
Finite State Machines 
Written and illustrated by James Trevelyan, School of Mechanical Engineering, based on lectures by Peter 
Kovesi, School of Computer Science and Software Engineering. 

 

The Finite State Machine (FSM) is an abstract concept that helps us analyse a mechatronics control system 
in a structured way.  At the same time it is also a useful design tool that allows us to approach the design in 
a systematic manner.  It is particularly useful for sequential logic and control functions.  Finite state 
machines are widely used in the design of software, logic, PLCs, electronic controls and mechanisms.  
Software finite state machines find applications in artificial intelligence, pattern recognition, linguistics and 
even in human behavioural models, though here some people would say that their use is misguided. 
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Defining States 

A finite state machine is simply a machine that has a finite number of states.  We need to contrast this with 
machines that can have an infinite number of states.  For example, a sensor that can read the temperature of 
a process producing an analog voltage is an example of a machine with an infinite number of states.  The 
number of possible output voltages is infinite.  On the other hand, the temperature sensor that only indicates 
if the temperature is too high or too low has two output states.  Many mechatronics systems have elements 
of both: some parts have infinite numbers of states while other parts operate as finite state machines with a 
limited number of possible states. 

A cassette player, for example, can be in one of several discrete "operating" states: 

Stop:  tape is stopped 

Play: tape moves slowly past the 'reading' head at constant speed, tape is pressed against 
the reading head. 

Rewind: tape moves quickly backwards, not necessarily at constant speed, tape is not 
pressed against the reading head. 

fast forward: tape moves quickly forwards, not necessarily at constant speed, tape is not 
pressed against the reading head. 

Pause: tape motion in play mode is temporarily stopped, but the tape remains pressed 
against the reading head. 

Record: tape moves slowly past the 'reading' head at constant speed, tape is pressed 
against the reading head, but the 'write' coil is energized changing the magnetic patterns 
stored on the tape surface layer.  Possibly, a separate 'erase' head is also energized as 
well. 

Certain events cause a machine to transfer from one state to another.  For example, when the cassette player 
is rewinding a tape it will transfer from the "rewind" state to the "stop" state when a sensor indicates that 
the end of the tape has been reached. 

The first step in designing or analysing a finite state machine is to find all the possible states that it can be 
in.  This is not as easy as it seems.  An automatic door is a good example.  It can be "open" or "closed".  
However, it does not change between the "open" and "closed" states instantaneously: it passes through 
some other states to achieve that.  If we look closely at a typical automatic door we might observe two 
intermediate states.  From "closed" it transfers to an "opening" state in which the motor is opening the door 
at a steady speed.  Shortly before reaching the fully open position it transfers to an "opening slowly" state 
in which the motor is running slower so that the door does not slam into the end of its rail.  After a short 
time it transfers into the "open" state and stays there until the "close" button is pressed or perhaps an 
automatic timer produces a signal starting a similar sequence of states to close the door. 

Sometimes it is possible to identify states that do not actually exist or are not required.  We call these 
"redundant" states.  It takes practice and it is best to learn by experience. 

State Transition Diagram 

The second step is to draw a state transition diagram.  This diagram shows the relationships between each 
state.  It shows how the machine transfers from one state to another in response to events.  It is possible to 
read the diagram to reveal the sequence of states and events that define the machine's operational 
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behaviour.  A state transition diagram is an invaluable design tool and a means of communicating the 
control system design to other people. 

Let's take a simple light switch as an example to start with.  There are two states: "on" and "off".  There are 
two possible events: lifting the switch lever up and pressing the switch lever down by finger movement.  
(Note that we observe the British and Australian convention: the switch is up in the "off" position and down 
in the "on" position.) 

The state diagram looks like this. 

 

Figure 1: State diagram for simple electric light switch 

Notice we have included all possible events in both states.  Pressing the switch down in the "on" position 
produces no state change but we still show an arrow that returns to the "on" state.  A state diagram that 
shows every possible combination of state and event is called an exhaustive state diagram.  Most of the 
time we only show events that actually cause state transitions.  If we were to show every possible state 
transition and event we may end up with a diagram that is far too complicated to read.  However, for safety 
critical systems where reliability is very important we need to analyse every possible event in every state. 

