
Active Replication in CORBA: Standards,

Protocols and Implementation Framework?

Alysson Neves Bessani1, Joni da Silva Fraga1,
Lau Cheuk Lung2, and Eduardo Ad́ılio Pelinson Alchieri1

1 DAS - Departamento de Automação e Sistemas
UFSC - Universidade Federal de Santa Catarina

Campus Universitário, C.P. 476 - CEP 88040-900 - Florianópolis - SC - Brasil
{neves, fraga, alchieri}@das.ufsc.br

2 Graduate Program in Applied Computer Science
Exact Sciences and Technology Center

Pontifical Catholic University of Paraná - Curitiba - Paraná - Brazil
lau@ppgia.pucpr.br

Abstract. This paper presents a proposal for integrating in a single
CORBA middleware platform two important OMG specifications: FT-
CORBA, which provides fault-tolerance support for CORBA objects,
and UMIOP, an unreliable multicast protocol devised for CORBA mid-
dleware. The integration model defines a middleware support which sup-
plies the basis to a large spectrum of group communication properties
for distributed objects. Our propositions create a framework for active
replication that is implemented using only OMG standards. Algorithms
for reliable and atomic multicasts needed for this replication technique
are presented using theoretical concepts for expressing their main fea-
tures. At last, our FT-CORBA and UMIOP integration is compared to
related experiences described in the literature and other active replica-
tion protocols.

1 Introduction

The FT-CORBA standard3 [25] cames up from an OMG (Object Management
Group) effort in order to specify fault tolerance for CORBA objects. The fault
tolerance introduced in these specifications makes use of replication techniques.
The support for managing replicated objects is provided by a set of object ser-
vices. Four replication styles to distributed object are allowed in FT-CORBA
specification: Stateless (replication technique in which the objects state are not
changed by the requests); Cold Passive (replication with only one active object,
called primary copy, which periodically checkpoints its state in a persistent stor-
age);Warm Passive (similar to the previous with the difference that the primary

? This work is supported by CNPq (Brazilian National Research Council) through
process 401802/2003-5.

3 Currently at chapter 25 of the main CORBA 3.0 specification.

checkpoints its state in the backup replicas); and, at last, the Active Replication
(where all replicas are active and perform client requests).

Actually, the current specifications provides only the abstractions for repli-
cation management. However, these specifications do not present standard solu-
tions for executing active replicas. For example, they do not introduce interfaces
or protocols for group communication, wich are necessary for active replication;
they only indicate that this replication style has to be supported by a proprietary
group communication tool. So, a request can be transmitted to all group mem-
bers (active replicas), through an mechanism outside the ORB (Object Request
Broker), using an atomic broadcast protocol [16]. If we consider the active repli-
cation technique, in a conceptual point of view, we would say that FT-CORBA
provides the mechanism to manage the membership, and the proprietary tool
supplies the support for group communication.

In 1999, the OMG published a RFP (Request For Proposal) defining re-
quirements for an unreliable multicast service based on IP multicast. That RPF
produced the UMIOP (Unreliable Multicast Inter-ORB Protocol) specification
[24] which describes the MIOP (Multicast Inter-ORB Protocol) protocol that
defines the mapping of GIOP4 messages on the UDP/IP multicast stack. The
MIOP basic function is to segment and encapsulate GIOP messages in one or
more packets, and to disseminate them through the UDP/IP multicast. So, the
UMIOP standard defines, inside the ORB, a mechanism of one-to-many com-
munications with no delivery guarantees.

In order to provide group services we need a combination of protocols that
deals with group management (membership, fault detection, state transfer, etc.)
and with group communication (reliable, causal and atomic multicasts) offering
different delivery guarantees and message ordering for distributed applications.
These abstractions are being separately standardized by OMG: the group man-
agement was treated in the FT-CORBA specifications and the group commu-
nication is being developed in another OMG specification through the UMIOP.
These experiences are building blocks for developing more elaborated supports
providing different services (in terms of delivery guarantees and ordering of mes-
sages).

In this paper we present our experience (http://www.das.ufsc.br/grouppac)
of building a support for active replication based on the CORBA object model,
making use of the integration of UMIOP and FT-CORBA specifications in a
single middleware platform. This resulting middleware composes a group com-
munication support with basic primitives for unreliable multicast, where we can
easily add new functionalities that provide more elaborated services of group
communication. Active replication in our proposition is implemented using only
OMG defined standards, in a CORBAmiddleware. As a consequence for support-
ing active replication, an optimistic atomic broadcast protocol was developed.
This protocol has the following metrics: latency degree 1, message complexity
O(1) (in the fail-free case) and maximum resiliency (f ≤ n − 1). This protocol

4 The General Inter-ORB Protocol was introduced by OMG for defining a general
request/reply protocol independent of transport services.

was integrated to FT-CORBA as a Group Communication Service (GCS) using
a plug-in technique. Also, any group communication tool can be integrated to a
CORBA middleware using our integration framework.

The paper is organized as follows: section 2 describe a brief overview of the
OMG specifications related to the concept of object group. Section 3 presents
the integration model and the algorithmic support for replication that uses the
OMG standards. Section 4 presents the GCS and its plug-in architecture that
allows including group communication services in our FT-CORBA implementa-
tion. This section also presents the implementation description of the proposed
protocols and performance measurements. Finally, section 5 reports some similar
experiments found in literature and section 6 presents the paper conclusions.

