
BTS: A Byzantine Fault-Tolerant Tuple Space∗

Alysson Neves Bessani
DAS/UFSC

Florianópolis - SC, Brazil

neves@das.ufsc.br

Joni da Silva Fraga
DAS/UFSC

Florianópolis - SC, Brazil

fraga@das.ufsc.br

Lau Cheuk Lung
PPGIA/PUC-PR

Curitiba - PR, Brazil
lau@ppgia.pucpr.br

ABSTRACT
Generative coordination is one of the most prominent coordination
models for implementing open systems due to its spatial and tem-
poral decoupling. Recently, a coordination community effort have
been trying to integrate security mechanisms to this model aiming
to improve its robustness. In this context, this paper presents the
BTS coordination model, which provides a Byzantine fault-tolerant
tuple space. Byzantine faults are commonly used to represent both
process crashes and intrusions. As far as we know. BTS is the first
coordination model that supports this dependability level.

1. INTRODUCTION
Most of the modern distributed systems (ex. peer-to-peer net-

works, web services and grid computing) have open systems char-
acteristics: an unknown number of unreliable and heterogeneous
(ex. variable computation and communication capacity) partici-
pants. The coordination mechanisms used for processes interac-
tion in most of current distributed systems, as the message pass-
ing communication paradigm, are not suited for the future open
systems. Requirements of anonymity and possibility of temporary
disconnections (unreliable communications) imply in the need for
decoupled interactions. Therefore, alternative coordination mod-
els are needed. Amongst these models, the generative coordina-
tion [11] stands out due to its flexibility and simplicity. In this
model, processes interact through a shared memory space (tuple
space) in which generic data structures (tuples) are inserted, read
and removed through a reduced (and simple) operation set. The
coordination is decoupled in time (the participants do not need to
be active at the same time) and in space (they do not need to know
each other) [5].

Independently of the coordination model used in open distributed
systems, these interactions are subject to all sorts of failures and se-
curity attacks. These events can affect both, the participants being
coordinated and the coordination infrastructure, compromising the
entire system. One way to improve the system reliability is to inter-
pret accidental or malicious failures as Byzantine faults [15] so that
∗This work is supported by CNPq (Brazilian National Research
Council) through process 550114/2005-0.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

fault-tolerance techniques could be used to make the coordination
infrastructure resilient to both, accidental crashes and intrusions.

This paper proposes a Byzantine fault-tolerant tuple space coor-
dination model, called BTS (Byzantine Tuple Space). This pro-
posal is based on a shared tuple space simulation over a distributed
system (without shared memory) in which processes communicate
by message passing. The replication technique used for implement-
ing this simulation is the Byzantine quorum systems [16, 18].

The development of this coordination infrastructure aims to pro-
vide intrusion tolerance1 [10, 22] in open systems. Therefore,
the environment considered in this work is very unfavorable: an
arbitrary number of processes, subject to Byzantine failures and
executing in a very weak environment in terms of time guarantees.
The construction of a reliable tuple space in an environment with
these characteristics complements recent efforts of the coordina-
tion community aiming to integrate security mechanisms into the
generative coordination model [8, 19, 23, 3].

This paper is structured as follows. Section 2 presents an
overview of the generative coordination model. Section 3 presents
our system model, the BTS protocols and the Byzantine quorum
system used to build it. Section 4 discusses the performance of
BTS. Section 5 describes some related work. Finally, Section 6
ends the paper with some concluding remarks.

2. GENERATIVE COORDINATION
The generative coordination model, originally introduced in

LINDA programming language [11], allows distributed processes to
interact through a shared memory space, called tuple space, where
generic data structures, called tuples, are stored and retrieved.

In this model, each tuple is a sequence of typed fields that may
have a defined value. A tuple in which all fields have a defined
value is called entry. A template, usually denoted by t, is a tu-
ple that have one or more undefined fields. The type of a tuple t,
denoted by type(t), is the sequence of types of each field of t. An
entry t and a template t match, denoted by m(t, t), if they have the
same type and all defined field values of t are equal the correspond-
ing field values of t.

