
BAMcast - Byzantine Fault-Tolerant Consensus Service
for Atomic Multicast in Large-scale Networks

Marcelo Ribeiro Xavier Silva, Lau Cheuk Lung, Leandro Quibem Magnabosco, Luciana de Oliveira Rech
Computer Science - Federal University of Santa Catarina - Florianópolis, Brazil

marcelo.r.x.s@posgrad.ufsc.br lau.lung@inf.ufsc.br leandroqm@gmail.com luciana.rech@inf.ufsc.br

Abstract—This paper presents a BFT Atomic Multicast
Protocol (BAMcast) for Wide Area Networks. Our algorithm
manages to implement a reliable consensus service with only
2f + 1 replicas using only common technologies, such as vir-
tualization and data sharing abstractions. In order to achieve
this goals, we chose to adopt a hybrid model, which means
it has different assumptions between components regarding
synchrony, and two different networks, a payload network and
a separated network where message ordering happens.

I. INTRODUCTION

Distributed systems often need to guarantee that messages
are delivered to either all processes or to none at all. Some
problems also need that the messages are delivered in the
same order to all processes, it is know as the atomic (or
total order) multicast problem. Atomic multicast has many
important applications such as distributed shared memory,
database replication, cooperative writing, clock synchroniza-
tion [1], [2], [3] and are the basis of the state machine ap-
proach, the main component of many fault-tolerant systems
[4], [5], [6].

The literature on total order multicast is vast with many
approaches and algorithms have been proposed to solve this
problem. In most cases, these algorithms consider system
models subject only to crash faults [7], [8], [9]. Very few
addresses also byzantine/arbitrary faults [10], [5]. In general,
these relies on a consensus algorithm to agree on messages
ordering and need 3f + 1 processes involved in the agree-
ment. There are some works that separate the consensus
from the agreement problem creating a consensus service
[11], [12]

Some works have shown that is possible to achieve atomic
multicast in crash-only systems that assume the processes to
be connected by an wide area network [13], [14], [15]. Scat-
tering the processes geographically reduces the occurrence
of failures caused by natural disasters, power outages and
physical attacks [16].

We presente BAMcast, a byzantine fault tolerant consen-
sus service for atomic multicast messages in a wide area net-
work (WAN). We propose a consensus service with a hybrid
system model that tolerates f = b (n−1)2 c faulty servers. A
hybrid system model implies that there exists variation, from
component to component, on the assumptions of synchrony

and presence/severity of failures [17], [18], [19]. In our ar-
chitecture we use a payload network for the client-consensus
service communication and a tamperproof network where
the consensus service servers execute the ordination. In our
proposal we contribute with an improvement to make the
consensus service [11] byzantine fault tolerant with low
resilience (only 2f + 1 servers) and available for wide area
networks, making use of some techniques as rotating the
leader [16].

II. ATOMIC MULTICAST

The problem of atomic multicast, or total order reliable
multicast, is the problem of delivering the same messages in
the same order to all processes of a system. The definition
in byzantine context can be seen as the following properties
[5]:

AB1) Validity - If a correct process multicasts a message M ,
then some correct process eventually delivers M .

AB2) Agreement - If a correct process delivers a message
M , then all correct processes eventually deliver M .

AB3) Integrity - For any message M , every correct process p
delivers M at most once, and if sender(M) is correct
then M was previously multicast by sender(M).

AB4) Total order - If two correct processes deliver two
messages M1 and M2 then both processes deliver the
two messages in the same order

Following these properties we show an atomic multicast
protocol based on virtualization technology and emulated
shared memory [20].

III. RELATED WORK

The atomic multicast problem has been widely addressed
in the past decades [21], [1], [10], [22], [13], [8], [2], [9], [5].
In the majority, the approaches consider that the processes
can only crash, i.e., not acting in arbitrary/byzantine manner.

In 1993 Berman and Bharali presented the Quick-a [21]
as a solution for the atomic multicast problem in byzantine
systems. In their algorithm the processes maintain a round
number that serves as a timestamp for the messages broad-
casted. The processes execute a sequence of a randomized
binary consensus to decide on the round in which messages
will be delivered.