2 Groups in OMG Specifications: FT-CORBA and

UMIOP

The FT-CORBA specification [25] defines object services for providing the basics
functionalities of fault tolerance to distributed applications. These services are
divided in three main modules:

– Replication Management (RM): This service provides support for con-
trolling life cycles of object groups. It offers two functionalities: Property
Management that is used to determinate replication features (replication
type, minimal number of copies, etc.); and Group Management which sup-
plies mechanisms for creating group members (through objects factory) and
to control groups membership;

– Fault Management (FM): Fault detection, notification, analysis and di-
agnosis are some of the attributions of this service which offers support to
RM in way that this last one can keep groups membership view always up-
dated;

– Logging and Recovering Management (LRM): Service used for main-
taining replica’s consistency; it defines mechanisms for checkpointing and
replica recovering. Support for logging (used to store requests sent to the
group) and mechanisms for updating members (through checkpoints) are
provided by this service which is activated for recovering replica’s failures
through state updates.

As previously mentioned, FT-CORBA specification does not define a group
communication support, which is essential in active replication. In order to pro-
vides this replication style, FT-CORBA implementations must use some propri-
etary tool for group communication that provides the required semantics [4, 22,
8, 17, 11].

Considering group interoperability, where object members are maybe running
on different implementations of ORBs, OMG created a standardized format of
references for object groups: IOGR (Interoperable Object Group Reference),
which consists basically of a set of IIOP profiles identifying each group member
or a proxy used for having access to the corresponding group member.

The UMIOP specification [24] introduces a protocol based on IP multicast
and an object model that allow message multicasts, without reliability or or-
dering guarantees on message deliveries to group members. The defined object
model allows a group of CORBA objects to be invoked simultaneously through
a single reference, contrasting with the conventional CORBA model, where a
object reference activates a single implementation.

UMIOP standards also define a group reference that addresses groups with
zero or more objects. The group IOR (Interoperable Object Reference) is based
on a profile type (which is different of IIOP profiles) that is adapted for sending
messages using UDP/IP multicast stack. This profile contains all information
(class D IP address and port number) needed for addressing group members
using UDP and IP multicast protocols, and a group key for having access to
member objects at ORB level. The differences between FT-CORBA IOGR and
UMIOP group IOR are in their information fields: while IOGR provides the
membership list, the group IOR described in the UMIOP specification contains
only transport address and group key information. This group key is used in the
object adapters (POA - Portable Object Adapter), available at hosts addressed
by IP multicast, for getting access to group members on the host.

The FT-CORBA and UMIOP standards were implemented for us through
the GroupPac [20] and MJaco [3] projects, respectively. These implementa-
tions are the basis of the work presented in this paper and can be obtained in
the project site http://www.das.ufsc.br/grouppac.

3 CORBA Active Replication Protocol

Group communication with total ordering and reliability guarantees on mes-
sage deliveries makes easy to maintain the consistency of group members when
active replication models are used. The UMIOP standard opens an important
perspective for more elaborated services of group communication that may be
built using only OMG standards.

In this way, the approach presented in this paper defines all algorithmic
support for active replication using OMG interfaces and standards. Our approach
to build this support follows the methodology proposed in [16]: we built a reliable
multicast protocol over the basic ORB communication services and an atomic
multicast over that.

In the next section, we described both algorithms (atomic and reliable mul-
ticast) using the communication services provided by the FT-CORBA/UMIOP
integration in our system.

3.1 System Model

Starting from the idea that FT-CORBA fills the requirements of group man-
agement and that MIOP and IIOP protocols are available in the same ORB,
compounding a concrete basis for building different group communication pro-
tocols, we have to describe the adopted system model. This model defines the

assumptions and concepts used in our algorithms developed for active replica-
tion.

We consider a system model composed by a set Π = {p0, p1, ...} of processes,
where a closed group5 G ⊂ Π are defined for representing a replicated service.
The considered system fills the characteristics of an ad-hoc asynchronous system

[9] where a process fails only by stopping its activities like a crash failure (acci-
dental or forced). In this way, our model assumes the existence of perfect failure
detectors (class P [6]).

In our system we assume that processes communicate through two basic
services:

– Reliable one-to-one communication: Defined by primitives send(p,m)
and receive(m), this service provides a reliable point-to-point communication
channels where, if a correct process p sends a message m to another non-
faulty process q, then this last one will receive m;

– Unreliable multicast: This service is defined by primitives U-

multicast(G,m) and receive(m) where the first one is used to send a message
m to members of a group. The primitive receive(m) is activated by members
of G for receiving a message m sent to the group. The service defined by
these primitives sustains only two properties. The first one is that false mes-
sages are not created by the service. The other one gives the warranty that
all correct processes belonging to a group will receive some message sent to
it.

These services can model, respectively, IIOP (over TCP/IP) and MIOP (over
UDP/IP multicast) protocols specified to CORBA ORBs.

Perfect failure detectors assumed in the model compose the basis for building
a group membership service with primary-partition semantics [28]. The perfect
detectors and, as a consequence, the primary-partition membership are justified
in our model by the fact that the FT-CORBA specification provides these ser-
vices (RM and FM). Distributed algorithms based on weaker detectors (from
¦W class, for example) are too complex for being implemented in practical pro-
tocols [7], and do not reach the robustness of the ones based on perfect detectors
(f ≤ n− 1).

Our algorithms do not use the failure detectors directly, as the ones pre-
sented, for example in [6]. Instead of it, they assume that a group membership
service (implemented over these detectors) will inform them of any change in the
group configuration. This membership service, implemented by the Replication
Manager service object in the FT-CORBA architecture satisfies the properties
stated in [28], except for the view-sincrony [5].

3.2 Reliable Multicast

The reliable multicast service is defined in terms of two primitives: R-

multicast(G,m) e R-deliver(m). The primitive R-multicast(G,m) is used to send

5 Closed groups are those that only members can send messages to the group.

the message m to all processes of a group G, while the primitive R-deliver(m)
is used to liberate the message to the upper layer of the correct processes of G.
These primitives must satisfy the following properties [16] for characterizing a
reliable multicast :

1. Validity: If a correct process multicasts m in G, then some correct process
in G eventually delivers m;

2. Agreement: If a correct process in G delivers a message m, then all correct
processes in G eventually deliver m;

3. Integrity: For any messagem, every correct process in G deliversm at most
once and only if m was previously multicast in G.

