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Abstract
The tuple space coordination model is one of the most inter-
esting communication models for open distributed systems
due to its space and time decoupling and its synchroniza-
tion power. Several works have tried to improve the de-
pendability of tuple spaces. Some have made tuple spaces
fault-tolerant while others have focused on security. How-
ever, many practical applications in the Internet require both
these dimensions. This paper describes the design and im-
plementation of DEPSPACE, a dependable communication
infrastructure based on the tuple space coordination model.
DEPSPACE is dependable in a strong sense of the word: it
is secure, fault-tolerant and intrusion-tolerant, i.e. it behaves
as expected even if some of the machines that implement it
are successfully attacked. Moreover, it is a policy-enforced
augmented tuple space, a shared memory object that we have
recently proven to be universal, i.e., capable of implementing
any other shared memory object.

1 Introduction
The generative (or tuple space) coordination model, origi-
nally introduced in the LINDA programming language [8],
relies on a shared memory object called a tuple space to
support coordination between distributed processes. Tuple
spaces can support communication that is decoupled in time
– processes do not have to be active at the same time – and
space – processes do not need to know each others locations
or addresses [5], providing some level of synchronization at
the same time. The operations supported by a tuple space are
essentially the insertion, reading and removal of tuples, i.e.,
of finite sequences of values.

Previous works on fault-tolerant (e.g. [17, 2]) and secure
tuple spaces (e.g. [10, 4]) have a narrow focus in two senses:
they consider only simple faults (crashes) or simple attacks
(invalid access); and they are about either fault tolerance or
security. The present paper goes one step further by investi-
gating the implementation of secure and fault-tolerant tuple
spaces. The solution is inspired on a current trend in depend-
ability that applies fault tolerance concepts and mechanisms
in the domain of security, intrusion tolerance [7, 16]. The
proposed tuple space is not centralized but implemented by
a set of tuple space servers. This set of tuple spaces forms
a tuple space that is dependable, meaning that it enforces the
attributes of reliability, availability, integrity and confidential-
ity [1], despite the occurrence of arbitrary faults, like attacks
and intrusions in some servers.
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The implementation of a dependable tuple space with the
above-mentioned attributes presents some interesting chal-
lenges. Our design is based on the classical state machine
replication approach [13, 6]. However, this approach does
not guarantee the confidentiality of the data stored in the
servers; quite on the contrary, replicating data in several
servers is usually considered to reduce the confidentiality
since the potential attacker has more servers where to attempt
to read the data, instead of just one. Therefore, combining the
state machine approach with confidentiality is a non-trivial
challenge that has to be addressed. A second challenge is in-
trinsically related to the tuple space model. Tuple spaces re-
semble associative memories: when a process wants to read
a tuple, it provides a template and the tuple space returns a
tuple that “matches” the template. This match operation in-
volves comparing data in the tuple with data in the template,
but how can this comparison be possible if tuples are en-
crypted to guarantee confidentiality? In this paper we present
DEPSPACE, a system that addresses these challenges using a
particular kind of secret sharing scheme together with crypto-
graphic hash functions in such a way that it guarantees that a
tuple stored in the system will have its content revealed only
to authorized parties.

The design of a dependable tuple space is not a merely aca-
demic exercise. The tuple space system presented in this pa-
per might be useful in several practical application domains,
like the following. (i.) Ad hoc networks are an important
current trend in computer science. It has been shown that
tuple spaces can be a powerful solution to coordinate activ-
ities in those environments, and systems like LIME [12] al-
ready explore this paradigm. (ii.) Mobile agents are pro-
grams that migrate from node to node in the network, usually
to gather data or to perform computations close to the data
source. The interaction of these agents is usually complex
due to the lack of fixed location. Tuple spaces are an obvi-
ous solution to support this communication since they pro-
vide time and space decoupling [5]. (iii.) Grid computing
involves using resources in large numbers of computers to
perform complex computations. These computations are de-
coupled both in space and time so a tuple space would be a
good solution to coordinate the tasks performed.

Algorithms based on a tuple space with the properties of
DEPSPACE are well suited for coordination of non-trusted
processes in practical dynamic systems. Instead of trying to
compute some distributed coordination task using a complete
dynamic model (like, for instance, the one proposed in [11]),
we pursue a more pragmatic approach where a tuple space is
deployed on a fixed and small set of servers and is used by a
unknown, dynamic and unreliable set of processes that need
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to coordinate themselves. An example of scenario were this
kind of system can be deployed are peer-to-peer systems and
infrastructured wireless networks.