There are three basic operations defined for data manipulation in
a tuple space [11]: out(t), which outputs the entry t in the tuple
space; in(t), which removes a tuple that matches t from the tuple
space (destructive read); and rd(t), which is similar to in(t), but the
tuple read is not removed from the space (non-destructive read).
The in and rd operations are blocking, i.e., if there is no tuple in
the space that matches the specified template, the invoking process
will block until a matching tuple becomes available. A common
1A system is called intrusion tolerant if can provide a continuous
and safe service despite the occurrence of intrusions in a bounded
number of its components.

extension to this model (adopted in this paper) is the inclusion of
non-blocking variants of these read operations, called inp and rdp,
respectively. These operations work in the same way of their block-
ing versions but return even if there is no matching tuple for the
specified template in the space (signaling failure). Notice that ac-
cording to the definitions above, the tuple space works just like an
associative memory: tuples are accessed through their contents and
not through their address.

3. BTS PROTOCOLS
In this section we will define our system model as well as the

Byzantine quorum system replication technique, and present the
BTS protocols.

3.1 System Model
The adopted system model assumes a infinite set of client pro-

cesses Π = {p1, p2, p3, ...} which interact with a set of n servers
U = {s1,s2, ...,sn} that simulates a fault-tolerant tuple space.

All communications between client processes and servers area
held over reliable and authenticated point-to-point channels that
deliver messages in FIFO (First-In First-Out) order2. Additionally,
all processes are equipped with a local clock, used to compute mes-
sages timeouts. These clocks could diverge one from the others,
i.e., they are not synchronized.

In terms of processes failures, we assume that an arbitrary num-
ber of clients and a bound of f ≤ d n−1

3 e servers could be subject to
Byzantine failures [15]: they could deviate arbitrarily from their
specification and work in collusion to corrupt the system behavior.
A process behaving like that is said to be faulty. A process that is
not faulty is said to be correct. Also, we assume fault indepen-
dence, obtained by the systematic use of hardware and software
diversity (SO, VM, etc) [7].

As a tuple space cannot be implemented using only basic
read/write shared memory objects (registers) [21, 13], we must as-
sume some weak time assumptions to build this kind of object. In
that way, we assume the eventually synchronous system model
[9]: in all executions of the system, there is a bound ∆ and a time
GST (Global Stabilization Time), so that every message sent by a
correct process to a correct process at time t > GST is received at
time t +∆. It is important to notice that neither ∆ nor GST need to
be know by the processes. An execution of a distributed algorithm
is said to be nice if the bound ∆ is always held and there are no
process failures.

The intuition behind this model is that the system works asyn-
chronously (respecting no time bounds) most of the time but even-
tually enters in a stable synchronous period where all tasks (mes-
sage transmissions, for instance) are performed in a timely way3.
Finally we assume also that all local computations require negligi-
ble time. Notice that this model resembles the Internet behavior.

3.2 Byzantine Quorum Systems
Quorum systems [12] are valuable alternative for implementing

reliable shared memory objects in systems in which processes com-
municate by message passing. In this way, a quorum system for a
universe of data servers is a collection of server sets, called quo-
rums, that have a non-empty intersection. The principle behind
their use in storage services is that if a shared variable is stored in
all servers, read and write operations could be done only in a quo-

2That can be easily implemented using SSL (Secure Socket Layer)
technology.
3In practice, this stable period must be long enough for the dis-
tributed protocol terminate.

rum of servers. The existence of intersections between the quorums
enables the development of read and write protocols that maintains
the integrity of the shared variable even if these operations are per-
formed in different quorums of the system. Byzantine quorum
systems [16] are a generalization of this technique suited for envi-
ronments in which processes could fail in a Byzantine way.

Formally, a Byzantine quorum system is a set of server quorums
Q ⊆ 2U in which each pair of quorums from Q intersect in suffi-
ciently many servers (consistency property) and there is always a
quorum in which all servers are correct (availability property).