The Proposed Algorithm Our algorithm of reliable multicast is built using
the two communication services available in our model. Also, this algorithm
incorporates techniques for recovering (NACKs) and confirming (ACKs) sent
messages, in a similar way to protocols like Trans [21], Psync [27] and the one
used in Transis system [1].

Protocols based on NACKs are called receiver-controlled [19], because, in
general, the receiver is the responsible for identifying lost messages and asking
for recovery. Although these protocols are scalable and efficient in environments
where the rate of message losses is low, they suffer from the problem of infinite
buffer: the agreement property cannot be reached in asynchronous systems if the
processes do not store all received messages. The stored messages are necessary
for answering NACKs.

Although the use of ACKs limits the protocol scalability due to the infor-
mation need about group membership, it prevents the problem of infinite buffer
since sending processes can know which messages had been received by all group
members and, in this way, can be removed from the buffer (stable messages).
The use of the membership service in protocols based on ACK mechanisms is not
a problem at all when we consider the FT-CORBA as part of our group support
since IOGR and Replication Manager fill the characteristics of a membership
control. Another problem related to protocols based on ACKS is the overhead
of ACK messages : #G ACKs for each message sent to the group. This problem
is minimized in our protocol by making group members to send ACKs only for
each K messages received or in each T units of time. K and T are parameters of
the protocol that can be adjusted in accordance with the runtime environment.

In this way, we can say that our protocolo is NACK-based, and ACKs are used
only for dealing with the infinite buffer problem and to start the recuperation
of message losses.

The algorithm 1 presents our reliable multicast protocol6 where a message is
sent to the group members using directly the service of an unreliable multicast
(line 7). A member can accept only incoming messages not yet received (line
8). In the reception, messages are delivered to the upper layers and added to
a reception buffer at the receiving member (lines 9 and 10). Lines 28 and 29

6 The algorithm considers only one sender for better readability.

Algorithm 1 Reliable Multicast (process p)

1: {Initialization}
2: buffer ← ∅ {buffer of received messages}
3: acksm ← ∅ {processes acknowleding message m}
4: received← 0 {number of received messages}
5: last ack ← getT imestamp() {sending time of the last ACK }
6: missing ← ∅ {set of lost message ids}

Require: R-multicast(G, m) {to reliable multicast a message m to a group G}
7: U-multicast(G, m)

Require: receive(m) {receiving message m addressed to G}
8: if (m /∈ buffer)∧ (m.id > maxStable(buffer)) then {message not yet received}
9: R-deliver(m)
10: buffer ← buffer ∪ {m}
11: received← received + 1
12: end if

Require: receive(〈ACK, q, stable〉) {receiving ACKs }
13: for all m : m ∈ buffer ∧m.id ≤ stable do

14: ackm ← ackm ∪ {q}
15: end for

16: buffer ← buffer \ {m | m ∈ buffer ∧G ⊆ ackm}
17: missing ← {id | maxStable(buffer) < id ≤ stable ∧ (@m ∈ buffer : m.id = id)}
18: while missing 6= ∅ do

19: send(q, 〈NACK, p, missing〉)
20: wait until (∃m ∈ buffer : m.id ∈ missing) ∨ (q /∈ G)
21: missing ← missingp \ {id | ∃m ∈ buffer : m.id = id}
22: q ← select(G)
23: end while

Require: receive(〈NACK, q, missingq〉) {receiving NACKs}
24: send(q, {m | m ∈ buffer ∧m.id ∈ missingq})
Require: viewChanged(V i) {membership change}
25: G← V i

26: buffer ← buffer \ {m | m ∈ buffer ∧G ⊆ ackm}
27: R-deliver(V i)
Require: (received mod K = 0)∨ (last ack−getT imestamp() ≥ T) {sending ACKs}
28: U-multicast(G, 〈ACK, p, maxStable(buffer)〉)
29: last ack ← getT imestamp()

show steps for sending ACKs. Basically, an ACK contains the id of the latest
stable message in the buffer of the ACK sender, i.e. the message with the highest
sequence number than all its precedent messages are also received and included
into this buffer. The function maxStable(buffer) is used for getting the id of
the last stable message. When a member receives an ACK, it adds the sender
identifier (q) to all ACK lists for messages m that have m.id ≤ stable (lines 13-
15) and removes from the buffer all received messages that were acknowledged
by all group members (line 16).

During ACK receptions, lost messages are detected and requested; in line 17
the id of all lost messages are collected into the set missing. The while block

(lines 18-23) is where the NACKs are sent until all missing messages are received
(missing = ∅). NACKs are always sent using the services of reliable one-to-one
communications. Initially, the NACK is sent to the last ACK sender (in the first
loop iteration - line 19). If it fails in recovering lost messages, another member
is selected by a random function select(G) for receiving the NACK in another
one-to-one communication (line 22). When the process p send a request for
missing messages to some other member q, it waits until the reception of one of
these messages or q fails (line 20). Line 24 presents the processing of a received
NACK: the group member sends all requested messages that it has in its buffer.
In order to avoid problems of infinite buffer caused by failed processes (ACKs
from failed processes never arrive and the corresponding messages stay in the
reception buffers forever), the algorithm makes use of the membership service
that sends updated view of the group membership when it changes. A new view
is received by a process when the replication manager calls viewChanged(V i).
When a new view V i is installed, all messages waiting for ACKs are checked in
accordance with the new membership to verify failed members (line 26).