The paper has two main contributions. The first is the
presentation of the dependable and intrusion-tolerant tuple
space. This design involves a non-trivial combination of se-
curity and fault tolerance mechanisms: state machine repli-
cation, space and tuple level access control, and cryptogra-
phy. To the best of our knowledge this is the first work to im-
plement Byzantine state machine replication for tuple spaces
and to integrate this technique with a confidentiality scheme.
The second contribution is the first practical assessment of
the performance of an intrusion-tolerant scheme that provides
data confidentiality even when there are intrusions in some of
the servers. We are not aware of any other practical assess-
ment of such a scheme in the literature.

2 Defining a Dependable Tuple Space
A tuple space can be seen as a shared memory object that pro-
vides operations for storing and retrieving ordered data sets
called tuples. A tuple t with all its fields defined is called an
entry, and can be inserted in the tuple space using the out(t)
operation. A tuple in the space is read using the operation
rd(t), where t is a template, i.e. a special tuple in which some
of the fields can be wild-cards or formal fields. The operation
rd(t) returns any tuple in the space that matches the template,
i.e. any tuple with the same number of fields and with the field
values equal to all corresponding defined values in t. A tuple
can be read and removed from the space using the in(t) oper-
ation. The in and rd operations are blocking. Non-blocking
versions, inp and rdp, are also usually provided [8].

The tuple space implemented in this paper provide an-
other operation usually not considered by most tuple space
works: cas(t, t) (conditional atomic swap) [2, 15, 3]. This
operation works like an indivisible execution of the code: if
¬rdp(t) then out(t). The operation inserts t in the space
iff rdp(t) does not return any tuple, i.e. if there is no tuple
in the space that matches t. The cas operation is important
mainly because a tuple space that supports it is capable of
solving the consensus problem [15], which is a building block
for solving many important distributed synchronization prob-
lems like atomic commit, total order multicast, leader elec-
tion and fault-tolerant mutual exclusion.

A tuple space is dependable if it satisfies the dependabil-
ity attributes [1]. Like in many other systems, some of these
attributes do not apply or are orthogonal to the core of the de-
sign (e.g. safety and maintainability). The relevant attributes
in this case are: reliability (the operations on the tuple space
have to behave according to their specification), availability
(the tuple space has to be ready to execute the operations re-
quested), integrity (no improper alteration of the tuple space
can occur.), and confidentiality (the content of (some) tuple
fields cannot be disclosed to unauthorized parties).

The difficulty of guaranteeing these attributes comes from
the occurrence of faults, either due to accidental causes
(e.g. a software bug that crashes a server) or malicious causes
(e.g. an attacker that modifies some tuples in a server). Since
it is difficult to model the behavior of a malicious adversary,
intrusion tolerant systems mostly assumes the most generic
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Figure 1: DEPSPACE architecture

class of faults – arbitrary or Byzantine faults – so the solution
we propose and describe in the next section is quite generic
in terms of the faults it handles.

3 Building a Dependable Tuple Space
This section presents the design of DEPSPACE. We begin
with a model of the underlying system and the basic assump-
tions of our design, then delve into the general layered archi-
tecture and finally into each layer.

3.1 Underlying Assumptions
The system is composed by an infinite set of clients which in-
teract with a set of n servers that implement the dependable
tuple space with the properties introduced in the previous sec-
tion. At most f servers and an unbounded number of clients
can suffer Byzantine failures, i.e. they can deviate arbitrarily
from their specification. We assume fault independence for
servers, i.e. the failures of the servers are uncorrelated. This
assumption can be substantiated in practice using diversity.

All communication between clients and servers is made
over reliable authenticated point-to-point channels. These
channels can be implemented using TCP and some crypto-
graphic mechanism such as MACs (Message Authentication
Codes) with session keys.

The dependable tuple space does not require any explicit
time assumption, however, since it is based on the state
machine replication model [13], it requires a total order
multicast primitive. We implement this primitive using the
BYZANTINE PAXOS protocol [6, 18], which only ensures
liveness if the system eventually becomes synchronous.

3.2 DEPSPACE Architecture Overview
The architecture of the dependable tuple space consists in a
series of integrated layers that enforce each one of the de-
pendability attributes stated in Section 2. Figure 1 presents
the DEPSPACE architecture with all its layers.