Servers simulate shared memory objects (in this paper, a tuple
space) organized as a masking quorum system, which tolerates at
most f faulty servers [16]. More specifically, BTS is built using
an asymmetric masking quorum system [18], that distinguishes
itself from other types of quorum systems by the use of different
quorum sizes in different operations.

Due to the requirements of asymmetric quorum system, we as-
sume n≥ 3 f +1 and a system composed by two types of quorums
(Q = Qr ∪Qw): read (Qr ∈Qr) and write (Qw ∈Qw), each with
d n+ f +1

2 e and d n+ f +1
2 e+ f servers, respectively.

3.3 Protocols
This section presents the protocols for executing all tuple space

operations in the BTS model. First, we will present protocols for
the non-blocking variants of operations rd and in and then we will
derive their blocking versions.

All algorithms defined in this section assume that each server s
has a local copy of the tuple space, denoted by Ts, and a “to be
removed” set, denoted by Rs. Since standard set operations are ap-
plied to manipulate these two tuple sets, we assume that identical
tuples does not exist. It can be implemented, for example, by ap-
pending the id of the process that created the tuple plus a sequence
number in an opaque field (will not be read) of it.

3.3.1 out
The invocation of the output operation out inserts a tuple t in

space. This operation is implemented through the Algorithm 1.

Algorithm 1 out operation (process p and server s).
{Client}
procedure out(t)
1: ∀s ∈ Qw,send(s,〈OUT, t〉)

{Server}
upon receive(p,〈OUT, t〉)
2: if t /∈ Rs then
3: Ts← Ts ∪{t}
4: end if
5: Rs← Rs \{t}

Due to the generative model non-deterministic nature and the use
of reliable communication channels, a client does not need to wait
replies from servers when it inserts a tuple in the space. When a
server receives a tuple t to be inserted, it only adds this tuple to the
space if t was not already removed, and its removal from this server
is pending (it belongs to Rs). This kind of control is necessary
to ensure that the same tuple will not be removed twice from the
tuple space. This type of write protocol, called non-confirmable
[18], requires less message exchanges and can be used in systems
in which the writer does not need to know the exact time when its
write completes. We assume that an out operation completes when
all correct servers in a write quorum receives the tuple.

A disadvantage about this implementation strategy is that it im-
plies in an unordered semantics for the out operation [4]. This
semantics, the weakest for this operation, is proved to be not suffi-
cient to implement all programs [4].

3.3.2 rdp

The non-destructive read operation rdp(t) of a tuple t, which
matches a template t, is done in BTS through the protocol presented
in Algorithm 2.

Algorithm 2 rdp operation (process p and server s).
{Client}
procedure rdp(t)
1: T [s1, ...,sn]← (⊥, ...,⊥)
2: ∀s ∈U , send(s,〈RD, t〉)
3: repeat
4: wait receive(s,〈TS,T t

s 〉))
5: T [s]← T t

s
6: until {s ∈U : T [s] 6=⊥} ∈Qr
7: if ∃t : (#Tt∈ ≥ f +1) then
8: return t
9: end if

10: return ⊥

{Server}
upon receive(p,〈RD, t〉)
11: T t

s ←{t ∈ Ts : m(t, t)}
12: send(p,〈TS,T t

s 〉)

The protocol works basically with the client accessing a read
quorum of servers4 trying to get all tuples that match with the tem-
plate t (lines 2-6). By the algorithm, each accessed server s must
reply a match set T t

s with all its tuples that match t (lines 11 and
12). The client collects the matching tuples from the read quorum
and store them in an array T . Then it chooses a tuple t, common
to the match set of at least f + 1 servers (denoted by #Tt∈ ≥ f + 1
- lines 7 and 8). If there is no such tuple, the special symbol ⊥ is
returned, meaning a failure in the operation (line 9).

3.3.3 inp
Operation inp requires the most complex protocol for its imple-

mentation in BTS. This complexity results from the fact that one
tuple cannot be removed from the space by two distinct invocations
of inp. This requirement implies in a natural mutual exclusion for
processes trying to remove tuples from the same type.