Proof of Correctness (sketch) The algorithm is proved correct if it satisfies
the three properties of a reliable multicast:
Integrity: The non-duplication clause is guaranteed by the fact that the algorithm
only delivers messages not yet received (line 8). The non-generation of messages
is maintained as a direct consequence of the properties of the unreliable multicast
service described in section 3.1.
Validity: This property is guaranteed by the characteristics of closed groups and
by the assumption that, if a process multicast a message to your group, at least
it will receive the messsage.
Agreement: If a correct process p executes R-deliver(m) then m ∈ bufferp
(process p’s buffer of received messages). By construction of the algorithm, m
will not be removed from this buffer until p doesn’t receive ACKs from all correct
members of the group. Suppose that a correct process q doesn’t receive m. Since
q is correct, it eventually will receive an ACK with stable ≥ m.id. Then q will
conclude that it lost message m and then it will send a NACK requesting the
retransmission ofm via reliable one-to-one communication. The NACK is sent to
some process that has showed evidences of having got m. Process q will receive
m as long as correct processes do not remove this message from their buffers
until they receive ACKs to m from all correct processes of G (q’s ACK was
not yet sent). This proof can be extended to all members of G, showing that
all correct processes eventually receives (and delivers) all messages sent by any
correct process of G.

3.3 Atomic Multicast

An atomic multicast is a group communication service which guarantees that
all correct processes of a destination group deliver the same messages in the
same order. This service form the basis to the technique of active replication

since it satisfies the mandatory properties for maintaining replica consistency in
this replication model [30]. Formally, the atomic multicast is defined in terms of
the primitives A-multicast(G,m) and A-deliver(m). These primitives are used
to send and deliver messages in the group G, founded in the same properties of
the reliable multicast, plus one more [16]:

1. Local Total Order: If any correct processes p and q of group G, deliver
messages m and m’, then p delivers m before m’ if and only if q delivers m
before m’.

The group communication based on these properties are called “local atomic
multicast” [16]. For providing active replication in the FT-CORBA, it is enough
to use this communication service, since each object implementation is member
of only one group as indicated by OMG specification [25].

Algorithm The atomic multicast algorithm presented in this text is based on
the fixed-sequencer approach [9] where messages are sent to the group using
reliable multicast as underlying service. The local total order is established by
one of group members - the sequencer - which defines the delivery order of each
message sent to correct processes in G.

The algorithm 2 presents the proposed atomic multicast protocol. In the
sender, the atomic multicast is implemented by activating the R-multicast prim-
itive (line 6). Message m is received by a group member (using the R-delivery

primitive) which adds m to the unordered buffer (line 7). In lines 8-11, if the
receiver is the sequencer, it sends a message indicating m’s order (defined by the
next order counter). Message m is effectively delivered to the upper level when
a process receives the corresponding message order 〈id, ord〉 (lines 12-20). Note
that late reception of message orders may delay the delivering of messages (loop
for all in the lines 13-20).

When a view change happens, the new membership can exclude some group
members (failed processes)(lines 21-31). If the sequencer is failed, a new se-
quencer is evaluated through the function getSorter(G) (line 22). For establish-
ing a correct context to control message orderings, each group member sends
its next deliver value to the new sequencer. The asynchronous behavior of the
system may determine members sending different values of next deliver to the
new sequencer. In the algorithm, the biggest of the received values is assigned
to the sequencer next order. So, line 24 indicates the new sequencer waiting
messages with next deliver values, from all correct processes in the new view. If
the new sequencer needs to update its control of message deliveries (i.e., forcing
same values to next deliver and next order counters), it waits the delivery of
all messages with id ≤ next order − 1 (line 26), before distributing new mes-
sage orders in the group. Following its recovery, the sequencer sends to group G
orders for the pending messages in the unordered buffer(lines 27-30).

Algorithm 2 Atomic Multicast (process p)

1: {Initialization}
2: unordered← ∅ {buffer of unordered messages}
3: undelivered← ∅ {set of undelivered message orders}
4: next deliver ← 1 {pointer to next message to be delivered}
5: next order ← 1 {next order to be sent by the sequencer}

Require: A-multicast(G, m) {to atomically multicast a message m to group G}
6: R-multicast(G, m)

Require: R-deliver(m) {receiving message m from underlying service}
7: unordered← unordered ∪ {m}
8: if getSorter(G) = p then {I am the sequencer}
9: R-multicast(G, 〈m.id, next order〉) {sending order of m}
10: next order ← next order + 1
11: end if

Require: R-deliver(〈id, ord〉) {receiving message order}
12: undelivered← undelivered ∪ {〈id, ord〉}
13: for all m : m ∈ unordered ∧ 〈m.id, ord〉 ∈ undelivered do

14: if ord = next deliver then

15: A-deliver(m)
16: unordered← unordered \ {m}
17: undelivered← undelivered \ {〈m.id, next deliver〉}
18: next deliver ← next deliver + 1
19: end if

20: end for

Require: viewChanged(V i) {receiving new membership view of G}
21: G← V i

22: send(getSorter(G), 〈ORDER, p, next deliver〉)
23: if getSorter(G) = p then {I am the sequencer}
24: wait until receive(〈ORDER, q, ordq〉), ∀q ∈ G {wait next deliver from all}
25: next order ← max({ordq | q ∈ G})
26: wait until next order = next deliver {waiting message orders}
27: for all m : m ∈ unordered ∧ 〈m.id, ord〉 /∈ undelivered do

28: R-multicast(G, 〈m.id, next order〉) {establishing orders to pending messages}
29: next order ← next order + 1;
30: end for

31: end if

Proof of Correctness (sketch) Integrity, agreement and validity properties
may be proved directly from the the reliable multicast used as underling service.
So, it remains to be proved the protocol property of local total order.