On the top of the client-side stack is the proxy layer, which
provides access to the replicated tuple space, while on the
top of the server-side stack is the tuple space implementation
(a local tuple space). The communication follows a scheme
similar to remote procedure calls. The application interacts
with the system by calling functions with the usual signatures
of tuple spaces’ operations: out(t), rd(t), . . . These functions
are called on the proxy. The layer below handles tuple level
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access control. After, there is a layer that takes care of confi-
dentiality (Section 3.4) and then one that handles replication
(Section 3.3). The server-side is similar, except that there
is a new layer to check the access policy for each operation
requested. Access control and policy-enforcement are not de-
scribed in this paper due to space constraints. Some aspects
of these mechanisms are described in [3].

3.3 Replication

The most basic mechanism used in DEPSPACE is replication:
the tuple space is maintained in a set of n servers in such a
way that the failure of up to f of them does not impair the
reliability, availability and integrity of the system. The idea
is that if some servers fail, the tuple space is still ready (avail-
ability) and the operations work correctly (reliability and in-
tegrity) because the correct replicas manage to overcome the
misbehavior of the faulty replicas. A simple approach for
replication is state machine replication [13]. This approach
guarantees linearizability [9], which is a strong form of con-
sistency in which all replicas appear to take the same se-
quence of states.

The state machine approach requires that all replicas (i.)
start in the same state and (ii.) execute all requests (i.e. tu-
ple space operations) in the same order [13]. The first point
is easy to ensure, e.g. by starting the tuple space with no tu-
ples. The second requires a fault-tolerant total order multi-
cast protocol, which is the crux of the problem. The state
machine approach also requires that the replicas are deter-
ministic, i.e. that the same operation executed in the same
initial state generates the same final state in every replica.
This implies that a read (or removal) in different servers in
the same state (i.e. with the same set of tuples) must return
the same response.

The protocol for replication is very simple: the client send
an operation request using total order multicast and wait for
f + 1 replies with the same response from different servers.
Since each server receives the same set of messages in the
same order (due to the total order multicast), and the tuple
space is deterministic, there will be always at least n − f ≥
2f + 1 correct servers that execute the operation and return
the same reply.

3.4 Confidentiality

The enforcement of confidentiality in a replicated tuple space
is not trivial. Several solutions that come to mind simply do
not work or are unacceptable for the generative coordination
model. One of those solutions would be to encrypt the client-
server communication and let the tuple space encrypt the tu-
ple fields with its own key(s). This is unacceptable because
we assume f servers can fail maliciously, so they might de-
crypt the tuple fields and disclose their contents. A second
solution would be to let the client that inserts a tuple to en-
crypt the tuple fields either with a secret key (with a symmet-
ric cryptography algorithm like AES) or with its private key
(with a public-key algorithm like RSA). The problem of this
solution is that it requires all clients that might read and/or
remove this tuple to know the decryption key. This contra-
dicts the anonymity property of the generative coordination

model [8], which states that clients should not need to know
information about each other.

The solution we propose follows in some way the idea of
letting the servers handle the confidentiality. However, in-
stead of trusting each server to keep the confidentiality of the
tuple fields, we trust a set of servers. The solution is based on
a (n, f+1)–publicly verifiable secret sharing scheme (PVSS)
[14]. Clients play the role of the dealer of the scheme, en-
crypting the tuple with the public keys of each server and
obtaining a set of tuple shares. Any tuple can be decrypted
with f + 1 shares, therefore a collusion of malicious servers
cannot disclose the contents of confidential tuple fields. A
server can build a proof that the share that it is giving to the
client is correct. The PVSS scheme also provides two veri-
fication functions, one for each server to verify the share it
received from the dealer and other for the client to verify if
the shares collected from servers are not corrupted.

The confidentiality scheme has also to handle the problem
of matching (possibly encrypted) tuples with templates. To
solve this problem we use a collision-resistant hash function
H(v) (e.g. SHA-1) that maps an arbitrarily length input to a
fixed length output (called a a hash).