Our proposal to implement this operation is based on two build-
ing blocks:

• Mutual Exclusion: The mutual exclusion problem concerns
the management of a set of processes that want to have ac-
cess to an indivisible resource that cannot be accessed by
more than one process at a time. An algorithm that solves
this problem must manage these processes ensuring that at
most one of them will access the resource at a time (mu-
tual exclusion property) and all processes will have access
to the resource some time (no lockout property) [1]. This
problem is usually defined in terms of a processes set trying
to execute a privileged critical section of their code. Mu-
tual exclusion algorithms are generally defined in terms of
operations to enter a critical section referring to a resource
(enter(r)) and leaving this section (exit(r)). In the BTS inp
protocol, a mutual exclusion algorithm is used to ensure that
an unique process will try to remove a tuple, i.e., the tuple
destructive read in the critical section of the process.

• Byzantine PAXOS Algorithm The PAXOS algorithm [14] is
one of the most interesting algorithms for solving the well
know problem of consensus in distributed systems5. In this
algorithm, we have three sets of processes (that may overlap)

4A better implementation of a quorum access is to make the client
send a message to a read quorum and also periodically to other
servers until it receives responses from a complete read quorum.
5In this problem a set of processes try to reach agreement about
a single value to be decided, based on their (possibly conflicting)
proposed values [1].

according to the different roles they play in the algorithm:
proposers, who propose values, acceptors, who together try
to establish agreement (chose) on a single proposed value,
and learners, who must learn the chosen value [17]. The
algorithm ensures that a single value proposed by a proposer
will be chosen by all acceptors and learned by all learners.
The BTS inp protocol uses a Byzantine variant of the PAXOS
algorithm [6, 17] to force all correct servers to agree on a
decision about removing or not a tuple for a client.

Using these two building blocks and the read operation (defined
in Section 3.3.2), the inp implementation can be defined in a very
elegant way, as presented in Algorithm 3.

Algorithm 3 inp operation (process p and server s).
{Client}
procedure inp(t)
1: repeat
2: enter(type(t))
3: t← rdp(t)
4: if t =⊥ then
5: exit(type(t))
6: return ⊥
7: end if
8: d← paxos(p,P,A,L, t)
9: exit(type(t))

10: until d = t
11: return t

{Server}
upon hasLock(p, type(t))
12: d← paxos(p,P,A,L,⊥)
13: if d 6=⊥ then
14: if d /∈ Ts then
15: Rs← Rs ∪{d}
16: end if
17: Ts← Ts \{d}
18: end if

This protocol uses the PAXOS algorithm through the invocation
of the function paxos passing five parameters: the first process to
propose a value, a set of proposers P, a set of acceptors A, a set
of learners L and the proposed value. The returned value of this
function is the value chosen by acceptors and learned by learners,
which we call the decided value. The first four parameters of the
PAXOS function invocation are the same in both client and server
side invocations (lines 8 and 12): p (first proposer is the process in
critical section), P , {p,s1, ...,s f +1} (the proposers are p and f +1
servers, ensuring that there will always exist a correct proposer),
A , U (servers are the acceptors) and L , {p} ∪U (learners are
p and the servers). The proposed values by p and the servers are
different, and will be explained below.

In the protocol of Algorithm 3, a process p which tries to remove
a tuple t that matches a template t must first get exclusive access to
the tuple type, i.e., reach its critical section (line 2). After that,
p reads t (line 3) and, supposing that such tuple exists, runs the
PAXOS algorithm to remove it (line 8). When PAXOS completes,
p and all servers have reached a decision about t deletion or not,
when p leaves its critical section (line 9). If the PAXOS decided
value is t, the operation is over and t is the result of operation (line
11). Otherwise, p runs the described procedure again (loop of lines
1-10). If there is no tuple in space that matches t, p exits its critical
section and returns⊥, meaning a failure in the operation (lines 4-7).