Local Total Order: This proof is constructed by contradiction. Suppose two cor-
rect processes p and q delivering the same message m with different orders
(ordm

p 6= ordm
q). If the sequencer is correct, this situation is clearly impossi-

ble, since each message has an unique id and the sequencer, from the algorithm
itself, uses a reliable multicast for sending message orders to G’s members, then
ordm

p = ordm
q . Now, consider the sequencer failing during a message m multicast

to G. In that case, we have two possible situations that are guaranteed by the
agreement property of the underlying reliable multicast:

– if some correct process received this order, all correct processes eventually
receive the message order. So, the delivery order of m is the same in all
processes (ordm

p = ordm
q).

– if none of correct processes received m’s order sent by the sequencer, then
the new sequencer will define m’s order (lines 27-30).

3.4 Considerations and Optimizations for the Algorithm

Many characteristics of the presented algorithms was determinate by concepts
and mechanisms defined in the OMG specifications. Even so, some optimizations
may be implemented for improving the performance of the protocols. For exam-
ple, we may send ACKs by piggybacking on application messages. This technique,
largely used by other protocols [21, 1], decreases the overhead caused by control
messages, increasing protocol performance in terms of application message per
control messages.

In the atomic multicast algorithm, the control messages overhead can be de-
creased when the sequencer is also an application sender. The sender/sequencer
in this case send both the application message and its defined order. Doing that,
members of the group can deliver application messages as soon as they receive
them.

Assuming these considerations above, the proposed protocol of atomic multi-
cast presents message complexity of O(1) (one unreliable multicast per message
delivery7) in cases where there are no faults and message losses. The latency
degree - a metric based on logical clocks [29] - of the protocol is also 1 in the
fault-free case.

4 Integration of Group Communication Systems in

FT-CORBA

The active replication model, proposed in the FT-CORBA specification, em-
phasizes the idea of a closed group of replicas accessed by lightweight clients
through usual CORBA communication mechanisms (remote method invoca-
tion over IIOP). So, in this way, we proposed and developed the GCS (Group
Communication Support) framework which is part integrant of our FT-CORBA
implementation: the GroupPac. The GCS framework allows the FT-CORBA
infrastructure to interact with the group communication system in a way trans-
parent and standard. That is possible by having the integration of any group
communication support to the FT-CORBA architecture through plug-ins. The
figure 1 shows our integration model.

7 Note that the ACKs are used only for bounding the size of the reception buffers and
their reception does not cause message delivery in the fault-free case.

Process Process Process

IIOPORBORBORB
SCG + Plugin SCG + Plugin SCG + Plugin

Replicated Object

Fult Detector

Factory
Replicated Object Replicated Object

Fult Detector Fult Detector

Factory Factory Client

FT−CORBA Group
(represented by IOGR)

GCS Group
(represented in the plugin)Proprietary Protocol

implemented by GCS plugin

Fig. 1. Active replication in FT-CORBA.

In this figure, the client having an IOGR of a server group sends a point-to-
point request (using IIOP) to one of the servers, selected by the getSorter(G)
function. The selected replica is used as a bridge for accessing protocols of
group communication. Client requests are intercepted in the selected server and
repassed to the GCS that multicasts this requests by making use of the group
communication tools encapsulated in the loaded plug-in. Each group member
receiving a request through GCS activates the corresponding method for exe-
cuting the demanded service. Replies are sent back also using GCS/plug-ins and
the bridge server forwards the result to the client in a IIOP one-to-one com-
munication. So, bridge segments and plug-ins makes accessible closed group to
IIOP clients in our approach for integrating group communication and active
replication in the FT-CORBA.

The GCS was developed making use of instances of some design patterns [15]
in three basic components:

– Request Proxy: component that receives all requests sent to the group and
repasses them to the plug-in support. The proxy implementation is based
on concepts of generic servers and makes use of mechanisms provided by
CORBA’s DSI (Dynamic Skeleton Interface) [25];

– Request Invocator: component that forwards the received requests from
the plug-in to a local object replica of the target group;

– Plug-in Support: This component includes all interfaces and classes for
supporting different group communication tools. Basically, we have some
facilities for supporting dynamic load of plug-ins and some additional inter-
faces to group communication.

Figure 2 shows a UML class diagram with different classes and interfaces that
compose the framework. In the figure, three interfaces must be implemented for
the GCS plug-in: AdaptorsFactory, SenderAdaptor and ReceiverAdaptor.

We may include any group communication tool in the CGS framework. For
that, we make use of changes in some specific fields of IOGRs. Member references
are replaced by proxies references in that IOGR fields8. Figure 3 presents the

8 The specifications allow this type of artifice.

FactoriesManager

+ getSenderAdaptor()
+ getReceiverAdaptor()

InvokerImpl

+ add_server()
+ remove_server()
+ receivedMessage()

ProxyImpl

+ mask()
+ release()

+ sendRequest()
+ getResponse()

+ getSenderAdaptor()
+ getReceiverAdaptor()

+ joinGroup()
+ leaveGroup()

SenderAdaptor AdaptorsFactory ReceiverAdaptor

forwards requests loads and delegates forwards requests

createscreates

interacts by group communication tool

Fig. 2. CGS framework.

UML sequence diagram that shows the procedures for creating a group to active
replication.

: GenericFactory: ReplicationManager : Proxy : NamingContextExt

create_object(group_criteria)

: FTAdmin

mask(member_ref,criteria)

: ProxyEntry
ProxyEntry(criteria)

rebind(group_name,group_ref)

create_object(member_criteria)

: Object
Object()loop(1,initNumberReplicas)

Fig. 3. Sequence diagram for an active group creation.