The idea is to use the hashes of the fields of a tuple as a
fingerprint of the tuple, and execute the matching of tuples
using the hashes of the fields of the tuple, instead of the their
values. The fingerprint of a tuple is stored in each server to-
gether with its tuple share. One limitation of this scheme is
that although hash functions are unidirectional, if the range
of values hat a field can take is known and limited, then a
brute-force attack can disclose its content. This limitation is
a motivation for not using typed fields in a dependable tuple
spaces. Using fingerprints and the PVSS scheme, the proce-
dures for providing confidentiality for tuple spaces on top of
state machine replication is the following:
Tuple insertion. All shares are sent encrypted together with
the fingerprint of the tuple and its validity proof by the client
using total order multicast. The encryption of each share si

addressed to server pi is made through symmetric cryptogra-
phy, using the session key shared between the client and the
server pi. Notice that all servers will receive all encrypted
shares, however, each server will have access only to its cor-
responding share, the fingerprint of the tuple and the proof
generated by the PVSS algorithm. These three pieces of data
are stored in the tuple space.
Tuple access. To access a tuple, the client sends the finger-
print of the template and then waits for the replies from the
servers containing the same tuple fingerprint that matches the
template fingerprint sent, the encrypted share of the server for
this tuple and its corresponding proof of validity (produced
by the server). Each share is encrypted by the servers with
the session key shared between the client and the server to
avoid eavesdropping on the replies. Additionally, the replies
from the servers can be signed to make the client capable
of cleaning invalid tuples from the space (see bellow). The
client decrypts the received shares, verifies their validity, and
combines f + 1 of them to obtain the stored tuple.
Recovery procedure. Notice that nothing prevents a mali-
cious client to insert a tuple with a fingerprint that does not
correspond to it. Consequently, after obtained a stored tuple,
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the client has to verify if the tuple corresponds to the finger-
print. If such correspondence does not exist, the client must
clear the tuple from the space (if it is not removed yet) and
reissue its operation to the space. The “tuple cleaning” is
made in two steps: (1.) the client sends all replies received to
the servers to prove that the stored tuple is invalid; and (2.)
the servers verify if the replies are produced by the servers
and, if the tuple returned does not correspond to the finger-
print, this tuple is removed from the local tuple space. More-
over, the client that inserted the invalid tuple can be put on
a black list (and its further requests ignored). This ensures
that a malicious client cannot insert tuples after some of its
invalid insertions have been cleaned.

A key advantage of the confidentiality scheme of
DEPSPACE is that most of the cryptographic processing is
done at client side. This improves the scalability of the sys-
tem, as will be show in Section 5.

An interesting point of our scheme is that the confidential-
ity layer weakens our tuple space semantics since it no longer
satisfies linearizability in all situations: a malicious client can
insert invalid shares in some servers and valid shares in oth-
ers, so it is not possible to ensure that the same read/remove
operation executed in the same state of the tuple space will
have the same result: the result depends of the n−f responses
collected. However, DEPSPACE satisfies linearizability for
all tuples that have been inserted by correct processes.

4 DEPSPACE Implementation

The DEPSPACE was implemented using the Java program-
ming language, and at present it is a simple but fully func-
tional dependable tuple space. The Byzantine-resilient state
machine replication algorithm implemented is the PAXOS
AT WAR described in [18], combined with a total ordering
scheme inspired by the one defined by [6]1. Authentication
was implemented using the SHA-1 algorithm for producing
HMACs (providing an approximation for authenticated chan-
nels on top of Java TCP Sockets). SHA-1 was also used
for computing hashes. For symmetric cryptography we em-
ployed the Triple DES algorithm while RSA with exponents
of 1024 bits was used for digital signatures. All the cryp-
tographic primitives used in the prototype were provided by
the default provider of version 1.5 of JCE (Java Cryptogra-
phy Extensions). The only exception was the PVSS scheme,
which we implemented following the specification in [14],
using algebraic groups of 192 bits.

Two main implementation optimizations are specially rel-
evant for the system performance. The first is to try to ex-
ecute rdp and rd first without total order multicast and wait
for n − f responses. If all of them are equal, the returned
value is the result of the operation, otherwise the normal pro-
tocol operation must be executed. The second optimization
is for servers to send read replies without signing them. The
clients must explicitly request signed responses for an opera-
tion if they find that the read tuple is invalid. This improves
the latency of the read operations since the processing cost

1Our algorithm is an extension to PAXOS AT WAR to provide total order
multicast. It differs from BFT [6] since we assume reliable channels instead
of using checkpoints.

for asymetric cryptography is still very high. Since it is ex-
pected that invalid tuples will be very rare, in most cases the
read operations will not require digital signatures.

5 Experimental Evaluation
This section presents an experimental evaluation of
DEPSPACE. The execution environment was composed by
a set of five Athlon 2.4GHz PCs with 512 Mb of memory
and running Linux (kernel 2.6.12). They were connected by
a 100Mbps switched Ethernet network. The Java runtime en-
vironment used was Sun’s JDK 1.5.0 06.

