
Secure Mobile Agent System and its Application in

the Trust Building Process of Virtual Enterprises

Michelle S. Wangham1, Joni S. Fraga1, Ricardo J. Rabelo1 and Lau C. Lung 2

1 Department of Automation and Systems - Federal University of Santa Catarina

C.P. Box 476 - CEP. 88040-900 - Florianópolis – SC – Brazil

Phone: +55(48) 331.7675 - Fax: +55(48) 331.9770

{wangham, fraga, rabelo}@das.ufsc.br

2 Graduate Program in Applied Computer Science

Exact Sciences and Technology Center

Pontifical Catholic University of Paraná - Curitiba - PR - Brazil

Phone: +55(41)3271.1347 - Fax: +55(41)3271.1669

lau@ppgia.pucpr.br

Abstract

The paradigm of mobile agents may be used in large-scale distributed systems due to its flexibility that

comes from the mobility notion. However, this promising technology brings some security concerns of its

own. This paper focuses on mechanisms of the Mobile Agent Security Scheme – MASS – for protecting

mobile agents against malicious platforms by considering large-scale systems. This proposed scheme,

based on secure data repositories, comprises prevention and detection cryptographic protocols of agent

security violation. The scheme is based on the SPKI/SDSI infrastructure and on the concept of SPKI

Federation for providing scalability and flexibility to the distributed applications on the Internet. In

addition, it proposes an approach on how trust building in mobile agent-based architectures can be

reinforced by the use of security mechanisms in the search and select of partners for creating a Virtual

Enterprise. A prototype of the MASS was implemented and integrated in order to demonstrate its

suitability for a distributed application with mobile agents (MobiCII system).

 1

mailto:rabelo, lau}@das.ufsc.br

1. Introduction

A mobile agent in a large-scale network can be defined as a software agent that is able to autonomously

migrate from one host to another in a heterogeneous network in order to perform tasks on behalf of its

application [14]. For these agents exist within a system or to compose a system itself, they require a

computing environment - an agent platform - for deployment and execution. An agent is created in its

home platform, which is usually considered a trusted environment for the agent. The mobile agent can

either follow a pre-assigned itinerary on the network or determine its itinerary dynamically based on

information gathered from the network. An agent has its own thread of execution, and thus acts

independently of its home platform.

Mobile agents can be used in distributed systems for information searching, filtering and retrieval, for

system administrator tasks, for electronic commerce on the web, among other tasks [3]. In spite of its

advantages, the mobile agent paradigm introduces new security threats [24]. Due to these threats, security

mechanisms should be designed to protect the communication infrastructure, agent platforms and agents

themselves. Mechanisms currently available for reducing the risks of this technology do not efficiently

cover all the existing threats. Moreover, they introduce performance restrictions that frequently outweigh

the benefits from the use of mobile agents for certain applications. To address these concerns, a Mobile

Agent Security Scheme (MASS) was developed, based on cryptographic protocols and on decentralized

authentication and authorization controls that use SPKI/SDSI certificates [4]. In light of the above

mentioned, this paper focuses on the MASS’ mechanisms for protecting mobile agents against malicious

platforms by considering large-scale distributed systems. The MASS includes prevention and detection

techniques to protect mobile agent systems.

A large variety of Collaborative Networks (CNs) has emerged during the last years as a result of

the challenges faced by both the business and scientific worlds, such as Virtual Enterprises (VE),

Professional Virtual Community (PVC) and Virtual Laboratory (VL) [12]. Within the CN scenario,

cooperation in the form of Virtual Enterprises (VE) represents a modern strategy which has been adopted

by many enterprises, professionals and laboratories around the world in order to accomplish a given

business opportunity, to take part in new markets and to reach scientific excellence for innovative

developments. Actually, a VE corresponds to a dynamic, temporal and logical aggregation of autonomous

entities (companies, people, governmental institutions, etc.) that interact with each other as a strategic

answer to attend, for instance, a given opportunity. The selection of the most suitable VE members has

 2

been often supported by partner’s search and selection systems that are applied over a pre-defined group

of organizations - a VE Breeding environment (which can be seen as an evolution of the cluster concept)

[20].

However, despite this trend for collaborative works, most organizations (companies and/or

professionals) are still skeptic to share sensitive information with previously unknown partners. Actually,

collaborative network demands the development of relationships with a broad range of potential partners,

each one having a particular competency that complements the others. Therefore, it is essential for the

effectiveness of the VE creation process that trust among the partners be built. Taking these aspects into

consideration, this article addresses how the MASS’ mechanisms can be efficiently applied to a mobile

agent-based application for searching and selecting partners in the creation of Virtual Enterprises (VEs) –

the MobiC-II system [19].

Aiming at greater efficiency and flexibility, this paper brings an approach, which is based on an

agent-based hybrid architecture (mobile and stationary agents), to aid the creation phase of VEs. This

work comprises security aspects for the use of mobile agents to strengthen the trust building process

during the creation of a VE. The security threats within this scenario are also analyzed and a security

policy that aims at mitigating most of these threats is defined. In the proposed scheme, the flexibility

needed for the implementation of this security policy is given by the ability to select only the subset of the

MASS’ mechanisms desired by this application.

The remaining contents of this article are organized as follows. Section 2 discusses the security

problem in mobile agent systems and some approaches to mitigate these threats. Additionally, it presents

an overview of the MASS’ mechanisms and its security objectives. Section 3 introduces the partner

search and selection system (MobiC-II), discusses the security threats to a real scenario and explains how

these mechanisms are applied to MobiC-II. Section 4 describes the prototype results and discusses its

performance. Section 5 reviews the literature related works in this subject. Finally, Section 6 contains the

conclusions and suggestions for further research.

2. Security in Mobile Agent Systems

One of the main concerns about the implementation of an agent platform is to ensure that agents are

unable to interfere with an underlying agent platform. Mobile agent platforms face several threats, such as

[26] masquerading, denial of service, unauthorized access and repudiation. The establishment of isolated

protection domains for each incoming mobile agent, and the control of all inter-domain access is an

 3

approach that has been commonly adopted, so as to offer protection to agent platforms. In addition to

these approaches, other techniques are also used for improving the platform security against malicious

agents. Some of these techniques are safe code interpretation [21], digital signatures [21], path histories

[5], State Appraisal [25], and Proof-Carrying Code (PCC) [9].

Attacks performed by malicious platforms on agents are the most difficult security problems to

overcome and have not been provided with an appropriate solution yet. While mechanisms for the

platform security are a direct evolution from traditional mechanisms that emphasize prevention

techniques, mechanisms directed towards agent security usually correspond to detection measures. This

occurs due to the fact that an agent is totally susceptible to a platform and that it is difficult to prevent the

occurrence of malicious behaviors. The security of mobile agents mainly involves (i) the agent integrity,

in order to detect or to prevent platforms from altering the code or data of agents, and (ii) the

confidentiality of the code and of the agent state, in order to avoid the violation of the intellectual

property. With digital signatures, it is possible to protect only the code of the agent and the integrity of

origin data (read-only data generated during the agent creation). However, in the case of multi-hop mobile

agents, it is very hard to ensure the integrity of data generated in visited platforms. Due to this fact, there

are few commercial and academic platforms that deal with the security issue of mobile agents.

The prevention approaches based on Secure Hardware guarantee the integrity of the agent.

However, these approaches are not very practical because of the high costs involved. Equally, the

Computing with Encrypted Functions approach [22], which aims at ensuring the confidentiality of the

agent during its computation, has not showed practical solutions yet. Also, the Code Obfuscating

approach [7], due to the difficulty in measuring its efficiency and protection time, usually has its

applicability limited to applications that require soft security.

The detection techniques seem to be the most suitable ones to be applied to mobile agent

security. Nevertheless, some of the limitations found in techniques such as Itinerary Records with

Replication and Voting [6], and Cryptographic Traces [10] showed that these techniques still need to be

carefully examined before being considered totally applicable. In [19], two techniques are proposed to

protect the mobile agent using an embedded mark in the mobile agent – Watermarking and

Fingerprinting. However, as presented by the authors, some attacks are not detected and several

drawbacks can be identified in these approaches. Partial Result Encapsulation [8, 16], Read-Only

Container and Targeted State approaches [16] are the techniques that have the best results [23].