In the figure, we have an administrator creating a group where a param-
eter is passed defining some characteristics to the Replication Manager (class
ReplicationManager). Then, this Replication Manager, for each replica to be
created, makes a call to the respective GenericFactory that creates a replica
(observing its criteria) on its location, and a call to the corresponding Proxy, in
which it creates an entry (class ProxyEntry)9. That entry masks the associated
replica. In this point, Replication Manager builds the IOGR (containing refer-

9 For simplicity, the diagram shows only one GenericFactory and a Proxy that are
activated once in each replica creation. Actually, these calls are made in different
factories and proxies, which execute on different locations.

ences to the proxies) and registers it on a fault-tolerant name service [20]. The
procedure stops when the IOGR is returned to the administrator.

Once the client gets the IOGR in the name service, it can invoke methods on
replicas through the proxies. Such as showed in figure 1, this invocation is made
in two communication steps: client-proxy via IIOP and proxy-replicas via group
communication. The diagram of figure 4 presents that procedure.

: ProxyEntry : SenderAdaptor : ReceiverAdaptor : Object: Client : NamingContext : Invoker

sendRequest(req_info)
receivedMessage(req_info)

: ClientIOGRSupport

method(a,b)

invoke(req)

resolve(group_name)alt [iogr is old]

method(a,b)group
communication
tool

Fig. 4. Sequence diagram for an operation execution.

In figure 4, a client invokes an operation method(a,b) in a group that imple-
ments the IDL where it is defined. The first step to be executed in the portable
interceptor ClientIOGRSupport installed on the client is the verification if the
IOGR used is the current version (updated IOGR). Changes in the group mem-
bership need to be reflected on the group IOGR. The client interceptor makes
the updating through the name service. After that, one of proxy references in the
IOGR is chosen, and the request is sent to the corresponding ProxyEntry ob-
ject (which masks the associated replica). That Proxy will be the bridge for this
client. The ProxyEntry is a dynamic server that can handle any kind of method
(via DSI). When receiving a request, it verifies which group communication sup-
port should be used for the IOGR, activating the correct client adapter (class
that implements SenderAdaptor) to invoke that group communication tool. So,
the request can be sent using a atomic multicast protocol implemented by the
appropriate communication tool. That multicast will be received (in the same
order) by all adapters (ReceiverAdaptor interface) of each replica. Adapters
deliver the request message to the Invoker, which invokes the method on its
replica. The reply of the request (if any) follow the inverse path, as showed in
the figure.

4.1 MJaco Plug-in: Integrating FT-CORBA and UMIOP
Specifications

Protocols presented in this paper were implemented as a GCS plug-in in Group-

Pac. This implementation was based on our experience with the ORB MJaco

[3]. These protocols explore the object model defined by UMIOP specification
and the group management services of FT-CORBA, what implies on group com-
munication and active replication services, all based on OMG standards. The ba-
sic motivation for building GCS like a plug-in was to have a flexible mechanism
for reflecting the FT-CORBA membership of an object group, represented by
an IOGR, in UMIOP group, used in the GCS context, to then, make use of the
unreliable multicast services (MIOP) and reliable point-to-point communication
(IIOP). The figure 5 presents the plug-in architecture.

UMIOPSenderAdaptor

ResponsesReceiver

receiveRequest

setGlobalOrder

receiveRequest

ack

nack

receiveResponse

IDL

ORB (MJaco)

IDL

GCS

FT−CORBA (GroupPac)

UMIOPReceiverAdaptor

receiveResponse

Fig. 5. Plug-in architecture.

In this figure, the plug-in components and their IDL interfaces are presented.
The arrows presents the method calls and communication pattern between the
sender and the receiver adaptors of the plug-in. The dashed arrows correspond
to the UMIOP methods. The implementation is made from two defined IDL
interfaces IDL: UMIOPReceiverAdaptor and ResponsesReceiver. The first one
is implemented by all plug-in instances that are registered as UMIOP group
members that are associated to FT-CORBA group replicas. This interface pro-
vides methods for message receiving as receiveRequest(), to reliable com-
munications, like ack() and nack(), and for ordering, as setGlobalOrder()10

algorithms. The interface ReceiverResponses has its implementation activated
in the plug-in of the bridge replica to overcome a UMIOP objects model lim-
itation: only oneway methods are called via MIOP. In spite of requests be-
ing multicasted in the group through the receiveRequest() method of the
UMIOPReceiverAdaptor interface, replies are sent back to the bridge plug-in
via IIOP using also receiveRequest() method call on the ReceiveResponses

interface. The reference to the receiver object (which implements this last in-
terface) is passed by parameter on receiveRequest() method, characterizing
then, a callback mechanism.

10 Note that these methods map directly to the message types used in 1 and 2.

Flexibility and the no necessity for changing internal mechanisms of the ORB
are some of the advantages to implement group communication protocols as
object services [12, 13].

4.2 Scalability and Performance in our Approach

In order to validate our implementation model, some experiments were devel-
oped with the GCS plug-in. We also had developed and integrated to our FT-
CORBA implementation two other plug-ins to proprietary tools: Ensemble [32]
and JGroups [17]. In this experiments, an example application was defined as
a simple remote storage service that provides a data block storage operation
which returns a hash of the stored data. The replication model used in the tests
was based on active replicas with majority vote 11. The protocols and plug-
ins to group communication were configured in a way that they can provide
atomic multicast services through our FT-CORBA implementation: GroupPac

(http://www.das.ufsc.br/grouppac). The test scenario was a local network with-
out failed object.

Two types of experiments measure the round-trip time between sending re-
quest and returning hash to/from the application service described above. Figure
6 shows the results of these experiments.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 2048 4096 6144 8192 10240 12288 14336 16384 18432 20480

la
te

nc
y

(m
s)

size of message (bytes)

a-) Performance for different message sizes (4 replicas).