Rampart, for reliable and atomic multicast messages in
systems with byzantine faults, is presented in [10]. The
algorithm is based on a group membership service, which
requires that at least one third of all processes in the current
view reach an agreement on the exclusion of some process
from the group. The atomic multicast is done by some
member of the group, called sequencer, that determines the
order for the messages in the current view. In the next
view, another sequencer is chosen by some deterministic
algorithm. Rampart assumes an asynchronous system model
with reliable FIFO channels, and a public key infrastructure
known by every process. With the assumption of authen-
ticated communication channels the integrity of messages
between two non-Byzantine processes is always guaranteed.

In 1995 Cristian et al [22] presented HAS, that is a
collection of total order broadcast algorithms. It assumes
a synchronous model with ε-synchronized clocks. Each
message broadcasted has a timestamp T of its emission that
is used for the processes delivery in conjunction with the
∆ value (deliveries are made at time T + ∆ based in the
processes local clocks). The ∆ value considers the topology
of the network, the number of failures tolerated, and the
maximum clock drift ε.

Rodrigues et al proposed in [8] an atomic multicast
for crash-only environments divided into groups where the
processes to which a message m is multicast, exchange the
timestamp they assigned to m, and, once they receive this
timestamp from a majority of processes of each group, they
propose the maximum value received to consensus. Because
consensus is run among the addressees of a message and can
thus span multiple groups, this algorithm is not well-suited
for wide area networks, even though it is scalable.

Guerraoui and Schiper proposed in 2001 the generic
consensus service [11] for solving agreement problems,
including the atomic multicast. This is the base for our
proposal. Their model considers a crash-only environment
with a consensus service that separate the consensus from
the agreement problem to be solved. The system requires a
perfect failure detector (that basis the consensus server) and
the resilience varies according to the need (and it implies in
a trade-off with performance).

In 2006 Correia and Verı́ssimo showed a transformation
from consensus to atomic broadcast [5]. The system model
presented assume a byzantine environment in which up to
f = b (n−1)3 c faults are tolerated. The authors implement a
multi-valued consensus protocol on top of a randomized bi-
nary consensus and a reliable broadcast protocol. The atomic
multicast protocol is designed as successive transformations
from the consensus protocol. The atomic multicast is done
by the use of a hash vector. Each process of the system
proposes values to the consensus vector (that is a vector with
the hashes of the messages). The vector consensus protocol
decides on a vector Xi with at least 2f + 1 vectors H from
different processes. In the sequence the messages are stored

in a set to be atomically delivered in a pre-established order.
In 2010 Pieri et al proposed an extension of the generic

consensus service [11] for byzantine environments [12]. The
system model proposed has nc = 3fc + 1 clients and ns =
2fs + 1 servers, and they make use of virtual machines to
provide the generic consensus service. The atomic consensus
starts whenever one of the processes called initiator reliably
multicast a message mi to the clients set. Upon receiving
the message mi, each client sends a proposal to the generic
consensus service for mi. When the servers receive nc− fc
proposals from clients to the same consensus instance, each
server start a consensus protocol. Then, the result of this
protocol is relayed to the clients.

IV. SYSTEM MODEL AND ARCHITECTURE

The system model is hybrid [18], which is where as-
sumptions of synchrony and presence/severity of failures
vary from component to component [17], [18]. In our
model, we consider different assumptions for the subsystems
running in host, than for the ones running in the guest
of the virtual machines that composes the system. In this
model, C = {c1, c2, c3, ...} is a set that contains a finite
number of client processes and S = {s1, s2, s3, ..., sn}
representing a set of servers with n elements that compound
the consensus service. We assume that both, clients and
servers, are connected by a Wide Area Network (WAN),
which means they can be geographically scattered.

In the Figure 1, each consensus service replica is hosted
by a virtual machine. Each server physical machine has
one, and only one, virtual machine as its guest (see Figure
1). The process failure model admits a finite number of
clients and up to f ≤ [n−12] servers incurring failure based
on its specifications, presenting byzantine faults [23]: the
faulty processes that arbitrary detour from its specification
can stop, omit sending or receiving messages, send wrong
messages or have any non-specified behavior. However,
we assume independence of faults, in other words, the
probability of a process having a fault is independent of
another fault in any other process. This is possible in practice
by the extensive use of diversity (different hardware, oper-
ational systems, virtual machines, databases, programming
languages, etc) [24].