 4

The Partial Result Encapsulation approach aims at encapsulating the results of an agent’s

actions, at each visited platform, for subsequent verification. In general, there are three alternatives to

encapsulating partial results [26]: (1) providing the agents with a means for encapsulating the

information; (2) relying on a trusted third party for this encapsulation (TTP); or (3) relying on the

encapsulation capabilities of the agent platform. The first one may have many limitations that are related

to the manipulation of keys and key generation functions by the agent [8]. The second alternative, besides

causing loss in performance − due to the agent’s need of migrating to a TTP every time that it visits an

unreliable site − has other limitations and vulnerabilities as described in [23]. The third option - which

depends on the platform to run the encapsulation − has proved to be the most suitable one. The following

studies pursue this approach: KAG Family of protocols [8], Append-Only Container [3, 16], and Multi-

Hops Protocol [2]. In Section 6, these studies are compared to the MASS’ proposal.

2.1 An Overview of the MASS: A Mobile Agent Security Scheme

The security scheme - MASS - is based on a model of agents that assumes free itineraries and multi-hops.

The Mobile Agent Facility (MAF) specification [17] is used as a guideline to achieve interoperability

between mobile agent systems. The MASS is composed of security mechanisms designed to protect the

communications infrastructure, agent platforms and agents themselves. The scheme is based on the SPKI

public-key infrastructure [4] and the concept of SPKI federation [1] for providing scalability and

flexibility to distributed applications. Figure 1 shows the prevention and detection procedures defined in

the MASS.

Figure 1- MASS: Security Scheme to Mobile Agent Systems

 5

2.1.1 Techniques for Creating a Protected Mobile Agent (Step1, Fig. 1)

During the creation process of a mobile agent, the owner − the authority that an agent represents

− provides a set of SPKI/SDSI authorization certificates defining the privilege attributes of the agent. The

owner of the agent has to generate an object (called Path Register) that contains a signature indicating

agent identity and the identity of the first platform to be visited. This object is attached to the agent. Also,

agents can have a platform list attached that indicates which platforms are authorized to execute the agent.

The agent programmer can protect items in the state of the agent using secure data repositories. All these

operations are executed before creating the agent in its home platform. The data repositories are discussed

in the next section.

2.1.2 Protocol for Establishing Secure Channels (Step 2, Fig. 1)

In the MASS, before agents can be migrated, mutual authentication between the sending and

receiving platforms must be established, which creates a secure channel in the communication

infrastructure. The mutual authentication is performed via a Challenge/Response protocol based on

SPKI/SDSI certificates [4]. The establishment of a secure channel remains valid in the subsequent

interactions between the involved platforms. An underlying security technology (Secure Sockets Layer -

SSL) is used to ensure confidentiality and integrity of the communication between agent platforms

through secure channels.

2.1.3 Mobile Agents Authentication (Step 3, Fig.1)

Before instantiating a thread to an agent, the target platform must authenticate the received

agent. A multi-hop authenticator was defined in order to establish trust on an agent, which is based on the

authenticity of the agent owner and of the platforms visited by the agent. As a platform receives a mobile

agent, it must first check that this agent has not been corrupted and then confirm its association to a

principal, that is, to its owner. The multi-hop authenticator is described in Section 2.2.7.

2.1.4 Procedure for Generating Protection Domains (Step 4, Fig. 1)

Protection domains and the permissions assigned to them are defined after the trust on an agent

has been established in the receiving platform. Protection domains are generated based on the SPKI/SDSI

certificates. The authorization certificates carried by an agent need to be verified by the platform guardian

in order to generate permissions and the corresponding protection domains to the agent. This scheme

 6

decouples the privilege attributes granted to principals (mobile agents) from the attributes required to

access resources protected by the platform (control attributes or policies), and thus offer a more flexible

and dynamic access control for large-scale systems with respect to the Java access control.

2.2 MASSma: Protecting Mobile Agents with Secure Data Repositories

According to the target of security, the MASS was divided into two sub-schemes:

• MASSap - a scheme to protect the agent platforms and the communication infrastructure, and

• MASSma - a scheme to protect mobile agents.

The description of the MASSap can be found in [14, 15]. Figure 2 illustrates the procedures,

defined in the proposed security scheme, which emphasize the protection of mobile agents in large-scale

systems. The boxes in Figure 2 describe techniques that can be selected by a programmer for agent

protection. Prior to the sending of a mobile agent, the source platform can verify, with the aid of public

information, the reputation of the target platform (box 1, Fig. 2). This reputation is defined by a social

control mechanism [13], which is based on the infrastructure of the SPKI Federations. Despite the fact

that the authentication of mobile agents is a technique that aims to protect platforms against malicious

agents, it can be also used (i) to detect non-authorized modifications in an agent during its hops and (ii) to

aid the identification of the visited malicious platforms (box 2). When the aim is to protect the agent state,

the programmer can select among the proposed techniques for such a goal (box 3). During the agent

authentication, when a violation of the agent integrity is detected, the mechanisms of social control have

to be activated for identifying malicious platforms and for updating platform reputations (oval 4).

Figure 2 - MASSma: Protecting Mobile Agent in the MASS

 7

In the proposed scheme, mobile agent platforms can be grouped according to their service

classes, constituting service federations and defining trust relationships among themselves. The concept

of federations, introduced in [1], aims to facilitate the access of clients to services through a dynamic

establishment of trust chains. These trust chains between client and service are quickly and efficiently

established from name and authorization SDSI/SPKI certificates available in the certificate repository of

the service federation. Besides, different federations can establish trust relationships by creating

federations Web with a global scope. The main function of a federation web is to help a client, through its

agents, search for access privileges that link it to the guardian of a service (another platform). Further

details on the concept of federations can be found in [1].

In the proposed scheme SPKI federations are used not only to find certificates and help build

new certificate chains among platforms, but also to assist the agent to establish the trust on a platform.

When an agent is created, a list indicating the service federations, whose member platforms are

authorized to execute the agent, can be defined and attached to the agent. In addition, managers of the

federations are responsible for keeping a list containing the reputation of the platforms, which belong to a

given federation. Based on this information, platforms can be excluded from the federation due to

misbehavior.

In the MASSma, a platform has to define the quality of protection required to the agent while it

creates a mobile agent, before dispatching it to the first target platform. This quality of protection (QoP)

is a unique read-only attribute that expresses the security mechanisms that have to be used by the

platforms visited by the agent.

2.2.1- Structure of a Mobile Agent

Besides Code Signing used for protecting the agent code, the MASS provides three repositories with the

purpose for detecting possible violations of the mobile agent integrity. The Read-Only Repository is used

to maintain immutable data. The Partial Results Repository is where partial results collected during the

hops of the agent are stored. The third technique in the MASSma is the Data Directed Repository, which

aims not only for data integrity but also for confidentiality of some data so that they are not revealed to

non-authorized platforms. The proposed data repositories are distinguished in the agent state, as Figure 3

shows.

Many agent platforms use only the signature of the mobile agent code to assert agent ownership.

However, Roth [23] states that digital signatures attached to an agent code are not sufficient to distinguish

 8

one agent instance from another. The owner should sign static data, which include the code of the agent

as well as enough cryptographic redundancy to distinguish between two instances of the same agent. In

the MASS, once the agent program is created, the programmer needs to generate the static data to the

agent, called agent’s credentials. A cryptographic hash of the agent’s credentials serves as a unique

identifier that should be aggregated to the agent repositories to provide the uniqueness of the agent

instance.

Figure 3- Proposed Structure to a Mobile Agent

Each agent carries its signed Credentials as part of its state, inside the Read-Only Data

Repository (RORepository). The Credentials object is composed of five parts (see Fig.3):

• Codebase. It specifies the location (URI) of the server of the classes that an agent may require.

• Read-only data hash. The main objective of this hash is to link the Credentials with the initial data

of the agent, stored in RORepository. The value of this cryptographic hash of the read-only data is

also stored in the Credentials object. This link is useful to detect attacks in which a malicious

platform reuses the credentials of a visiting agent in another agent.

• Quality of protection (QoP). It is an attribute that identifies the quality of protection required that

must be satisfied by all the platforms visited by an agent.

• SPKI Federations list. It is an attribute which indicates the SPKI federations, whose member

platforms are authorized to run the agent.

• Random number (RN). It is a nonce.

In the proposed structure for a mobile agent shown in Figure 3, a path register object and the

three data repositories can be part of the agent state. The repositories are used to safely store the data

collected or carried by the agent.