MJaco
JGroups

Ensemble

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800
 3000
 3200

 1 2 3 4 5 6 7 8 9 10

la
te

nc
y

(m
s)

number of replicas

b-) Performance for diferent group sizes (512 bytes messages).

MJaco
JGroups

Ensemble

Fig. 6. Performance of active replication mechanisms.

Figure 6-a describes the response time of the replicated service considering
different message sizes. In figure 6-b the response time is defined using a variable
number of replicas. In both cases we have equivalent results to the plug-in using
our proposed protocols and the other based on the proprietary protocols of tool
Ensemble. The plug-in using JGroups communication tool get results less
expressives, especially in terms of scalability.

The results presented in figure 6 are very positives, especially if we take
into consideration that our implementation is a preliminary version while the

11 The returned value to the client in that replication model corresponds to the majority
value from all replica values sent.

Ensemble is a very stable tool. Another important issue is that the implemented
plug-in uses only ORB communication mechanisms that, despite the guarantee
of portability, impose a natural middleware overhead.

5 Related Work

A significant number of papers and works have been proposed as solutions for
active replication and group communication on CORBA (see [13] for a survey),
however, as far as we know, only three of these proposals are FT-CORBA com-
pliant specifications. The Eternal system [23] uses interceptors at operational
system level for accessing Totem[22], a proprietary tool of group communica-
tion. The Eternal approach ties the infrastructure to only one tool; it is not
flexible and, in some ways, we may put some questions about its interoper-
abity. The IRL project (Interoperable Replication Logic) [2] aims to implement
an entirely portable FT-CORBA infrastructure that can be integrated to any
ORB implementation. The IRL approach for active replication consists of a
three layers architecture, considering a differentiated environment in terms of
synchronism: client (an asynchronous system), intermediary layer (partially syn-
chronous), and the replicas (asynchronous). In this context, the IRL implements
replicated gateways in the intermediary layer where the agreement protocols can
be implemented; therefore they are not subject to the FLP impossibility [14].
Those gateways receive client invocation via IIOP and retransmit the client re-
quests (also via IIOP) to all group replicas. This approach allows the replicas
to run on different ORB implementations, but it pays a greater cost in terms of
performance, because there exists an additional step in the communication (two
IIOP calls and one for executing the agreement protocol). Also, it has the prob-
lem of concentrating the gateways in a special network (partially synchronous
network); according to authors, due to the properties of synchronism, that gate-
ways mechanisms can only be implemented in local or controlled network, they
can not be spread in a large-scale network. Also, the experience described in [31]
utilizes replicated gateways to implement active replication, in a similar way
to IRL and our architecture (figure 1), however it does not separate the mem-
bers group from layer interactions. Also, they do not provide any consideration
about the synchronism of the system, and how these gateways (and their active
replication protocolo) are implemented.

A reliable multicast protocol that seems to be close to our algorithm 1 is
Trans [21] and, in its improved version the Transis Protocol [1]. These proto-
cols, and others such as Psync [27], use positive and negative acknowledgement
(ACKs and NACKs) to assure the reliable multicast properties. They make use
of piggybacking for decreasing the overhead of control messages. A point that
can limit these piggybacking protocols is that they are only based on underlying
services of unreliable multicast. In this case, the recoveries are subject to the
rate of message losses what, in some situations, message deliveries can be de-
layed indefinitely for high rates of losses. Our protocol has a more deterministic

model, once it is based on reliable point-to-point communications for recovering
message losses.

The literature about atomic multicast is fairly vast (see [9], an excellent sur-
vey) and then, some systems influenced our protocols. Our algorithm is based on
the fixed sequencer paradigm as the protocols developed for Amoeba (method
2) and ISIS (sequencer method) systems [18, 4]. The proposed protocol in [26]
explore the high probability of total order, mainly in local network, intrinsic to
the multicast mechanisms used in practice. In this way, they developed an opti-
mistic protocol which is fast when the total order is spontaneous, and relatively
slow otherwise. Our protocols follow that philosophy, having a very good per-
formance (an atomic multicast in just one unreliable multicast execution) when
the sequencer is the bridge and the network without message losses. Also, we
use reliable point-to-point channels for transmitting NACKs and recoveries to
message losses. The algorithm developed em [10] is also based on fixed sequencer
paradigm for total ordering of messages. However, it uses failure detectors ¦W
[6] and then, it requires at least n/2 correct processes for running. The main
difference between that algorithm and ours is about how the system recovers a
faulty sequencer: we use the membership service provided by the FT-CORBA
architecture, while in [10] it is used a consensus algorithm for leader election.

6 Conclusion

This paper presents our experiences (http://www.das.ufsc.br/grouppac) for
building a support to active replication using concepts and interfaces of the
FT-CORBA model. The aim of our propositions was the integration of UMIOP
and FT-CORBA specifications in a single CORBA middleware platform. As a
consequence, for supporting active replication, an atomic multicast protocol was
defined with the following characteristics: latency degree 1, message complexity
O(1) and maximum robustness f ≤ n− 1. The protocol implementation makes
an extensive use of standardized interfaces and is based on two protocol stacks,
MIOP/UDP/IP multicast and IIOP/TCP/IP, specified for CORBA ORBs. The
algorithmic basis defined is implemented in the GCS framework and integrated
to the FT-CORBA architecture using plug-in techniques.

A practical result of this integration is a group communication support with
basic primitives for unreliable multicast, which was extended for providing guar-
antees for delivering and ordering (atomic multicast). Tests have shown a good
performance and scalability of this support and its plug-in implementation.

The active replication in our propositions can be implemented using only
OMG standards to communication and fault tolerance.

References

1. Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication subsystem
for high availability. In FTCS-22: 22nd International Symposium on Fault Tolerant
Computing, pages 76–84, Boston, Massachusetts, 1992. IEEE Computer Society
Press.