When the server grants permission to a process p to enter its crit-
ical section (p locks a tuple type - hasLocked(p, type(t)) = true),
it runs the PAXOS algorithm (line 12) assuming p as the initial pro-
poser and proposing ⊥. If the decided value is a tuple t 6= ⊥ (line
13) then t is the tuple removed by process p. If t does not exists in
the local tuple space copy, it is added to the “to be removed” set Rs
(lines 14-16), ensuring that it will not be removed again. After that,
t is removed from the tuple space local copy (lines 17).

For a process p to remove a tuple t matching t from the space, the
decided value must be t. Opening the PAXOS black box we could
see that the removal only happens when t proposed by p reaches

sufficiently many servers6 before these servers suspects p and try
to elect another proposer as the coordinator. The algorithm cor-
rectness is derived directly from this observation, the eventually
synchronous system model assumed (Section 3.1), and the contin-
uous execution of the algorithm until a process removes a tuple or
realizes that there is no tuple to be removed.

As described in Algorithm 3, the inp protocol can still block
since a process can execute line 8 and fail before execute line 9,
failing to release the tuple type for other processes access. In or-
der to solve this problem we have to remove the explicit resource
release (line 8) from the client and include a local release in each
server after it completes its part of the protocol (including a com-
mand unlock(type(t)) after line 15). With this simple modification,
the mutual exclusion algorithm ensures that a client that reaches its
critical section will have an opportunity to propose a tuple for dele-
tion to servers in a single execution of PAXOS, leaving its critical
section after one value is decided.

Another modification that could be made in the algorithm, to
optimize it, is the execution of the read operation (line 3) together
with the mutual exclusion protocol (line 2). A client p could send
the template t to be read to the servers with the mutual exclusion
request and each server s could return their T t

s together with the
permission for p enter its critical section (when this permission is
granted). This optimization eliminates one access to the quorum
system, decreasing the amount of messages exchanged and the time
needed to execute inp.

Figure 1 shows a nice execution of the inp protocol. In this exe-
cution the algorithm is using a PAXOS-based mutual exclusion al-
gorithm: each process sends a message to the servers asking for
access to the critical section and the servers execute an agreement
to decide the order in which each requesting process will be served.
Byzantine PAXOS internal communication is explained in [17].

s

s

s

s

1

2

3

4

c

Q
U

PROPOSE

PROPOSE

ACCEPT

ACCEPT

ENTER
RD

RSP−RD
GO

enter()/rdp()

Paxos Paxos

Figure 1: inp protocol execution (n = 4 and f = 1).

Figure 1 also shows that the inp protocol is non-confirmable (as
out protocol from Section 3.3.1): a process p that removes a tuple t
learns that this tuple will be removed only by itself and by no other
process due to the PAXOS safety properties [17]. Moreover, p does
not know when all correct servers will remove t from their local
tuple spaces, since it happens only after they learn t (line 14).

3.3.4 Blocking Operations
The blocking operations rd and in can be implemented by a client

p simply by repeating the execution of rdp and inp until p obtains
the desired tuple [24]. Although this implementation strategy is
not optimal, it is valid according to the inherent tuple space non-
determinism [11].

6At least f + 1 servers, ensuring that at least one correct server
accepted the value.

4. PROTOCOLS ANALYSIS
Table 1 presents the operations protocols cost considering two

metrics: message complexity (M.C.) and communication steps
(C.S.). The message complexity measures the maximum amount
of messages exchanged between processes. Consequently, it gives
some insights about the communication system usage and the algo-
rithm scalability. The communication steps accounts the number of
sequential communications between processes, being the main fac-
tor in time needed for a distributed algorithm execution terminate.

Operation BTS State Machine
M.C. C.S. M.C. C.S.

out O(n) 1 O(n2) 3
rdp O(n) 2 O(n) 2
inp O(n2) 6 O(n2) 4

Table 1: Tuple space protocols analysis

Values from Table 1 considers a nice execution of operations.
The cost of BTS protocols are presented in the second and third
columns of the table. The protocols for out and rdp operations
are very simple and, consequently have a reduced cost in terms
of both metrics when compared to the protocol for operation inp.
This operation has its cost dominated by the mutual exclusion and
the PAXOS algorithm, so it demands several extra communication
steps and have a non-linear message complexity (see Figure 1).