 9

2.2.2- Verifying the Platform Reputation

In order to prevent the sending of a mobile agent to a platform that is not a member of one of the

authorized federations, the sending platform also verifies the target platform reputation. The sending

platforms are responsible for meeting the quality of required protection and defining the level of trust of

the agent in the next platform to be visited. The proposed mechanism for verifying reputation depends on

social control policies which attempt to locate suspect platforms and update the reputation of each

platform present in the list stored in the federations. The federations must provide mechanisms for the

automatic query of these reputation lists.

So as to check the platform, the mechanism (i) requests the black lists of the federations and (ii)

analyzes these lists and defines the trust on the target platform. A platform is considered untrustworthy

when it is found in one of the black lists aforementioned1. Step i may add significant costs to the

performance of some applications. For that matter, it has been defined that the lists sent by the federations

can be stored for a certain period of time in a platform, which eliminates the communication costs for

each sending of agent in the platform. These lists have to be periodically updated.

2.2.3- Read-Only repository

In the proposed scheme, an owner must sign the code of its agent in order to protect its integrity. In

addition to the code, all the data indicated by the agent programmer as being read-only can be also signed

and stored in the RORepository. The technique employed in this study is based on the Read-Only

Container proposed in [16]. Besides the specific data of each application, the read-only repository will

contain the Credentials object. Any platform visited by the agent can verify the integrity of this

repository.

2.2.4- Partial-Results Repository

In the MASSma, a set of cryptographic protocols is used by the platforms to insert and to protect the

sensitive data that each platform has generated. These sensitive data are stored in the PRRepository. The

proposed protocols are extensions of P1 and P2 KAG protocols, defined by Karjoth et al. [8]. Some

adaptations and modifications have been made to P1 and P2 protocols. In accordance with the notation

1 If a target platform is in a federation’s black list, it is considered untrustworthy and the agent is sent

back to its home platform.

 10

presented in Table 1, Figure 4 describes the necessary procedures for the PRRepository initiation and for

the insertion of the partial result calculated in each platform.

Po Home Platform
Pi , 1 ≤ i ≤ n Platforms visited by a mobile agent
ri A nonce generated by Pi

ENCo(keyi) Temporary key encrypted with the public key of Po

ENCkeyi(m) Message m encrypted with the temporary secret key keyi created in Po

SIGi(m) Signature of Pi on a message m
H(m) A one-way hash function (e.g., SHA-1)
P1 → P2: m P1 sending message m to P2

pri Partial result obtained in Pi

PRi Protected partial result encapsulated in Pi

hi Value of chaining relation in Pi (to PRi)
H(creds) Hash value of Credentials (agent identifier)

Table 1- MASS’ Cryptographic Notation

To initiate the PRRepository, the owner of the agent (in platform Po) picks a random number ro.

Next, it computes the value ho by applying a hash function over ro and over the identity of the first

platform to be visited (P1) (step 1 in Fig.4.a). This ho is the initial value of the chaining relation among the

partial results. After that, the value ro is encrypted using the public key of the agent owner. The protected

partial result PRo is generated by taking the encryption result, the unique identifier of the agent

(H(creds)), and the chaining relation ho and signing all these data with the owner private key (step 2, Fig.

4.a). Finally, in step 3, PRo is inserted in the PRRepository of the agent and (it is) sent to P1.

In order to insert partial results in the PRRepository, the owner of the agent must define which

protocol will be used by the agent platforms according to the needs of each application. It must also

inform about the protocol used by the platforms to be visited. This information should be stored in the

agent’s credentials, in the attribute which identifies the quality of protection (QoP).

Protocol A (see Figure 4.b), used to insert partial results, is based on the protocol P1 from the

KAG Family. The first step computes the hash value over the previous partial result, concatenated with

the identity of the next platform. The chaining relation (hi) has two purposes. First, it links the previous

partial results with the current partial result. Thus, PRi-1 cannot be modified unless PRi is modified as

well. Second, the inclusion of the identity of the next platform guarantees that only Pi+1 is able to append

the next partial result. In step 2 (Fig. 4.b), in order to keep the confidentiality of some sensitive data

 11

generated in the platforms, each platform must encrypt, through a temporary secret key2, the partial result

together with the random number generated by the platform itself. In order to construct the protected

partial result (PRi), the platform should sign the encryption results concatenated with hi and the H(creds).

ni1 ≤≤

ni1 ≤≤

ni1 ≤≤

ni1 ≤≤

ni1 ≤≤

ni1 ≤≤

Figure 4- Partial Results Repository

The last step is what distinguishes the MASSma protocol A from the protocol P1 from the KAG

Family [8]. The modification consists in the inclusion of H(creds) – a cryptographic redundancy – which

turns out to be appended to the partial result encapsulated in each platform. This modification aims to

relate each of the collected partial results with the instance of the agent, thus, being able to overcome the

attack described in [23]3, to which the protocols P1 and P2 from the KAG Family are susceptible. In

addition, the hybrid cryptographic scheme used reduces the overhead caused by the public-key encryption

of the partial results used in the KAG approach.

In protocol A, the encryption of data may impose a significant performance cost on the

applications. This harm needs to be taken into consideration when the set of mechanisms to be employed

in the protection of the agent is selected. Therefore, another protocol to the insertion of partial results -

Protocol B - (Figure 4.c), which does not require the encryption of the partial results, is provided in

MASSma.

2 The temporary secret key is randomly generated by Pi and it is encrypted with the public key of the
agent owner.
3 In this attack, a fake agent can be created with the same state of a valid agent.

 12

Protocol C is based on the protocol P2 from the KAG Family [8]. By changing the order of

signing and encrypting a partial result, it is possible to hide the identity of the platforms that provided

partial results while keeping the integrity assurances. However, the integrity of partial results cannot be

verified in any visited platform. In the Protocol C (Fig. 4), step 1 is the same as in Protocol P2 from the

KAG Family, while step 2 is different. It includes the cryptographic redundancy and it uses the hybrid

cryptographic scheme.

2.2.5- Directed-Data Repository

This study also proposes a directed-data repository, called DDRepository, based on the technique

implemented in the Ajanta platform [3, 16]. This technique allows a selective disclosure of an agent state,

in which the agent programmer can implement a vector of objects (called TargetedState), in which each

entry has specific target platforms [16]. The technique requires that the target platform be predetermined.

As described in [23], the TargetedState technique has some vulnerabilities which allow data disclosure by

malicious platforms. In attempting to overcome these vulnerabilities, this study proposes a refinement by

means of the inclusion of a cryptographic redundancy which links each entry of the DDRepository to the

instance of the corresponding mobile agent.

 Figure 5 shows an example in which the agent programmer creates the DDRepository with two

directed-data entries, to the P1 and P3 platforms, respectively. In order to ensure data confidentiality, the

programmer, with the use of the public key of the target platform, must encrypt the temporary secret key

created by the home platform and then encrypt, with the temporary secret key, the directed-data with the

unique identifier of the agent instance. The home platform must also sign these data to ensure its integrity.

When the agent is received in a target platform (platform P1), before proceeding to run the agent, the

platform must verify the source of these data, their integrity, and whether or not are really associated with

the received agent.

Figure 5- Inserting Directed Data in DDRepository

 13

2.2.6- Mobile Agents Authentication

The MASS assists the programmer to build a protected mobile agent and also help the visited platforms to

verify the agent integrity (code and repositories) by using a Multi-Hop Authenticator. By using this

authenticator, it is possible to detect the integrity violation of the agent, and to provide information for

identifying malicious platforms (social control mechanism). Figure 6 shows data repositories checking.

According to steps 1 and 2 (Fig. 6), a platform must confirm, by means of code signature and the

RORepository verifications, (1) that this agent has not been corrupted and (2) its association with a

principal, its owner. In this way, modifications made by malicious platforms to the code and/or to the

read-only data (RORepository) can be easily detected by any platform visited by the agent. In step 3, it is

then necessary to verify the integrity of the data from the DDRepository and from the PRRepository

which are being carried by the agent. Finally, in step 4, the path register object is verified and analyzed.

 All the steps of the proposed authenticator are optional. The definition of which steps will be

adopted for the authentication of a given agent will depend on the quality of protection (QoP) required by

the owner of the agent and expressed in the agent’s credentials. All the platforms visited must meet the

minimum security requirements selected in the QoP attribute; otherwise, they will be considered

malicious.

Figure 6- Multi-hop Authenticator

2.2.7 - Social Control Mechanisms

For the purpose of dealing with the occurrences of attacks against mobile agents, a mechanism of social

control was defined and integrated into the proposed security scheme. This mechanism is based on

platform reputation and aims to identify malicious platforms that are members of a SPKI Federation.