Notice also that the term "pressing the switch down" or " lifting the switch up" implies a discrete event 
when the finger force just overcomes spring pressure and causes the switch suddenly to move to its final 
position.  The electrical state of the switch only changes when the spring pressure has been overcome and 
the sudden final movement occurs. If the finger exerts insufficient force, the switch lever moves, but not 
enough to cause a state transition. 

Now let's take a different kind of light switch.  A pushbutton light switch is pressed to turn the light on and 
pressed again to turn the light off.  Once again the state transition only occurs when mechanical spring 
pressure has reached a certain critical point.  In this example there is only one event: pressing the switch 
button.  Notice that the same event causes a transition in both directions! 
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Figure 2: Push button light switch using transient "push" events. 

Transient and Persistent Events 

Now we need to distinguish between "static" and "transient" events.  A transient event happens in an 
infinitely short instant of time.  The static event is persistent for a finite time.  Let's look at this simple 
pushbutton state diagram again assuming that the "push" event exists for a finite period of time.  As soon as 
the push event occurs there is a state transition from "off" to "on".  However, the push event still persists.  
Now that we are in the "on" state the push event causes an immediate transition to the "off" state.  Thus, our 
state machine will enter an endless loop, oscillating from one state to the other, until the end of the "push" 
event.  This is often known as a "race" condition. 

We can overcome this problem by introducing additional states.  The state diagram immediately below 
shows how this can be done.  We have introduced "off wait" and "on wait" states and introduced a "release" 
event.  The "push" event is always followed by a "release" event. 

 

Figure 3: Expanded state diagram for push button light switch  
using persistent events "push" and "release". 

To avoid this kind of problem we must declare events to be transient or static (persistent or transient).  
Notice that we can introduced a small "sub-state" diagram that transforms a pair of persistent events such as 
"push" and "release" into a transient "push once" event.  In the diagram below, there is an immediate 
transition from "on" to "off".  The existence of the "on" state is therefore transient, and this becomes the 
transient event that can be used in the simple state diagram shown in figure 3. 
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Figure 4: Sub-state diagram that converts persistent "push" and "release" events into a 
transient event "on" determined by the duration of the "on" state.  Since the state will 
immediately change (unconditionally) from "on" to "off", the "on" state has to be 
transient. 

Exercises 1 

Define the state transition diagram for the "close" button on a typical window on a computer screen.  On 
my computer the button changes its appearance as soon as I press the mouse button down with the pointer 
over the button.  However, the window does not close immediately.  The window only closes if I release 
the mouse button with the arrow still over the button.  If I drag the pointer away from the button, holding 
the mouse button down, the "close" button of the window simply changes its appearance back to the "up" 
position and the window remains open.  Draw a state transition diagram to represent this behaviour. 

Note that there is no single right answer.  A state transition diagram represents one person's way of seeing 
the design of a finite state machine.  Different people can conceive of the same design using different state 
transition diagrams. 

Exercise 2 

Dismantle an old pushbutton pen: the type with a button at the end which you press to make the ball point 
appear at the other end and press again to make it disappear.  This is a mechanical example of a two state 
machine.  Draw the state transition diagram and draw sketches to show how the mechanism implements the 
state transition diagram. 

Cassette Player Example 

Now, as a final worked example let's return to the cassette player. 

We will define the following set of controls for an English-language version: 

"Stop", "Play", "Reverse direction", "Rewind", "Fast forward" 

The machine starts in the "stop" state.  When we press the "play" button (thereby generating a transient 
"play" event) the machine transfers to the "play" state.   

At this stage we have to pause our analysis and realise that there are two possible "play" states.  The 
machine can be playing the tape in the forward direction or in the reverse direction depending on which 
side of the tape we want to listen to.  Therefore we need to define two play states: "play side A" and "play 
side B".  If your cassette player is similar to mine the direction of play depends on the previous play 
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direction before we pressed the stop button.  Therefore, we also need two "stop" states: "stop A" and "stop 
B" so that the machine can remember which side of the tape it was playing last. 