The system has two distinct networks, the payload and
the controlled networks (see Figure 1). The former is asyn-
chronous and is used for application data transfers. There are
no assumptions based on time on the payload network and
it is used for client-server communication. The later, used
for server-server communication, is a controlled network
composed by physical machines, where is implemented
a Distributed Shared Register (DSR) [20] (see subsection
IV-A). The consensus service uses the DSR to execute the
crucial parts of the consensus protocol. The DSR has the
following properties:
• it has a finite and known number of members;

Table I: Comparison on evaluated atomic multicast protocols properties
Rampart [10] Rodrigues et al [8] Guerraoui and Schiper [11] Correia and Verı́ssimo [5] Pieri et al [12] BAMcast

Resilience for atomic multicast 3f + 1 2f + ng - 3f + 1 3fc + 1 + 2fs + 1 2f + 1
Communication Steps 6 6 5 - 5 4
Messages exchanged 6n - 6 3(d− 1)2 + 4(d− 1) + (d− 1)2 3nc + 2ns − 3 18n2 + 13n+ 1 + 16n2f + 10nf 2(Ns2 + 3Nc−Ns− 1) Ns

2 −Ns +Nc + 1
Large scale no yes no no no yes

Tolerated faults byzantine crash crash byzantine byzantine byzantine

• it is assumed to be secure, i.e., resistant to any possible
attacks; it can only fail by crashing;

• it is capable of executing certain operations with a
bounded delay;

• it provides only two operations, read and write register,
which cannot be possibly affected by malicious faults.

Each physical machine has its own space inside the DSR
where its respective virtual machine registers PROPOSE
messages, ACCEPT messages or BLACKLIST messages.
All the servers can read all the register space, no matter
who holds the rights to write into it.

We assume that each client-server pair ci, sj and each
pair of servers si, sj is connected by a reliable channel
with two properties: if the sender and the recipient of a
message are both correct then (1) the message is eventually
received and (2) the message is not modified in the channel
[19]. In practice, these properties have to be obtained with
retransmissions and using cryptography. Message authen-
tication codes (MACs) are cryptographic checksums that
serve our purpose, and only use symmetric cryptography
[25], [4]. The processes have to share symmetric keys in
order to use MACs. In this paper we assume these keys
are distributed before the protocol is executed. In practice,
this can be solved using key distribution protocols available
in the literature [25]. This issue is out of the scope of this
paper.

Figure 1: BAMcast Architecture Overview

We assume that only the physical machine can, in fact,
connect to the controlled network used for the register. That
is, the DSR is accessible only by the physical machines
that host virtual machines which are participants of the
system, not being possible to reach the DSR directly through
accessing the virtual machine. Each process is encapsulated

inside its own virtual machine, ensuring isolation. All client-
server communication happens inside a separate network
(payload) and, on the clients point of view, the virtual
machine is transparent, meaning clients can not recognize
the physical-virtual architecture. Each machine has only one
network interface (NIC), a firewall and/or bridge mode are
used in the host to ensure the division of the networks.

We assume that host vulnerabilities can not be explored
by the virtual machine. The virtual machine monitor (VMM)
ensures this isolation, meaning the attacker has no way to
access the host through the virtual machine. This is a premise
in the virtualization technologies, such as VirtualBox, LVM,
XEN, VMWare, VirtualPC, etc. Our model assumes that
the host system is not accessible externally, which is also
granted by the use of bridge mode and/or firewalls on the
host system.

A. Emulated Shared Memory and the Distributed Shared
Register

Emulated shared memory is an abstraction of registers
from a set of processes that communicate through message
passing [20]. This definition is really attractive, since it
allows the shared memory to be built using any technology
for sharing memory. A shared memory, emulated or not,
can be seen as an array of shared registers. We consider
here the definition under the programmer point of view. The
type of the shared register specifies what operations can be
performed and the values returned by the operation [20]. The
most common types are read/write register. The operations
of a register are invoked by the system processes to exchange
information. We created the Distributed Shared Register
(DSR), an emulated shared memory based on message
passing over a controlled network and making use of local
files. We assume the controlled network to be only accessed
by components of the DSR. The DSR is implemented in the
virtual machine host and we assume that the VMM ensures
isolation between the host and the guest.