Reputation is the image of the organization or entity, the way in which it is seen and recognized by those

that interact with it, be the interaction direct or indirect [13]. The social control policy is used for isolating

malicious platforms from the correct ones in the system. Therefore, the social control establishes a kind of

 14

correct behavior that is imposed over the members of the federation and then each member supervises the

behavior of the other members. There is no entity (either global or external to the group) that centralizes

the social control.

Figure 7 shows the protocol for the identification of malicious platforms. The social control

mechanism deals with two lists that indicate the reputations of the agent platforms belonging to a SPKI

federation - the black list (identifying the malicious platforms) and the red list (identifying levels of

reputation of the trustworthy platforms). The reputations indicated in the red lists are sorted according to

the amount of notification occurrences of security violations.

Figure 7 also depicts an example of an agent A created and initialized in platform P1 passing through

platforms P2, P3 and P4. Platform P4 detects that the RORepository was corrupted and, thus, it suspends

the execution of the agent and sends it back, together with the RORepository, to the home platform, which

applies the protocol in order to locate the malicious platform. P3 becomes suspect of the violation. In turn,

P4 is also considered suspect since it may be attempting to denigrate the reputation of P3. Algorithm 1

below describes how the search for malicious platforms is performed.

Algorithm 1 SearchReputation (G, agent)

Require G = { i,…n; i ∈ Ν*} // Group of Federation Managers
1 if (check_integrity (agent) = false) then
2 L ← ∅ {set of reputation lists}
3 while (G ≠ ∅) do
4 g ← getElement (G)
5 l ← getList(g)
6 L ← L ∪ l
7 G ← G \ g {Remove g from set G}
8 end while
9 verify (L)
10 end if

Figure 7- Identifying Malicious and Suspected Platforms

 15

The message SearchReputation, performed by the home platform (coordinator of the protocol

execution), is composed by the agent and the set of federation managers of the platforms visited by the

corrupted agent. When the home platform receives the agent, it verifies the integrity of all data

repositories checking for violation. When the violation is confirmed, a message is sent to the federation

managers of the platforms visited by the corrupted agent, requesting the reputation lists (lines 3-8). Once

the lists have been received, the coordinator must apply the social control policy. For example, if the

reputation of one of the platforms is considered highly suspect, the coordinator must send to the

corresponding federation manager of the suspect platform a notification about the security violation and

also the identity of the platform under suspicion. This procedure will allow the latter to be included in the

reputation black list in order to be, then, removed from this federation. If the reputation is considered

moderately or slightly suspect, the coordinator must send to the federation manager a notification so that

the reputation of this platform can be updated in the reputation red list.

3. Partners Selection and Search System in Collaborative Networks

The partner selection and search system, proposed in [19], is based on a hybrid agent architecture. This

system exploits the benefits of the mobile agent paradigm in order to improve agility in the presentation

of business opportunities to the companies and to achieve higher efficiency in the formation and analysis

of possible virtual enterprises (VEs). Stationary agents, which represent every real company of a VBE

(VE Breeding Environment), are responsible for interactions with the legacy systems of companies.

A prototype which implements the partners selection and search system - MobiC-II - was

developed for the TechMoldes VBE, a group of mold makers in southern Brazil whose members have

been collaborating to enhance their global competitiveness [19]. The main purpose of Techmoldes is to

act either as a single or a larger productive entity in the market, combining the individual skills and

resources of each member, but transparent to the final customer, however. When collaborating within

Techmoldes, each member remains independent and autonomous at the same time, even to the extent of

making business out of the VBE. Three classes of agents compose the MobiC-II system:

• Broker Agents: they are stationary agents responsible for receiving a business opportunity,

distributing it to the potential enterprises, sending mobile agents to them, and collecting/electing

the final VE composition.

• Mobile Agents: they are responsible for delivering a business opportunity to the enterprises,

negotiating locally with them, and contacting other enterprises through the network, and, finally,

 16

returning to the broker. These agents may have to perform different roles (missions) - from

simple information messenger agents, to data researchers, to negotiators capable to make

decisions and negotiations independently - without the need to wait on orders sent by the broker

agent during the accomplishment of a task. Thereby, roles are created to the agents according to

their desired function.

• Enterprise Agents: they are stationary agents that represent the enterprises and are responsible

for receiving a business opportunity, evaluating it, accessing the local database to get the

required information, and answering the business opportunity to the mobile agent.

The MobiC-II is shown in Fig. 8. Mobile agents are used as a means to travel through the

selected enterprises in order to interact with the stationary agents to receive the required information (e.g.,

delivery time and capacity) or to negotiate lower costs or shorter delivery time.

Enterprise 2

Enterprise nEnterprise 1

Stationary
agent

Broker
Mobile
Agent

Mobile
Agent

Supervisor Supervisor

Supervisor

1

2, 4, 9

5, 6

7 7 8
3

3
3

Figure 8- Scenario for the Partners Selection and Search System

When a business opportunity appears, it is received by the broker, which identifies (only) the

potential enterprises that can supply each mold (step 1, Fig 8). A summary of the mold specification is

immediately sent out to the enterprises through the messenger agent (step 2). Each enterprise receives it,

evaluates its preliminary interest and capacity, and sends back an answer to the broker, either yes

(expressing its interest) or no (step 3). The broker receives the answers and sends a mobile agent

(researcher or negotiator) to the enterprises that answered yes. The agent is provided with the full

business opportunity specification and the list of candidate enterprises it is supposed to visit (step 4). The

mobile agent arrives at the first enterprise and interacts with the local stationary agent, asking for its

delivery time and capacity (step 5). The local agent, acting as the enterprise's representative, retrieves this

 17

information from its legacy system or local database. After that, the mobile agent asks the local

supervisor about the price, as it is a very important piece of information in the molding sector. A

negotiation process may be carried out locally (step 6). Then, with this piece of information, the mobile

agent moves to the next enterprise from the list (step 7). This process is repeated until all the candidate

enterprises from the list are visited. Finally, the mobile agent returns to the broker agent with the gathered

proposals (step 8). The agent broker generates a set of possible VEs, assesses every VE composition and

a human broker elects the most suitable one. Afterwards, the human broker sends a win or lose message

to the enterprises (step 9). The Techmoldes’ election criteria applied on this case are the lowest global

cost and shortest delivery time. Finally, the broker assigns the responsibilities of each partner in the VE

and then sends a messenger mobile agent in order to carry out the VE creation final message with the

partners responsibilities and the VE contract (step 10).

The trust building process is indeed one of the most difficult issues to be overcome by the

developers of VE solutions. The MobiC-II system considers the need of having more than one broker

acting within a VE. This characteristic brings advantages to the MobiC-II due to the fact that (1) there is a

reduction of a number of activities into a sole element and that (2) having many brokers makes a

decentralized system's hierarchy possible, which aids the trust building process among participant

enterprises. However, even though the members know one another and are aware of what they should do

in order to be candidates for a given business opportunity, they get reluctant to share some kinds of

information, such as prices, delivery dates and capacities. Some cultural, ethical, and managerial

problems related to the use of the technology infrastructure have been pointed out as obstacles for a wider

adoption of the VE paradigm by companies [11]. In collaborative networks, the adoption of security

mechanisms that provide authenticity, confidentiality, integrity and non-repudiation, as the VE security

policy specifies reinforced the trust building among the partners.

3.1- Threats in the Creation of Virtual Enterprises

 In the steps of the MobiC-II system which use mobile agents (steps 2, 4, 5, 6, 7, 8, and 10 in Figure 8),

all the security threats against the agent platform – masquerading, denial of service, unauthorized access

and repudiation - are found in the TechMoldes’ Scenario. For example, a malicious company can create a

mobile agent that masquerades the actual agent, created by the Broker Agent, as an effort to gain access

to sensitive information of competitive companies such as prices, delivery dates and capacities. This

malicious agent can also launch attacks to consume an excessive amount of the agent platform's

 18

computing resources; for example, it may request several fake budgets. Actions like these may prevent

the platform from attending new business opportunities. In order to have access to the production

capacities and sensitive information stored in database systems, the malicious agent may try to access the

database through the Enterprise Agent.