In the same way, the "rewind" state depends on which side of the tape we are playing. 

We can resolve this problem in two ways.  We can either introduce a second state diagram to define the 
direction in which we are playing the tape or we can simply have a separate state for each kind of operation 
when we play different sides of the tape.  Both alternatives provide equally valid interpretations of the 
machine behaviour. 

 

Figure 5: State transition diagram for simple cassette player 

Exercise 3 

Modify the state transition diagram of figure 3 to allow the "reverse direction" event to change the tape 
direction while the tape is stopped. 

Exercise 4 

Modifiy the state transition diagram of figure 3 to allow the "reverse direction" button to change the tape 
direction and start the tape playing in the new direction if it was stopped. 
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Exercise 5 

Examine a real tape cassette player, either video or audio.  Determine the operating states and draw a state 
transition diagram to describe the response of the machine to the different controls (assuming that the 
button controls generate transient events).  If possible, remove the cover and examine the cassette player in 
its different states and carefully observe how the mechanical parts operate.  (If you do not have access to a 
tape cassette player, perform the same exercise for a CD player.) 

Decomposition Techniques 

These examples demonstrate that state transition diagrams for relatively simple machines can become quite 
complex.  It is useful to decompose more complex machines into a series of simpler independent state 
machines, each with its own state transition diagram.  This is analogous to the way we decompose software 
into upper-level modules and lower-level modules to hide complexity. 

Timer 

Just as an example we can decompose a timer used in many ways in typical state machines. 

 

Figure 6: Transition diagram for timer state machine.  The machine starts in the 
"expired" state.  The countdown time T is transferred to a countdown register t 
when the timer is set with the "start" event.  In the "countdown" state, the 
countdown register gradually decreases by δT at each "tick".  Most state 
machines are synchronised to an external clock and execute once every "tick" of 
the clock.  (Transient events last just one tick)  The timer passes to the "ringing" 
state when the countdown timer reaches zero.  It will remain in this state until the 
"acknowledge" signal is received. 

Notice how actions that are performed along state transition arcs are defined 
following the '/' after the event that triggers the arc. 

To our knowledge there is no standard way of representing multiple finite state machines that operate 
simultaneously other than by defining a full state transition table for the entire group of machines.  This can 
generate enormous complexity.  A state transition diagram summarises a state transition table in graphical 
form.  UML (universal modelling language) is widely used by software engineers yet it cannot easily 
accommodate multiple state machines.  This is a practical engineering issue that needs to be addressed.  In 
the meantime the best we can do is to draw state transition diagrams clearly with explanatory notes to show 
how different state machines interact. 
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Select 

Another simple example that is worth exploring is the typical selection mechanism used in computer 
software.  A single mouse click and selects any object that was previously selected and selects the object 
over which the mouse pointer has been placed.  If another click occurs within a short time the system 
launches the application handling the object that has been selected. 

 

Figure 7: State transition diagram for single click or double-click selection.  Are there redundant states? 

Prelude and postlude actions 

Another way to describe actions that occur along state transition arcs is to introduce the concept of 
"prelude" and "postlude" actions.   

In the two previous examples we see that certain actions need to be performed when a given state is 
entered.  As we enter the "wait1" state (above) we deselect all other objects and set the timer value T.  
These are the "prelude" actions for the "wait1" state.  Launching the application that handles the object 
selected is then the "prelude" action of the "open object" state.  Notice that we leave this state immediately 
returning to the "start" state.  Postlude actions are performed as we leave a state.  However, postlude actions 
tend to be used less than prelude actions because there are typically multiple pathways on leaving a given 
state, each with different postlude actions. 

State transition diagrams have their limitations.  The software package Visual Studio, for example, has no 
less than 150 menu events leading off from the startup state alone.  This kind of state machine is far too 
complex to represent with conventional state transition diagrams.  Decomposition into groups of states is 
essential. 