The Distributed Shared Register performs just two opera-
tions: (1) read(), that reads the last message written in the
DSR; and (2) write(m) that writes the message m in the
DSR. We assume two properties about these operations: (i)
liveness, meaning that the operation eventually ends; and (ii)
safety, i.e., the read operation always return the last value
written. To ensure this properties, in each replica we created
a file where the guest has write-only access and another file
where it has read-only access and the access is made by a
single process [20]. The first file is the replica space, and

no other replica can write on it. The second one is the other
replicas register, updated by the DSR. The VMM provides
the support to make a file created in the host to be accessible
to the guest, enforcing the write-only/read-only permissions.

The DSR only accept typed messages, and there is only
three types, (i) PROPOSE, (ii) ACCEPT and (iii) BLACK-
LIST. The untyped or mistyped messages are ignored. We
assume that the communication is made by fair links with
the following properties: if the client and the recipient of
a message are both correct then (1) if a message is sent
infinitely often to a correct receiver then it is received
infinitely often by that receiver; (2) there exists some delay
T such that if a message is retransmitted infinitely often to
a correct receiver according to some schedule from time t0,
then the receiver receives the message at least once before
time t0 + T ; and (3) the message is not modified in the
channel. This assumption appears reasonable in practice,
since the DSR is running in a separated synchronous network
and can only fail by crash, based on the VMM isolation.

V. BAMCAST ALGORITHM

Protocol overview: We borrowed the asynchronous
views and the rotating primary from [16]. This means that
the clients send a message to the nearest server in the con-
sensus service group, reducing the end-to-end latency. All
messages are ordered in parallel, but the reliable multicast
only occur in the view where the server is the leader (or
primary). The first leader is the lowest id (zero) and the
next leader (and view) is the last one plus one. If the new
leader already has accepted messages they are delivered.
When a server has no messages to reliably multicast, it
just sends a skip message as in [16]. As in other byzantine
fault tolerant (BFT) systems [4], [19], to deal with the
problem of a malicious server pj , that would discard a
message, the client pi waits for receiving its own message
in ordered for a Tresend time. After this Tresend the client
picks another server and resends the message. However, the
payload system is assumed to be asynchronous, so there are
no bounds on communication delays, and it is not possible
to define an ”ideal” value for Tresend. Correia [19], shows
that the value of Tresend involves a tradeoff: if too high, the
client can take long to have the message ordered; if too low,
the client can resend the message without necessity. The
value should be selected taking this tradeoff into account.
If the command is resent without need, the duplicates are
discarded by the system.

This section offers a deeper description of the algorithm.
The sequence of operations of the algorithm is presented in
the sequencer and destination nodes. It is first considered the
normal case operation and, following, the execution where
faults do exist. The flowchart of the normal case operation
can be seen in the Figure 2. For clarity of presentation, we
consider a single group multicast.

Figure 2: Atomic multicast flow

A. Normal operation

a) The process starts when some client ci sends to some
server an ORDER message 〈ORDER,m, t, v〉σci
with the message m included. The field t is the
timestamp of the message content to ensure one-time
order semantics, in other words, servers will not order
the message if t is not bigger than t − 1 for ci. This
politics prevents multiple ordering of a single message.
The field v is vector that takes a MAC per server, each
obtained with the key shared between the client and
that server. Therefore, each server can test the integrity
of the message by checking if its MAC is valid, and
discard the message otherwise. In case the message
has already been ordered, the server resends it to the
client.