 Moreover, all security threats against the mobile agents are also found in the MobiC-II system –

masquerading, denial of service, eavesdropping and unauthorized access. For example, with the purpose

of impugning the election to select the most suitable VE, a malicious company may present a complaint

for missing the business opportunity summary delivery - under the messenger agent’s responsibility. A

malicious platform may also introduce unacceptable delays to reply to an agent search, or even refuse to

execute the agent, thus keeping the system from meeting the suitable VE partners. The threats against the

communication channel, such as unauthorized modification, and eavesdropping, may compromise the

dispatch of agents as well as the sending of messages among mobile agent platforms (found in steps 1, 2,

3, 7, 8 and 10 of the MobiC-II system, Figure 8).

3.2- Security Policy to the TechMoldes Scenario

An organization security policy is a set of rules and practices imposed by an organization to establish the

operating limits of the users of a system, aiming at protecting the organization’s sensitive data. During

the design phase of the MobiC-II system, a security policy was defined to the TechMoldes’ scenario [15].

This security policy determined which agents are mobile and which are stationary, the scope of the

agents’ functionalities, among others. A summary of the security policy rules is listed in Table 2.

3.3- Protecting Mobile Agent Systems to Improve the Trust Building Process

After identifying the threats and defining the organizational security policy, there was the analysis of both

the security mechanisms supported by the MASS and the mechanisms needed to minimize or eliminate the

exploitation of one or more vulnerabilities that would hinder trust building in the MobiC-II System. These

mechanisms are listed in Table 3.

 19

Rules Description

R1 The integrity of read-only data carried by mobile agents should be provided by the MASS.

R2 Only the TechMoldes VBE’s enterprises should have access to the summary of the mold
specification and the full BO specification.

R3 Only the TechMoldes VBE’s enterprises should take the broker’s role and thus only these
enterprises will be able to send (1) mobile agents with the BOs’ specifications (messenger
agents) as well as (2) researcher agents and (3) negotiator agents.

R4 The MASS must control the access of mobile agents to the platforms’ sensitive data.

R5 The authenticity of the source of a mobile agent (its creator) must be verifiable.

R6 Only the TechMoldes VBE’s enterprises may reply to a given BO (through the negotiator or
researcher mobile agents). These collected proposals must be revealed only to the broker, and
their integrity must be assured.

R7 The integrity and authenticity of the source of all messages exchanged between the agent
platforms, while being sent by the communication channel, must be assured by the MASS.

R8 The integrity and authenticity of mobile agents, while being sent through the communication
channel, must be assured by the MASS.

R9 Only a mobile agent owner may change its code.

R10 A VBE’s enterprise may not deny that it has received a given BO if this really took place.

R11 An enterprise may not repudiate its own proposal in reply to a given BO.

R12 All VE partners may have access to the VE creation final message.

R13 All mobile agents should be sent only by VBE’s enterprises.

R14 When a platform detects a violation of the agent integrity, it being of the code or state, the
platform must immediately suspend the agent and inform the broker about the violation
occurred. All platforms should supervise the platforms’ behavior.

Table 2- Summary of the security policy rules to the TechMoldes Scenario

Security Mechanisms to the MobiC-II System Rules satisfied

Repository of read-only data (RORepository) to protect the summary of the mold
specification and the full BO specification

R1

Repository of Partial Results (PRRepository – Protocol A) to protect the proposals of
Techmoldes companies

R6, R11

Repository of Directed Data (DDRepository) to protect the messenger agent sent by
the broker to the VE partners (step 10, Figure 8)

R12

PathRegister object to store the itinerary of the agents (messenger, researcher, and
negotiator agents)

R2, R10

Mobile agent authentication – integrity verification of repositories (RO, PR and DD) R1, R6, R14

Mobile agent authentication - verification of the mobile agent signature R3,R5, R9,R14

Procedures for Protection Domain Generation based on SPKI certificates R4

Secure channel establishment – mutual authentication of agent platforms R3

Secure channel establishment - use of SSL Protocol R7, R8

Secure channel establishment - Reputation Verification of a Destination Platform R13

Social Control Mechanism based on reputation applied in the Techmoldes’ VBE R14
Table 3- MASS’ mechanisms in the MobiC-II

 20

4. Implementation Results

A prototype of the security scheme - MASS - was implemented and integrated to the MobiC-II system in

order to demonstrate its flexibility and suitability for distributed applications with mobile agents. The

technologies adopted in this prototype favor the use of open standards and commercial-off-the-shelf

(COTS) components to satisfy portability, scalability, and interoperability requirements.

As the support layer of mobile agents, we have chosen IBM Aglets4, an open-source platform

that uses Java as its mobile code language. The Aglets Software Development Kit (ASDK) provides

mechanisms for code and state information mobility, and also for a computational environment. The

security scheme layer of the prototype is composed of: (i) graphic user interfaces (GUIs) that aid the

configuration and initialization of the security scheme; (ii) a library of classes, called AgentSec, which

aids the agent programmer to build protected mobile agents, and (iii) objects that extend the

functionalities of the Aglets platform in order to support the security scheme’s mechanisms.

The protocol for the secure channel establishment and the multi-hop authenticator were

implemented with the SDSI 2.0 library and with Java 2 cryptographic tools. The SSL support is provided

by the iSaSiLk toolkit5, and was integrated to the Aglets platform.

The MASS, through the AgentSec library, offers to the mobile agent programmer three secure

repositories which can be combined to protect the integrity and confidentiality of the agent data. The

objects in this library have been implemented for being independent from the agent platform. In order to

aid the agent creation process and the use of secure data repositories, a GUI was implemented. This

interface enables the owner to define which data repositories are going to be used and attached to the

agent, with the resulting quality of protection (QoP). After selecting the mechanisms, the agent

programmer has, as a result, a skeleton to the code of the agent (in the format of a .java file). With this

generated structure and the AgentSec library, the programmer can easily continue the implementation of

the mobile agent. When defining the quality of protection, the programmer must choose which protocol is

to be used for the insertion of partial results, and also indicate whether the checking of this repository is

going to be only in the home platform or in any other visited platform. It should be noted that, in the case

of Protocol C, the repository can be verified only in the home platform. Figure 9 shows the implemented

4 http://aglets.sourceforge.net/

5 http://jce.iaik.tugraz.at/products/02_isasilk/

 21

http://aglets.sourceforge.net/
http://jce.iaik.tugraz.at/products/02/_isasilk/

classes that compose the AgentSec library. The data repositories, when selected from a GUI, are created

and defined in the on_creation method by any agent that expands the abstract class

com.ibm.aglet.Aglet. Note that, during the creation process of a RORepository, the Credentials

object associated to the agent is created and stored in this repository.

+onCreation(in obj : Object)
+handleMessage(in msg : Message)

bf::ufsc::das::aglets::MyAgentTest

com::ibm::aglet::Aglet +addPartialResult(in pr : Object[], in credHash : byte[], in nextPubKey, in pubkey, in privKey)
+verify(in homePublicKey, in homePrivKey, in rorep : RORepository) : VerificationResult
+verify(in currentPubKey : PublicKey, in rorep : RORepository) : VerificationResult

+protocol : String
+prList : ArrayList

br::ufsc::das::agentSec::PRRepository

+getDD(in pubKey : PublicKey, in privKey : PrivateKey) : Object
+verifyDD(in pubKey : PublicKey, in privKey : PrivateKey) : boolean
+verifyRepository(in homePubKey : PublicKey) : boolean

-objsDD_encryp : byte[][][]
-platforms : Object[]
-signDDRepository : SDSISignature

br::ufsc::das::agentSec::DDRepository

+verify(in homePublicKey : PublicKey) : boolean
+getCredentials() : Credentials

+objs : Object[]
+repoSignature : SDSISignature

br::ufsc::das::agentSec::RORepository

+getFederationsList() : String[]
+getQoP()
+getCodebase() : URL
+getHashRO() : byte[]

-codebase : URL
-na : Double
-hObjsRO : byte[]
-qop : QoP
-federationsList : String[]

br::ufsc::das::agentSec::Credentials

1

0..1

1

1

+getQoPSettings() : String[]
-qopSettings : String[]
br::ufsc::das::agentSec::QoP

1
1

+verifyIntegrity(in currentPubKey : PublicKey, in rorep : RORepository) : boolean
+getPaths() : PRRepository
+addPath(in path : Object[], in credHash : byte[], in nextPubKey, in pubkey, in privkey)

-_paths : PRRepository
br::ufsc::das::agentSec::PathRegister

-utiliza1 1

+getReliableResults() : Object[]
+getSuspectResults() : Object[]
+getResult() : boolean

-reliableResults : Object[]
-suspectResults : Object[]

PRRepository::VerificationResult

1

1

1

1

1

0..1

1

0..1

Figure 9- Class Diagram of the AgentSec Library

A mechanism for digitally signing the mobile agent code is also available in the MASS. As the

implementation of this mechanism is directly related to the implementation of the Aglets Platform, the

support to this mechanism is not offered through the AgentSec library. The decision on whether or not to

use this mechanism is made by the programmer via a GUI of definition of the QoP. Here, the Aglets

Platform has been adapted in order to optionally use the code signature mechanism, either when the agent

carries the code or when the code is requested on demand.