We considered tuples with 4 fields and sizes equal to 64,
256, and 1024 bytes, running on a system with 4 servers2.
Two cases were considered in all experiments: the complete
system (with confidentiality) and the system with the confi-
dentiality scheme deactivated. All our experiments consid-
ered fault-free executions. Figure 2 present the results.

The first experiments (Figures 2(a) to 2(d)) measured the
delay perceived by the client for each one of the tuple space
non-blocking operations. The client was in one of the ma-
chines and the servers in the other four. We executed each
operation 1000 times and obtained the mean time discarding
the 5% values with greater variance.

The results presented in the figure show that out , inp and
cas have almost the same latency when the confidentiality
layer is not used – the solid lines in Figures 2(a) to 2(d) This
is the latency imposed by the total order multicast protocol
(about 6 ms). rdp, on the other hand, is much more efficient
(about 2 ms) due to the optimization presented in Section 4,
which avoids running the total order multicast protocol.

The dotted lines in the graphs show the latency of the pro-
tocols when the confidentiality layer is used. In these exper-
iments all tuples inserted and read have all their fields com-
parable. In fact, the number of comparable fields is not rel-
evant since the overhead for producing a hash is negligible
when compared to the overhead of the PVSS scheme. The
cas operation (Figure 2(d)) has two dotted lines, one measur-
ing the cases where a tuple is inserted and other for the cases
when some tuple is read. The additional latency cost caused
by the confidentiality scheme is mostly due to the client-side
processing of the operations. The global cost of the confi-
dentiality scheme is also higher for out since this is the only
operation in which the shares and their proofs have to be gen-
erated. Notice that the processing cost of the cas operation
when a tuple is read is approximately the cost of out plus the
cost of rdp. This reflects the fact that this operation executes
both tuple insertion and access procedures.

From the Figure 2, it is clear that the size of the tuple
has almost no effect on the latency experienced by the pro-
tocols. This happens due to two implementation features: (i.)
our BYZANTINE PAXOS implementation makes agreement
over message hashes; and (ii.) the secret shared in the PVSS
scheme is not the tuple, but a symmetric key used to encrypt
the tuple. (i.) implies that it is not the entire message that
it ordered by the PAXOS protocol, but only its hash (MD5

2We do not present experiments with more servers due to space con-
straints. However we could say that our system suffers the same scalability
problems of other protocols with message complexity O(n2).
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Figure 2: Latency and throughput of DEPSPACE operations considering different tuple sizes.

hashes always have 128 bits), consequently the message size
has little effect over the agreement protocol. With feature
(ii.) we can execute all the required PVSS cryptographic in
the same, relatively small algebraic field of 192 bits, which
means that the tuple size has no effect in these computations
and the use of the confidentiality scheme implies almost the
same overhead regardless the size of the tuple.

The second set of experiments measured the throughput of
DEPSPACE. For these experiments we used a modified client
process that pre-processes C requests for the operation of
interest (executing the client-side processing) and send then
one-by-one to the servers. We measured the time T taken to
process all these requests at the leader replica, from the mo-
ment it receives the first request to the moment it sends the
response for the last one. The throughput of the system is
calculated as C/T .

Figures 2(e) to 2(h) show that the system provides a high
throughput with few servers. Even with larger tuples, the de-
crease in throughput is reasonable small, e.g. increasing the
tuple size 16 times (64 to 1024 bytes) causes a decrease of
about 10% in the system throughput. Therefore, the good
throughput of the system is due to the low processing re-
quired at server side and the batch message ordering imple-
mented in BYZANTINE PAXOS [6].

6 Final Remarks

The paper presents a solution for the implementation of an
intrusion-tolerant tuple space. The proposed architecture in-
tegrates several dependability and security mechanisms in or-
der to enforce the required properties. This architecture was
implemented in a system called DEPSPACE.

Another interesting aspect of this work is the integration
of replication with confidentiality. To the best of our knowl-
edge, this is the first paper to integrate state machine replica-
tion and confidentiality of data stored in the servers. Some-
what surprisingly, this integration is not trivial and the use of
secret sharing fundamentally weakens the semantics of state
machine replication in a Byzantine-prone environment (lin-
earizability is not unconditionally ensured).

All code used in DEPSPACE is available at the JITT (Java
Intrusion Tolerance Tools) project homepage: http://
www.das.ufsc.br/∼neves/jitt.
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