b) After verifying that MAC in v is correct and
the timestamp is valid for the client’s message,
the server generates a PROPOSE message as
〈PROPOSE, n, o,mac〉σsi, where o is the original
message, n the ordering number for it and mac is
the message authentication code for m. The DSR
automatically added to the proposal message the ID of
the server. The server will expect for the acceptance
of the message, i.e., f processes agreeing with the
proposal. Then the server accepts this order and saves
it in the atomic buffer. This behavior can be observed
on the algorithm 1. All messages sent in the DSR
will be delivered if the sender and the receiver are not
crashed, as we have discussed in IV.

c) By receiving a proposal, the server sk validates it,
meaning that (i) sk verifies, using the MAC in v, if the
content of the message m is correct and (ii) verifies
if there is no other proposal accepted before that with
the same sequence number n. Then the proposal is
accepted by sk that writes an ACCEPT message on its
reserved space of the register. The message format is
〈ACCEPT, n, hm,mac〉σsi and it contains the hash

Algorithm 1: Proposal algorithm
Constants:
f : int // Maximum tolerated faults
T : int // Maximum waiting time for a proposal to be decided
Variables:
accepted : int // counter of acceptance for some ordering

1 upon receive 〈ORDER,m, tj , v〉σci from client
2 if alreadyProposed(m) then
3 rmulticast(getReply(m) from buffer);
4 return;
5 end
6 if tj ≤ tj−1 for ci OR isWrong(v) then
7 return;
8 end
9 write(〈PROPOSE, n, 〈ORDER,m, tj , v〉σci,mac〉σsi) into DSR;

10 accepted = waitForAcceptance(T);
11 if accepted ≥ f then
12 bufferize(〈REPLY,m, n, svec〉σsi);
13 end
14 return;

of the client’s message hm, the ordering number n
to m and a message authentication code mac for m.
After writing the accept message, the process waits
for f −1 acceptance messages to save it in the atomic
buffer. This behavior can be observed on the algorithm
2.

d) The messages are kept in the buffer until the view
for where they were accepted became the actual one.
When it happens, the primary server reliably multicast
for the clients the message 〈REPLY,m, n, svec〉σsi
with the original message m, its order number n and
the mac vector svec from at least f + 1 different
servers that accepted it. After receiving and validating
the vector the clients finally accepts it and delivers in
the proposed order.

Algorithm 2: Acceptance algorithm
Constants:
f : int // Maximum tolerated faults
T : int // Maximum waiting time for a proposal to be decided.
Variables:
accepted : int // counter of acceptance for some ordering

1 upon read 〈PROPOSE, n, 〈ORDER,m, t, v〉σci,mac〉σss from
DSR

2 if isValid(m, v) and isValid(n) then
3 write(〈ACCEPT, n, hm,mac〉σsi) into DSR;
4 accepted = waitForAcceptance(T);
5 if accepted ≥ f − 1 then
6 bufferize(〈REPLY,m, n, svec〉σsi);
7 end
8 else
9 write(〈BLACKLIST, hm, ss〉σsi) into DSR and bufferize;

10 end
11 return;

1) Faulty operation: The faulty operation implies that a
server will be blacklisted, therefore here is a brief explana-
tion of how it develops.

Blacklisting: During the system configuration, all servers
receive an identification number. This numbers are sequen-
tial and start at zero. All servers know the total number of
servers in the consensus service . When f+1 correct servers
suspect that some server is malicious they simply blacklist

the server. The blacklisted server can not be leader, but it
still participates in the algorithm. If the server is the leader of
the actual round the others servers change the view defining
i = i+ 1 as the next leader if i < n, otherwise i = 0. The
blacklist has size f , since it is the maximum tolerated faults
in the system.

When validating a proposal the server sk verifies if the
message’s content is correct using its MAC in the vector v
and if the proposal is correct based on the earlier accepted
proposals. If the message, for some of the reasons above,
is not valid, then sk will ask for blacklisting the proponent
server.

a) A correct server will start operating in faulty mode by
one of the two following ways:

1) When the server sk receives a blacklist message
e, but does not suspects the server ss yet, the
process just stores e in its local buffer, in order
to use this message if needed in the near future.