The algorithm of the multi-hop authenticator was implemented as a stationary agent, called

SecurityInterceptor (see Figure 9). This agent must be initiated in all platforms that are receiving the

mobile agent, and has the role for intercepting the incoming mobile agent before its activation. This

interception enables the verification of the incoming mobile agent integrity in the platform (mobile agent

authentication). Only two levels of trust have been established: trustworthy or untrustworthy. An agent is

considered trustworthy if all the algorithm steps were successful.

 22

As the agent platform chosen for the prototype is based on Java, the secure interpretation of the

agent code and the definition of the protection domains to mobile agents are provided, in part, by the Java

2 security model. The process for generating the set of permissions was defined to overcome the

limitations related to the Java 2 access control model. There was the need for some extensions to the Java

2 security model so that the protection domain could be generated. The MASS’ procedures, based on the

agent privilege attributes (SPKI authorization chains) were implemented as defined in [14] and integrated

into the Aglets platform.

As described in [19], in the MobiC-II system, agents were placed in two platforms. The mobile

agents were coded in Java with the use of the Aglets platform. The stationary agents, coded in C++, were

executed on MASSYVE-KIT platform6. CORBA is the technology applied to support the multi-platform

interoperation.

4.1 Performance of the MASS’ Prototype

This section presents some results of tests applied with the purpose of evaluating the performance of the

MASSma prototype, that is, evaluating the additional costs introduced by the use of secure data

repositories and the authentication process of mobile agents. The tests were developed at LCMI/DAS,

using a local network (Fast Ethernet - 100Mbps) and two dedicated computers with identical

configurations - Pentium IV 2.4 GHz, 512 MB of RAM, whose operating system was GNU/Linux (kernel

2.4.21-199-atlon). Both computers had the Java 2 Software Development Kit (J2SDK), version 1.4.2-04.

4.1.1. Authentication of Mobile Agents that Using Secure Data Repositories

For this scenario, the following algorithms were used: SHA1 and RSA (1024) for the digital

signature, RSA (1024) for the key distribution, and 3DES for the data encryption. In the first experiment,

a two-hop boomerang mobile agent was implemented with the use of a RORepository. When the agent is

initiated, the read-only repository is created, a "Test" String is added to the repository, and the agent then

migrates to the target platform. Before being run in the target platform, the agent is authenticated (the

repository integrity is verified). The agent then returns to the home platform so that the repository

integrity can be verified again. Table 4 shows the average time for an agent carrying a "Test" String

without protection and for an agent carrying a String protected within the RORepository. Other measures

6 http://www.gsigma-grucon.ufsc.br/massyve/mkit.htm

 23

http://www.gsigma-grucon.ufsc.br/massyve/mkit.htm

were taken so as to evaluate the sending and receiving times of this agent, which is now carrying a vector

of bytes of varying size (256 bytes to 1 Mbyte; see Figure 10).

In order to evaluate the costs introduced by the employment of the data-directed repository -

which uses symmetric encryption of data and asymmetric encryption of temporary keys - an agent

carrying the RORepository and the DDRepository7, with only a data input, was implemented.

Two-hop boomerang mobile agent with agent authentication Time(ms)
Without RORepository 104.3
With RORepository 231.1
With RORepository and DDRepository 421.9

Table 4- Latency Comparison when an agent uses the RORepository and the RORepository

Table 4 shows the latency results of the mobile agent sending and receiving when the data input

is a "Test" String. Figure 10 shows the results when the datum is a vector of bytes of varying size. Note

that the results presented in Table 4 and in Figure 10 include the verification process of the agent

(repositories checking). In this experiment, an expressive degradation of performance has been noticed.

This is due to the data encryption that, in spite of being symmetric, causes a high cost in performance.

256 512 1024 2048 4096 8192 16348

150

200

250

300

350

400

450

500

Size of the array (bytes)

T
im

e
in

 m
ili

se
co

nd
s

without repository
variable RORepository
variable DDRepository

32 64 128 256 512 1024

500

1000

1500

2000

2500

3000

3500

4000

Size of the array (kilobytes)

T
im

e
in

 m
ili

se
co

nd
s

without repository
variable RORepository
variable DDRepository

Figure 10- Comparative Graphs with and without the RORepository and DDRepository of Varying Sizes

In order to allow the conduction of the experiments with the PRRepository, there was the

implementation of an agent and, consequently, the need for a more complex configuration of the agent

platforms. Figure 11 illustrates the scheme of the testPR hops, in which six platforms are visited by the

agent (three in each machine). The testPR agent departs from its home platform with a RORepository, and

7 Whenever either a DDRepository or a PRRepository is attached to an agent, the RORepository must also

be appended to it, since this is the one carrying the Credentials and the QoP needed for the verification of

these repositories.

 24

then starts, in turns, migrating from one machine to another, adding the partial results of each platform

visited in the RORepository.

As Figure 11 shows, partial times are obtained in every two jumps until the total time is

achieved, which is when the agent returns to the home platform. In each platform visited, the agent is

authenticated. Table 5 compares the average times of the testePR agent itinerary, when the partial result

added to each platform was a "Test" String".

Figure 11- Scheme of hops to the TestePR

By analyzing the times presented in Table 5, it is possible to observe the cost introduced by the

encryption processes, digital signature and computation of the chaining relation (hash), according to the

configuration defined in each protocol in the MASSma. In the case of protocol A, the worst performance is

justified for the additional time of the partial results encryption in this protocol. In this protocol, the

previous partial results can be verified in any platform. The time increased in the last phase (the return to

the home platform), since, at this point, five partial results were verified during the authentication process

and the corresponding decryption of partial results also took place.

TestePR Agent (ms) Without PR Protocol A Protocol B Protocol C
Partial Time 1(hops 1 and 2) 120.8 861 775.5 803.1
Partial Time 2 (hops 3 and 4) 112.3 925.4 436.9 824.8
Partial Time 3 (hops 5 and 6) 107.3 2937.5 510.3 4072.6

Total (hops 1 to 6) 340.4 4723.9 1722.7 5700.5

Table 5- Latency Comparison when the agent uses the PRRepository and the RORepository

The analysis of the results obtained for protocol B led to the conclusion that the shortest times, if

compared to protocol A, are due to the fact that there was no encryption for the partial results. If

compared to protocol A, the times obtained through the use of protocol C, during the two first phases, are

slightly shorter. The reason lies in the following fact: although this protocol applies encryption and digital

 25

signature, it does not allow the results' integrity to be verified in intermediary platforms. In view of the

fact that the integrity of the partial results inserted is only verified in the home platform, the time of the

last phase increased considerably.

In a similar fashion as in DDRepository experiment, the test agent visits the specified platforms

(see Figure 12) and collects the partial results which range from 256 bytes to 1 Mbytes. In other words,

when each partial result collected has 256 bytes, as it returns to its home platform, the PRRepository will

have five entries of 256 bytes (1280 bytes). During the execution of the experiment, it was concluded that

an agent that carries a PRRepository, and uses either protocol A or C, is unable to finish its trip if the size

of the data carried exceeds a given limit (see Figure 12). This is due to the fact that the checking process

of the repository integrity needed more virtual memory than the amount made available by the computers

used in these tests.

256 512 1024 2048 4096 8192 16348

1000

2000

3000

4000

5000

6000

7000

8000

9000

Size of the array (bytes)

T
im

e
in

 m
ili

se
co

nd
s

without PRRepository
PRRepository protocol A
PRRepository protocol B
PRRepository protocol C

without PRRepository
PRRepository protocol A
PRRepository protocol B
PRRepository protocol C

32 64 128 256 512 1024

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

Size of the array (kilobytes)

T
im

e
in

 m
ili

se
co

nd
s

without PRRepository
PRRepository protocol A
PRRepository protocol B
PRRepository protocol C

Figure 12- Comparative Graphs of an agent with and without a PRRepository of Varying Sizes

As far as protocol C is concerned, the limit was set when the agent collected a vector of 512

Kbytes in each platform and then arrived at the home platform, in an attempt to perform the last

verification of the repository (with 2.5 Mbytes). It should be noted that, when the partial result was that of

1 Mbyte, the agent was only interrupted when it had already returned to its home platform, that is, when

the PRRepository had 5 Mbytes of protected results (see Figure 12).