For comparison purposes, the last two columns of Table 1
presents the protocols cost for the same operations (with the same
semantics) when implemented using the well know state machine
replication [20, 6] based on the same Byzantine PAXOS algorithm
used in our inp protocol [17]. The state machine approach is the
standard replication model for implementing general replicated ser-
vices [17, 1]. To successfully implement this technique we must
ensure replica determinism: starting from the same state, all cor-
rect replicas must execute the same operation sequence so that their
states the same after executing each operation. To ensure this prop-
erty, each request issued to the service must be executed in the same
order in all replicas. It requires a consensus algorithm execution to
establish a total order for replicated service requests. Since our pro-
tocols ensure sequential consistency [1] only, the same read proto-
col (Algorithm 2) can be used in a tuple space state machine imple-
mentation. The great disadvantage of this approach, as compared
to our quorum-based BTS protocols, is the fact that the out opera-
tion becomes as complex as inp. This complexity is due to the fact
that both operations updates the tuple space.

5. RELATED WORK
There are two replication models appropriate for building Byzan-

tine fault-tolerant services: Byzantine quorum systems [16, 18] and
state machine replication [20, 6]. The former is based on the con-
cept of executing different operations in different intersecting sets
of servers, while the latter is based on maintaining a consistent
replicated state across all servers in the system. The advantage of
quorum systems as compared to the state machine approach is that
it does not need to solve consensus in every replicated service invo-
cation. Consequently, there are lightweight protocols more appro-
priate to asynchronous systems. Our work use Byzantine quorum
systems and develope specific protocols for each of the operations
defined by the generative model. Only one of our protocols, for inp
operation, requires a consensus protocol, therefore it needs more
message exchanges and time assumptions (like the eventually syn-
chronous system model assumed in this paper) to complete.

There are several works aiming to replicate tuple space for fault-
tolerance. Some of them are based in the state machine approach
(e.g. [2]) while others use quorum systems (e.g. [24]), however,
none of these proposals regards the occurrence of Byzantine fail-
ures, the main objective of BTS.

Recently, several papers have proposed the integration of se-
curity mechanisms (like access control) in the generative model.
These works are justified since this model has been increasingly
used in hostile environments like the Internet. Amongst the pro-
posals already published, some try to enforce predefined security
policies according to the interacting processes expected behavior
[19], others are concentrated in maintaining the confidentiality and
integrity of tuples stored in space [8, 23, 3]. However, none of
these works consider the availability of the tuple space, the fault-
tolerance mechanisms main objective, neither apply any robust ap-
proach concerning intrusion tolerance. BTS copes with this prob-
lem through the use of Byzantine-resilient protocols for a replicated
tuple space, surviving through faults, attacks and intrusions, as long
as less than one third of the space replicas are comprised.

6. CONCLUDING REMARKS
In this paper we proposed BTS, a generative (tuple space) coor-

dination model that tolerates Byzantine failures using a Byzantine
quorum system and the Byzantine PAXOS consensus algorithm. As
far as we know, our proposal is the first one to offer this depend-
ability level and therefore, this is our main contribution. Moreover,
the protocols presented built a shared memory object type strictly
stronger (in terms of wait-free hierarchy [13]) than a register [21],
usually implemented using quorum systems. This construction is
possible through the use of a new approach that integrates asym-
metric Byzantine quorum systems and consensus algorithms.

The approach presented in this paper complements other works
that integrate security mechanisms to the generative model [8, 19,
23, 3] aiming its use in hostile environments (subject to failures
and security attacks) like the Internet. Despite the fact that our
protocols does not avoid poisonous or incomplete writes by faulty
clients, it ensures that tuples written by correct ones will be avail-
able in the system as long as less than a third of servers are faulty.

Finally, we want to remark that despite the fact that the BTS
protocols are defined considering only a single tuple space, they
can be used to support multiple tuple spaces. To implement this we
have to put a copy of each space in each server of the system and
execute the protocols only in the scope of a specified space.