2) When the process sk suspects of the server ss
about a single message m, then sk writes in
the DSR and in its own buffer a new message
〈BLACKLIST, hm, ss〉σs that contains sid as
its own identifier automatically filled by the
DSR, the hash of the message hm and ss as the
id of the server for which it suspects.

b) The server sk starts a search in its buffer trying to
find f + 1 blacklist messages that relate to m and the
server ss. In case sk finds f + 1 (including server
sk) different sid to the same propose message, then
the server puts ss in the blacklist. If ss is the leader
of the actual view, then the view is changed and the
servers buffer only the messages that were accepted
by majority.

c) With the new view the protocol make progress as in
normal case operation.

B. Correctness proof
The atomic multicast protocol is correct if it satisfies the

properties AB1-AB4 discussed in II.
Validity and agreement proof. A correct client unicasts a

message to some server. If the server is honest, then it will
write down the message in the DSR and, as we discussed
in IV-A, it will reliably multicasts the message. This server
behavior can be seen in the line 9 in algorithm 1. After
receiving a proposal, each server deliberate if it is valid and
when the majority agrees on it, then every correct server will
store in the buffer to reliably multicast it if needed, as can
be seen in lines 10-13 in algorithm 1 and 2-8 in algorithm
2. In case the server that proposed is corrupt, the client will
resend the message to the next server in its list after Tresend,
and if, the new server is honest, it will propose an order
for the client message. It will occur until an honest server
receive the client message. The correct clients will deliver
the message in the order proposed by the consensus service.

Integrity proof. The line 2 of the algorithm 2 requires the
servers to verify, using the MAC vector, if the message was
sent by client(m) and as discussed in V-A the timestamp
(or message ID) t of m must respect the rule t > t − 1
or has been already proposed (lines 2-8 of algorithm 1),
otherwise the message m is automatically discarded. The
correct clients will deliver the message just once.

Total order proof. Any correct server reliably multicasts
messages only after an execution of a consensus (lines 9-
14 and 2-11, respectively from algorithms 1 and 2). The
messages multicasted are those that were accepted by at
least f + 1 servers and the delivery order is deterministic
(9 of algorithm 1). Therefore, the servers reliably multicast
the messages with the vector proving that at least f + 1
servers accepted the order and the correct clients will deliver
messages it in the same order.

VI. CONCLUSION

By exploring the use of the Distributed Shared Register
and virtualization techniques, we have managed to propose
a simple inviolable network that supports our BFT atomic
multicast. It was showed that it is possible to implement a
reliable consensus service with only 2f + 1 replicas using
common technologies, as is virtualization and data sharing
abstractions. We proved that is possible to make atomic
multicast in wide area networks with clients and servers
geographically scattered. The virtualization technology is
widely used and can provide a good isolation between
the replicas and the external world, and the use of the
Distributed Shared Register makes it easy to maintain the
protocol progress. Furthermore, the use of asynchronous
views and rotating the primary made possible to use a wide
area network to connect clients and servers.

REFERENCES

[1] L. Rodrigues, P. Verı́ssimo, and A. Casimiro, “Using atomic
broadcast to implement a posteriori agreement for clock
synchronization,” in Reliable Distributed Systems, 1993. Pro-
ceedings., 12th Symposium on. IEEE, 1993, pp. 115–124.

[2] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wies-
mann, “Using optimistic atomic broadcast in transaction pro-
cessing systems,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 15, no. 4, pp. 1018–1032, 2003.

[3] A. N. Bessani, J. da Silva Fraga, and L. C. Lung, “Bts: a
byzantine fault-tolerant tuple space,” in Proceedings of the
2006 ACM symposium on Applied computing, ser. SAC ’06.
New York, NY, USA: ACM, 2006, pp. 429–433.

[4] M. Castro and B. Liskov, “Practical byzantine fault tolerance
and proactive recovery,” ACM Transactions on Computer
Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[5] M. Correia, N. Neves, and P. Verı́ssimo, “From consensus
to atomic broadcast: Time-free byzantine-resistant protocols
without signatures,” The Computer Journal, vol. 49, no. 1,
pp. 82–96, 2006.

[6] F. Favarim, J. Fraga, L. C. Lung, M. Correia, and J. Santos,
“Exploiting tuple spaces to provide fault-tolerant scheduling
on computational grids,” in Object and Component-Oriented
Real-Time Distributed Computing, 2007. ISORC ’07. 10th
IEEE International Symposium on, may 2007, pp. 403 –411.