The above remarks point to the conclusion that the use of the encryption process for the partial

results encapsulating (protocols A and C) causes the computational cost to rise significantly, mainly when

the result collected is over 512 Kbytes and when more than four platforms insert results into this

repository. For this reason, it is advisable (i) to adopt protocol B for the insertion of results in the

 26

PRRepository, to large partial results (larger than 512 Kbytes) or (ii) to insert f results when protocols A

and C are the ones being used.

Considering both the security requirements for the negotiator agent of the MobiC-II system and

performance aspects, the conclusion was that the use of protocol A - which ensures the integrity and the

confidentiality of the proposals encapsulated by the agent, and which allows the integrity to be verified by

all of the VBE’s enterprises - is the most suitable one for the TechMoldes scenario. As the proposals

collected by the agent are XML documents ranging in size from 1 Kbyte to 4 Kbytes, and fewer than 15

platforms will present proposals, the computational cost, such as the use of the PRRepository with

protocol A, corroborates the benefits brought by the use of the negotiator mobile agent.

5. Related Works

The analysis of the academic and commercial platforms of mobile agents described in the literature brings

the realization that the problem of malicious platforms still lacks an appropriate solution in these systems.

Only two platforms, SOMA [2] and Ajanta [3, 16], are committed to providing mechanisms for tackling

this issue. Both platforms detect attacks originated from malicious platforms, but they do not prevent

complex attacks of malicious platforms. Thus, in order to ensure the integrity of the agent code, these two

platforms use digital signature techniques. In both of them, the non-mutable data of the agent are

protected by means of a digital signature. However, only the Ajanta platform, with the Read-Only

Container mechanism, is concerned with associating the agent's credentials with these data, and thus,

creates a link between the read-only data and the agent. The RORepository proposed in this paper is based

on the Ajanta platform mechanism. The difference lies in how the agent's credentials are defined and

linked to the data. In the MASSma, the H(creds), is built so as to distinguish the instances of the same

agent. Therefore, a tamper-proof link between the instance of an agent and the RORepository is built; it is

thus possible to detect when a malicious platform attempts to reuse an agent’s credentials.

In order to protect the results encapsulated in the platforms visited by an agent, the SOMA

platform uses detection techniques through TTP (Trusted Third Parties}) and MH (Multiple-Hop})

protocols. The first needs a trusted third party to encapsulate the results; this dependence is not desirable,

however. In the MH protocol, as well as in the MASSma, the platform is responsible for the partial result

encapsulation, and thus makes it difficult to change an intermediary result without changing the

subsequent partial results. To accomplish this, a chaining relation must be cryptographically established

among the results. The Ajanta platform, through the Append-Only Container, also employs the same

 27

approach for the result encapsulation to ensure the integrity of partial results. Another study which

follows this approach is the KAG protocols [8]. The main difference between these mechanisms lies in

the way in which these chaining relations are cryptographically built and how these results are appended

to the agent. In the protocols of the SOMA and Ajanta platforms, the integrity of partial results cannot be

verifiable in any visited platform. In addition, the forward integrity property is not assured for these

protocols, that is, it seems impossible to ensure that, when a partial result is modified, the results

previously inserted can be entirely maintained. The mechanisms of both the SOMA and the Ajanta

platforms were implemented, whereas the KAG Family protocols were not.

For the protocols for partial-result insertion supported in the MASSma, the main characteristics

that contribute for a better result, if compared to the ones above-mentioned, are (1) the hybrid encryption

scheme and (2) the cryptographic redundancy added during the computing of the protected partial results,

which links the unique identifier of the agent's instance with each partial result collected in the visited

platforms. This last characteristic ensures the scheme has a strong resilience against the insertion of

partial results. As discussed in Section 4, all protocols were implemented and performance tests were

executed aiming at measuring the performance degradation caused by the use of each protocol.

The works cited above do not offer mechanisms that automate the checking of an agent’s

integrity when it is received in a platform. In the MASSma, the multi-hop authenticator has this role.

Through this mechanism, it is possible for the platforms visited by the agent to guarantee the quality of

protection (QoP), attributed to an agent by its owner. Another important contribution of the MASSma is

the prevention technique which avoids a mobile agent from being sent to a platform considered

untrustworthy. With this technique, it is possible to help a mobile agent to establish the trust in a

platform, based on the reputation of such a platform (which belongs to a federation).

Social control mechanisms can be combined to security schemes with the purpose of defining a

correct behavior, which will be imposed over the participants of a group. Through the use of the

infrastructure of SPKI service federations and with the aim of dealing with the occurrences of the attacks

against mobile agents, a reputation-based social control mechanism is supported in the MASSma.

6. Concluding Remarks

Security issues still hamper the development of applications with mobile systems. Current

security mechanisms do not present satisfactory results for protecting mobile agent platforms. There are

even more limitations when we consider large-scale systems, which impose stronger requirements with

 28

regard to flexibility and scalability. The MASS was motivated by the perception of these limitations and a

concern about aspects of security specific to large-scale applications. This paper proposed an approach to

improve trust building in Virtual Enterprises, especially in their creation phase (searching and selecting

partners). In attempting to accomplish this, the MASS’s security mechanisms were used for the

conception of the MobiC-II system. In order to minimize the usual outweigh of these mechanisms, this

work allows their configuration at the design phase of the application, using only the necessary

mechanisms with their full features. The security mechanisms are used to protect, in open and large-scale

systems, the communication channel, the agents platforms, and the agents themselves.

 The work described in this article was fully implemented and its performance was properly

measured and evaluated. Integration and adaptation of the MASS to the MobiC-II system was promoted

in order to demonstrate its usefulness. To improve the reliability of the MASS’ prototype, during its

development, its correctness was analyzed by means of verification and validation activities (V&V) -

software tests8. The implementation of the MASS and the evaluation of this implementation led to the

conclusion that this scheme is adequate and useful for the protection of mobile agents in different kinds of

application domain.

For continuing this work, a study is being prepared about how to protect confidentiality of the

agent code using some mechanisms that transform a program into an equivalent one that is harder to

reverse engineering and so minimizing threats against the agent’s intellectual property. Also, the

implementation of the control social mechanism based on SPKI Federation concept is one of next goals in

this project. Finally, the use of a test methodology to evaluate the security risks of prototype’s

mechanisms is being prepared.

Acknowledgements

This work has been developed within the scope of the Brazilian IFM (www.ifm.org.br) and European

FP6-IP ECOLEAD (www.ecolead.org) projects. The authors would like to thank the financial support

received and the members of these projects for their contributions.

8 Two types of tests were applied: unit tests and systems tests.

 29

References

[1] A. Santin A, J. Fraga, F. Siqueira, E. Mello. Federation WEB: A scheme to compound authorization

chains on large-scale distributed systems. 22nd Symposium on Reliable Distributed Systems, 2003.

[2] A. Corradi, M. Cremonini, R. Montanari, C. Stefanelli, Mobile agents integrity for electronic

commerce applications. Information Systems vol. 24, pp. 519-533, 1999.

[3] A. Tripathi, T. Ahmed, N. Karnik, Experiences and future challenges in mobile agent programming.

Microprocessors and Microsystems (2001) 121-129.

[4] C. Elisson, SPKI Requirements (RFC 2692). The Internet Engineering Task Force. (1999)

http://www.ietf.org/rfc/rfc2692.txt.

[5] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, G. Tsudik. Itinerant agents for mobile

computing. IEEE Personal Communications, 2(5):34–49, (1995).

[6] F. B. Schneider. Towards fault-tolerant and secure agency. In M. Mavronicolas e P. Tsigas, editors,

11th International Workshop on Distributed Algorithms (WDAG’97), volume Lecture Notes in

Computer Science of LNCS, pp. 1–14. Springer, 1997.

[7] F. Hohl. Time limited blackbox security: Protecting mobile agents from malicious hosts. In Giovanni

Vigna, editor, Mobile Agents and Security, volume 1419 of LNCS, pp. 92–113. Springer, 1998.

[8] G. Karjoth, N. Asokan, C.Glüc: Protecting the computing results of free-roaming agents. In: Proc. of

the Second International Workshop on Mobile Agents, 1998.