7. REFERENCES
[1] H. Attiya and J. Welch. Distributed Computing:

Fundamentals, Simulations and Advanced Topics. Wiley
Series on Parallel and Distributed Computing.
Wiley-Interscience, 2nd edition, 2004.

[2] D. E. Bakken and R. D. Schlichting. Supporting
fault-tolerant parallel programming in Linda. IEEE
Transactions on Parallel and Distributed Systems,
6(3):287–302, Mar. 1995.

[3] N. Busi, R. Gorrieri, R. Lucchi, and G. Zavattaro.
SecSpaces: a data-driven coordination model for
environments open to untrusted agents. In Electronic Notes
in Theoretical Computer Science, volume 68, 2003.

[4] N. Busi, R. Gorrieri, and G. Zavattaro. On the expressiveness
of Linda coordination primitives. Information and
Computation, 156(1/2):90-121, Academic Press, 2000,
156(1-2):90–121, 2000.

[5] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile agents
coordination models for Internet applications. IEEE
Computer, 33(2):82–89, Feb. 2000.

[6] M. Castro and B. Liskov. Practical Byzantine fault-tolerance
and proactive recovery. ACM Transactions Computer
Systems, 20(4):398–461, 2002.

[7] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. ACM Transactions
Computer Systems, 21(3):236–269, 2003.

[8] R. De Nicola, G. L. Ferrari, and R. Pugliese. Klaim: A kernel
language for agents interaction and mobility. IEEE
Transactions on Software Engineering, 24(5):315–330, 1998.

[9] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of ACM,
35(2):288–322, 1988.

[10] J. Fraga and D. Powell. A fault- and intrusion-tolerant file
system. In Proceedings of the 3rd Int. Conference on
Computer Security, pages 203–218, 1985.

[11] D. Gelernter. Generative communication in Linda. ACM
Transactions on Programing Languages and Systems,
7(1):80–112, 1985.

[12] D. K. Gifford. Weighted voting for replicated data. In
Proceedings of the 7th ACM Symposium on Operating
Systems Principles, pages 150–162, 1979.

[13] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programing Languages and Systems, 13(1):124–149, 1991.

[14] L. Lamport. The part-time parliament. ACM Transactions
Computer Systems, 16(2):133–169, 1998.

[15] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transactions on Programing
Languages and Systems, 4(3):382–401, 1982.

[16] D. Malkhi and M. K. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203–213, 1998.

[17] J.-P. Martin and L. Alvisi. Fast Byzantine consensus. In
Dependable Systems and Networks, DSN 05, 2005.

[18] J.-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine
quorum systems. In Dependable Systems and Networks, DSN
01, 2001.

[19] N. H. Minsky, Y. M. Minsky, and V. Ungureanu. Making
tuple-spaces safe for heterogeneous distributed systems. In
Proceedings of the 2000 ACM Symposium on Applied
Computing, pages 218–226, 2000.

[20] F. B. Schneider. Implementing fault-tolerant service using
the state machine aproach: A tutorial. ACM Computing
Surveys, 22(4):299–319, 1990.

[21] E. J. Segall. Resilient distributed objects: Basic results and
applications to shared spaces. In Proceedings of the 7th
Symposium on Parallel and Distributed Processing -
SPDP’95, pages 320–327, 1995.

[22] P. Verssimo, N. F. Neves, and M. P. Correia.
Intrusion-tolerant architectures: Concepts and design. In
R. Lemos, C. Gacek, and A. Romanovsky, editors,
Architecting Dependable Systems, volume 2677 of Lecture
Notes in Computer Science. Springer-Verlag, 2003.

[23] J. Vitek, C. Bryce, and M. Oriol. Coordination processes
with Secure Spaces. Science of Computer Programming,
46(1-2):163–193, 2003.

[24] A. Xu and B. Liskov. A design for a fault-tolerant,
distributed implementation of Linda. In Proceedings of the
19th Symposium on Fault-Tolerant Computing - FTCS’89,
pages 199–206, 1989.