[7] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” ACM Com-
puting Surveys (CSUR), vol. 36, no. 4, pp. 372–421, 2004.

[8] L. Rodrigues, R. Guerraoui, and A. Schiper, “Scalable atomic
multicast,” in Computer Communications and Networks,
1998. Proceedings. 7th International Conference on. IEEE,
1998, pp. 840–847.

[9] R. Ekwall, A. Schiper, and P. Urbán, “Token-based atomic
broadcast using unreliable failure detectors,” in Reliable
Distributed Systems, 2004. Proceedings of the 23rd IEEE
International Symposium on. IEEE, 2004, pp. 52–65.

[10] M. Reiter, “Secure agreement protocols: Reliable and atomic
group multicast in rampart,” in Proceedings of the 2nd
ACM Conference on Computer and Communications Security.
ACM, 1994, pp. 68–80.

[11] R. Guerraoui and A. Schiper, “The generic consensus ser-
vice,” Software Engineering, IEEE Transactions on, vol. 27,
no. 1, pp. 29–41, 2001.

[12] G. Pieri, J. da Silva Fraga, and L. Lung, “Consensus service
to solve agreement problems,” in Parallel and Distributed
Systems (ICPADS), 2010 IEEE 16th International Conference
on. IEEE, 2010, pp. 267–274.

[13] L. Rodrigues, H. Fonseca, and P. Verissimo, “Totally ordered
multicast in large-scale systems,” in Distributed Computing
Systems, 1996., Proceedings of the 16th International Con-
ference on. IEEE, 1996, pp. 503–510.

[14] A. Sousa, J. Pereira, F. Moura, and R. Oliveira, “Opti-
mistic total order in wide area networks,” in Reliable Dis-
tributed Systems, 2002. Proceedings. 21st IEEE Symposium
on. IEEE, 2002, pp. 190–199.

[15] P. Vicente and L. Rodrigues, “An indulgent uniform total
order algorithm with optimistic delivery,” in Reliable Dis-
tributed Systems, 2002. Proceedings. 21st IEEE Symposium
on. IEEE, 2002, pp. 92–101.

[16] G. Veronese, M. Correia, A. Bessani, and L. Lung, “Ebawa:
Efficient byzantine agreement for wide-area networks,” in
Proceedings of the 12th Symposium on High-Assurance Sys-
tems Engineering. Citeseer, 2010, pp. 10–19.

[17] M. Correia, P. Verissimo, and N. Neves, “The design of a cots
real-time distributed security kernel,” Dependable Computing
EDCC-4, pp. 634–638, 2002.

[18] P. Verı́ssimo, “Travelling through wormholes: a new look at
distributed systems models,” ACM SIGACT News, vol. 37,
no. 1, pp. 66–81, 2006.

[19] M. Correia, N. Neves, and P. Verissimo, “How to tolerate half
less one byzantine nodes in practical distributed systems,” in
Reliable Distributed Systems, 2004. Proceedings of the 23rd
IEEE International Symposium on. IEEE, 2004, pp. 174–
183.

[20] R. Guerraoui and L. Rodrigues, Introduction to reliable
distributed programming. Springer-Verlag New York Inc,
2006.

[21] P. Berman and A. Bharali, “Quick atomic broadcast,” Dis-
tributed Algorithms, pp. 189–203, 1993.

[22] F. Cristian, H. Aghili, R. Strong, and D. Dolev, “Atomic
broadcast: From simple message diffusion to byzantine agree-
ment,” Information and Computation, vol. 118, no. 1, p. 158,
1995.

[23] L. Lamport, R. Shostak, and M. Pease, “The byzantine gener-
als problem,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[24] R. Rodrigues, M. Castro, and B. Liskov, “Base: Using ab-
straction to improve fault tolerance,” ACM SIGOPS Operating
Systems Review, vol. 35, no. 5, pp. 15–28, 2001.

[25] A. Menezes, P. Van Oorschot, and S. Vanstone, Handbook of
applied cryptography. CRC, 1996.

