X. Chen, B. Francia, M. Li, B. McKinnon, and
A. Seker. Shared information and program plagiarism
detection. IEEE Transactions on Information Theory,
50(7):1545–1551, 2004.

[6] P. Clough. Plagiarism in natural and programming
languages: An overview of current tools and
technologies. Technical Report CS-00-05, Dept.
Computer Science, University of Sheffield, UK, 2000.

[7] C. S. Development. Copycatch Gold. Last Checked:
2008-06-16, available from:
http://www.copycatchgold.com.

[8] S. Finlay. Copycatch. Master’s thesis, University of
Birmingham, 1999.

[9] Glatt. Glatt Plagiarism Services. Last Checked:
2008-06-16, available from:
http://www.plagiarism.com.

[10] Google. Google Search Engine. Last Checked:
2008-06-16, available from: http://www.google.com.

[11] HighBeam Research. Homework Center. Last
Checked: 2008-06-16, available from:
http://www.infoplease.com/homework.

[12] iParadigms. Turnitin. Last Checked: 2008-06-16,
available from: http://turnitin.com/.

[13] Puc-Pr. Eureka – Ambiente Virtual de Aprendizagem.
Last Checked: 2008-06-16, available from:
http://eureka.pucpr.br.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In Proc.of the Symposium on Communication,
Architecture, and Protocols for Computer
Communications, pages 161–172, San Diego, CA,
USA, August 2001.

[15] H. B. Ribeiro, L. C. Lung, A. O. Santin, and N. L.
Brisola. Web2peer: A peer-to-peer infrastructure for
publishing/locating/replicating web pages on internet.
In ISADS ’07: Proceedings of the Eighth International
Symposium on Autonomous Decentralized Systems,
pages 421–428, Washington, DC, USA, 2007.

[16] Robert Gunning. Plain Language At Work Newsletter.
Last Checked: 2008-06-16, available from:
http://www.impact-information.com/impactinfo/

newsletter/plwork08.htm.

[17] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001), pages 329–350,
Heidelberg, Germany, November 2001.

[18] N. Shivakumar and H. Garćıa-Molina. SCAM: A copy
detection mechanism for digital documents. In
Proceedings of the Second Annual Conference on the
Theory and Practice of Digital Libraries, 1995.

[19] StartSpot Mediaworks. Homework Spot. Last
Checked: 2008-06-16, available from:
http://www.homeworkspot.com.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In Proc.of
the Symposium on Communication, Architecture, and
Protocols for Computer Communications, pages
149–160, San Diego, CA, Aug 2001. ACM Press.

[21] E. Tosun and B. Wellington. Detectit: a peer-to-peer
plagiarism detection system. Corant Institute, NYU,
2003. (Unpublished manuscript).

[22] B. Traversat, M. Abdelaziz, M. Duigou, J. Hugly,
E. Pouyoul, and B. Yeager. Project JXTA virtual
network, 2002.

[23] K. Zernike. With student cheating on the rise, more
colleges are turning to honor codes. New York Times,
Novembro:10–11, 2002.

[24] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