[9] G. Necula, P. Lee. Safe, untrusted agents using proof-carrying code. In Giovanni Vigna, editor,

Mobile Agents and Security, volume 1419 of LNCS, pp. 61–91. Springer, 1998.

[10] G. Vigna.: Cryptographic traces for mobile agents. In Vigna, G., ed.: Mobile Agents and Security.

Volume 1419 of LNCS, pp. 137-153, Springer, 1998.

[11] L. M. Camarinha-Matos, H. Afsarmanesh. Dynamic virtual organizations, or not so dynamic ? In:

Third IFIP Working Conference on Virtual Enterprise, pp. 111-124, 2002.

[12] L. M. Camarinha, H. Afsarmanesh. The emerging discipline of collaborative networks. In Virtual

Enterprises and Collaborative Networks, Kluwer Academic Publishers, ISBN 1-4020-8138-3, IFIP

Vol. 149, Aug 2004.

[13] L. Rasmusson, A. Rasmusson, A, S. Jansson. Using agents to secure the internet marketplace -

reactive security and social control. In: Proc. 2nd Int. Conf. on the Practical Application of Intelligent

Agents and Multi-Agent Technology, 1997.

 30

http://www.ietf.org/rfc/rfc2692.txt

[14] M. S. Wangham, J. S. Fraga, R.R. Obelheiro., G. Jung, E. Fernandes, Security mechanisms for

mobile agent platforms based on spki/sdsi chains of trust. In C.L. et al., ed.: Software Engineering for

Multi-Agent System II. Vol. 2940 of LNCS. Springer, 207-224, 2004.

[15] M. S. Wangham, J.S. Fraga, R. Schmidt, R. J. Rabelo, MASS: A Mobile Agent Security Scheme for

the Creation of Virtual Enterprises. Proceeding of Mobility Aware Technologies and Applications.

Vol. 3284 of LNCS. Springer pp. 234-243, 2004.

[16] N. Karnik: Security in Mobile Agent System. PhD thesis, University of Minnesota, 1998.

[17] OMG: Mobile agent facility specification. OMG Document 2000-01-02, 2000.

[18] O. Esparza, M. Fernandez, M. Soriano, J. Muñoz, J. Forné. Mobile Agent Watermarking and

Fingerprinting: Tracing Malicious Hosts, DEXA 2003, Vol. 2736 of LNCS. Springer, 2003.

[19] R. Rabelo, M. S. Wangham, R. Schmidt, J. Fraga: Trust building in the creation of virtual enterprises

in mobile agent-based architectures. In: Processes and Foundations for Virtual Organizations, Kluwer

Academic Publishers, IFIP, 2003, pp. 65-72.

[20] R. Rabelo, F. Baldo, R. Tramontin Jr, A. Klen, E. Klen. Smart Configuration of Dynamic Virtual

Enterprises, In Virtual Enterprises and Collaborative Networks, Ed. L. M. Camarinha-Matos, Kluwer

Academic Publishers, 2004. pp. 193-204.

[21] Sun. Java 2 sdk. v1.4 security documentation, February 2002.

http://www.java.sun.com/security/index.html.

[22] T. Sander, C. Tschudin. Protecting mobile agens against malicious hosts. In Vigna, G., ed.: Mobile

Agents and Security. Volume 1419 of LNCS. Springer, 1998.

[23] V. Roth. On the robustness of some cryptographic protocols for mobile agent protection. In Picco,

G.P., ed.: Mobile Agents. Volume 2240 of LNCS, pp 1-14. Springer, 2001

[24] W. Farmer, J. Guttman, V. Swarup, Security for mobile agents: Issues and requirements. In: Proc.

19th National Information System Security Conference, 1996.

[25] W. Farmer, J. Guttman, V. Swarup. Security for mobile agents: Authentication and state appraisal. In

4th European Symposium on Research in Computer Security (ESORICS’96), 1996.

[26] W. Jansen, T. Karygiannis. Mobile agent security. Technical Report NIST Special Publication 800-

19, National Institute of Standards and Technology (1999).

 31

http://www.java.sun.com/security/index.html

Authors' Biographical Notes

Michelle S. Wangham is a postdoctoral research associate in Department of Automation and Systems at

the Federal University of Santa Catarina. His main interest areas of research include Security in

Distributed Systems, Mobile Code and Collaborative Networks. She is currently involved in the European

FP6 IP ECOLEAD project and in two Brazilian projects as a researcher. In 2004, Michelle received a

PhD in Information Systems from Federal University of Santa Catarina - Brazil.

Joni da Silva Fraga received the B.S. degree in Electrical Engineering in 1975 from University of Rio

Grande do Sul (UFRGS), the MSE degree in Electrical Engineering in 1979 from the University of Santa

Catarina (UFSC), and the PhD degree in Computing Science (Docteur de l’INPT/LAAS) from the

Institut National Polytechnique de Toulouse / Laboratoire d'Automatique et d'Analyse des Systèmes,

France, in 1985. Also, he was a visiting researcher at UCI (University of California, Irvine) in 1992-1993.

Since 1977 he has been employed as a Research Associate and later as a Professor in the Department of

Automation and Systems at UFSC, in Brazil. His research interests are centered on Security, Fault

Tolerance and Distributed Systems. He has over 95 scientific publications and is a Member of the IEEE

Computer Society and of Brazilian scientific societies.

Ricardo José Rabelo took his Ph.D. in Robotics and Integrated Manufacturing at New University of

Lisbon, Portugal, in 1997. He is Associated Professor of the Department of Automation and Systems at

the Federal University of Santa Catarina (UFSC) since 2000. He is co-founder of the G-SIGMA –

Intelligent Manufacturing Systems Group (www.gsigma.ufsc.br). He worked as consultant for 3 years

(1983-1985) and in the Mercedes-Benz of Brazil (1986-1987), leading a division of software

development for the Computer Aided Manufacturing area. His main current areas of research include:

virtual organizations, systems and information integration/interoperation, multi-agent systems, shop-floor

supervision and decision support systems. He has participated in several national/Brazilian (e.g. IFM,

Manet) and international research projects (ESPRIT and IST programmes) as well as in cooperation

projects with Europe (ECLA, CYTED, INCO and KIT programmes) - most of them as the UFSC

representative / technical contact. He has more than 90 publications, including conference proceedings,

journals and book chapters. He is the Brazilian representative in the IFIP WG 5.3 and 5.5 subgroups,

consultant ad hoc of the Capes agency for applied research and other governmental institutions. Besides

 32

http://www.gsigma.ufsc.br/

that, he has been involved in the organization and program committees of several national and

international conferences, such as of PRO-VE.

Lau Cheuk Lung is an associated professor in the Department of Computer Science at Pontifical

Catholic University of Paraná - Brazil, where he has been working since 2003. Currently, he is

conducting research in fault tolerance, security in distributed systems, distributed Algorithms and

middleware. From 1997 to 1998, he was an associate research fellow at University of Texas at Austin,

working on the Nile Project. From 2001 to 2002, he was a postdoctoral research associate in the

Computer Science Department at University of Lisbon, Portugal. In 2001, Lau received a PhD from

Federal University of Santa Catarina - Brazil.

 33

	Secure Mobile Agent System and its Application in
	Abstract
	1. Introduction
	2. Security in Mobile Agent Systems
	2.1 An Overview of the MASS: A Mobile Agent Security Scheme
	2.1.1 Techniques for Creating a Protected Mobile Agent (Step
	2.1.2 Protocol for Establishing Secure Channels (Step 2, Fig
	2.1.3 Mobile Agents Authentication (Step 3, Fig.1)
	2.1.4 Procedure for Generating Protection Domains (Step 4, F
	2.2 MASSma: Protecting Mobile Agents with Secure Data Reposi
	2.2.1- Structure of a Mobile Agent
	2.2.2- Verifying the Platform Reputation
	2.2.3- Read-Only repository
	2.2.4- Partial-Results Repository
	2.2.5- Directed-Data Repository
	2.2.6- Mobile Agents Authentication
	2.2.7 - Social Control Mechanisms

	3. Partners Selection and Search System in Collaborative Net
	3.1- Threats in the Creation of Virtual Enterprises
	3.2- Security Policy to the TechMoldes Scenario
	3.3- Protecting Mobile Agent Systems to Improve the Trust Bu
	4. Implementation Results
	4.1 Performance of the MASS’ Prototype
	4.1.1. Authentication of Mobile Agents that Using Secure Dat

	5. Related Works
	6. Concluding Remarks
	Acknowledgements
	References
	Authors' Biographical Notes