2. R. Baldoni, C. Marchetti, and A. Termini. Active software replication through a
three-tier approach. In Prooceedings of the 21st Symposium on Reliable Distributed
Systems (SRDS’02), pages 109–118, Osaka, Japão, October 2002. IEEE.

3. Alysson Neves Bessani, Joni da Silva Fraga, and Lau Cheuk Lung. Implementing
multicast Inter-ORB protocol. In Proceedings of the 6th IEEE Symposium on
Object-Oriented Real-Time Distributed Computing, Hakodate - Hokkaido - Japan,
May 2003.

4. K. Birman and R. Cooper. The ISIS project: Real experience with a fault tolerant
programming system. In Proceedings of the Workshop on Fault Tolerant Distributed
Systems, New York - NY - USA, 1991.

5. Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in dis-
tributed systems. In Proceedings of the eleventh ACM Symposium on Operating
systems principles, pages 123–138. ACM Press, 1987.

6. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2), March 1996. A preliminar version
appeared in Proceedings of the 10th ACM Symposium on Principles of Distributed
Computing, pp. 325-340, August 1991.

7. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. A realistic look at failure
detectors. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN’02), Washington - D.C. - USA, June 2002.

8. Danny Dolev and Dalia Malki. The transis approach to high avaliability cluster
communication. Communications of the ACM, 39(4):64–70, April 1996.

9. X. Défago, A. Schiper, and P. Urban. Totally ordered broadcast and multicast
algorithms: a comprehensive survey. Technical Report TR DSC/2000/036, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2000.

10. Paul Ezhilchelvan, Doug Palmer, and Michel Raynal. An optimal atomic broadcast
protocol and an implementation framework. In Proceedings of the 8th IEEE Inter-
national Workshop on Object-Oriented Real-Time Dependable Systems (WORDS
2003), Guadalajara, Mexico, January 2003.

11. Paul D. Ezhilchelvan, Raimundo Macedo, and S. K. Shrivastava. Newtop: A fault-
tolerant group communication protocol. In Proceedings of 19th International Con-
ference on Distributed Computing Systems, June 1995.

12. Pascal Felber. The CORBA Object Group Service - A Service Approach to Object
Groups in CORBA. Tese de doutorado, École Polytechnique Fédérale de Lausanne,
Lausanne, Suiça, 1998.

13. Pascal Felber and Priya Narasimhan. Experiences, strategies, and challenges
in building fault-tolerant CORBA systems. IEEE Transactions on Computers,
53(5):497–511, 2004.

14. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April
1985. A preliminar version appeared in Proceedings of the 2nd ACM Symposium
on Principles of Database Systems, pp. 1-7, March 1983.

15. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, 1995.

16. Vassos Hadzilacos and Sam Toueg. A modular approach to the specification and
implementation of fault-tolerant broadcasts. Technical report, Department of Com-
puter Science, Cornell University, New York - USA, May 1994.

17. JGroups. JGroups: A toolkit for reliable multicast communication. Avaliable at
http://www.jgroups.org, 2004.

18. M. Frans Kaashoek, Andrew S. Tanenbaum, and Kees Verstoep. Group communi-
cation in Amoeba and its applications. Distributed Systems Engineering Journal,
1(1):48–58, September 1993.

19. Brian Neil Levine and J. J. Garcia-Luna-Aceves. A comparison of reliable multicast
protocols. Multimedia Systems, 6(5):334–348, 1998.

20. Lau Cheuk Lung, Joni Fraga, Jean-Marie Farines, Michael Ogg, and Aleta Ric-
ciardi. CosNamingFT - a fault-tolerant CORBA naming service. In Proceeding
of the 18th International Symposium on Reliable Distributed Systems - SRDS’99,
Lausanne - Suice, 1999.

21. P. Melliar-Smith, L. Moser, and V. Agrawala. Broadcast protocols for distributed
systems. IEEE Transactions on Parallel and Distributed Systems, 1(1), January
1990.

22. L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group comunication system.
Communications of the ACM, 39(4):54–63, April 1996.

23. Louise E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. A. Tewksbury, and
V. Kalogeraki. The Eternal System: An architecture for enterprise applications.
In Proceedings of the 3rd International Enterprise Distributed Object Computing
Conference (EDOC’99), Mannhein - Alemanha, July 1999.

24. Object Management Group. Unreliable multicast inter-orb protocol specification
v1.0. OMG Standart ptc/03-01-11, October 2001.

25. Object Management Group. The common object request broker architecture: Core
specification v3.0. OMG Standart formal/02-12-06, December 2002.

26. F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proceedings of the 12th
International Symposium on Distributed Computing (DISC’98), 1998.

27. Larry L. Peterson, Nick C. Buchholz, and Richard D. Schlichting. Preserving
and using context information in interprocess communication. ACM Transactions
Computing Systems, 7(3):217–246, 1989.

28. A. M. Ricciardi and K. Birman. Using process groups to implement failure de-
tection in asynchronous environments. In ACM Symposium on Principles of Dis-
tributed Computing, pages 341–353, Montreal - Quebec - Canada, 1991.

29. André Schiper. Early consensus in an asynchronous system with a weak failure
detector. Distributed Computing, 10(3):149–157, 1997.

30. Fred B. Schneider. Implementing fault-tolerant service using the state machine
aproach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

31. D. Szentiványi and S. Nadjm-Tehrani. Building and evaluating a fault-
tolerant CORBA infrasctructure. In Proceedings of the Workshop on Dependable
Middleware-Based Systems (WSDM’02) - parte do DSN’02, Washington, USA,
June 2002.

32. Robbert van Renesse, Kenneth P. Birman, Alexey Vaysburd Mark Hayden, and
David Karr. Building adaptative systems using ensemble. Software - Pratice and
Experience, 28(9):963–979, August 1998.