Hardware Implementation Schemes 

There are two slightly different classical hardware implementations of finite state machines.  Modern 
software techniques enable us to implement highly complicated state machines using Field Programmable 
Gate Arrays (FPGAs) and Very Large Scale Integrated circuits (VLSI).  Central processor circuits for 
computers are large finite state machines.  However the same technologies allow us to design purpose-built 
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machines for specific applications.  Application Specific Integrated Circuits (ASICs) are cheaper to mass-
produce than FPGAs but the latter have much lower setup costs for small production runs. 

 

Figure 8: Moore machine architecture.  Inputs i0, i1, i2… are captured at each clock pulse and, together 
with state values s0, s1, s2… form inputs to combinational logic that computes the new state values s0', s1', 
s2'…  The new state values become the actual state when they are latched at the start of the next clock 
pulse.  Output logic computes the output values o0, o1, o2… from the state values. 

The Moore machine architecture is shown in figure 8.  It consists of an input latch, combination logic, state 
memory and output logic.  An external clock synchronizes the input latch, state memory and output logic: 
outputs appear immediately after each clock pulse and remain unchanged until the next clock pulse.  
Practical limitations on combination logic speed mean that a small but finite time elapses between 
presenting input signals immediately after the clock pulse and the arrival of the next state value at the 
inputs to the state memory.  Output signals are computed from the state value. 

 

Figure 9: Mealy machine implementation.  Inputs i0, i1, i2… are captured at each clock pulse and, together 
with state values s0, s1, s2… form inputs to combinational logic that computes the output values o0, o1, 
o2… and the new state values s0', s1', s2'…  The new state values become the actual state when they are 
latched at the start of the next clock pulse.   

The Mealy machine has an almost identical structure except that the outputs are computed from 
combination logic at the same time as the next state value.  The Moore machine requires at least as many 
states as there are possible output combinations.  However the Mealy machine requires fewer states. 
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It is also important to note that the timer state machine cannot easily be represented unless we consider that 
every possible timer value is an additional state in its own right.  In practice, of course, these state machines 
are usually represented by software implemented in a microprocessor rather than by binary hardware 
devices. 

State Transition Tables 

As the state machine operates at clock ticks spaced at time δt numbered k=0, 1, 2, 3, … k, k+1, k+2, … we 
can represent the current state as Sk and the current input as Ik and the current output as Ok.   

The current state is computed from the previous state and the current input values: 

Sk = fs(Sk-1, Ik)  where fs is known as the state transition function.  This is also written as fs:SxI→S. 

The output values are computed similarly: 

Ok = fo(Sk-1, Ik)  where fo is known as the output function.   

This is also written as fo:S→O (in the case of the Moore machine) or fo:SxI→O (in the case of the Mealy 
machine). 

We can define a state and input alphabet, typically a binary alphabet (0, 1) and then define fs and fo in the 
form of a look-up table, or state transition table as the following example shows. 

Exercise 6 

What does the following finite state machine represent?  There is a single input value (0 or 1) and a single 
output value (0 or 1).  On each state transition arc the input values and output values appear as input/output.   

 

Figure 10: What is this finite state machine? 
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Represent states with two binary bits: 

s0    0  0 

s1    0  1 

s2    1  0 

Then fill in the following state transition table.  The first two rows have been filled in for you….. 

 

Current State Input New State Output 

State bit 0 State bit 1 i0 State bit 0 State bit 1 o0 

0 0 1 1 0 0 

0 0 0 0 1 0 

0 1 0    

0 1 1    

1 0 0    

1 0 1    

 

Hint: make an input sequence such as 00111001000011110000 and work out the state changes and the 
output values. 

 

Creating and Designing Finite State Machines 

Logic circuits, application-specific integrated circuits, PLCs, computer software, pneumatic hardware, 
fluidic devices and mechanisms all provide convenient ways to implement finite state machines.  There are 
many design tools especially for the more complex state machines such as those found in large-scale 
integrated circuits and telephone exchanges.  

Software tools such as MATLAB's Simulink and other discrete event simulation languages are very useful 
for modelling finite state machines.  If you follow careful design procedures, simulation should not 
necessary except for the most complex designs.  

In this course many projects will require you to implement finite state machines in software and the 
following notes provide some helpful guidance on how to do this reliably.  



Mechatronics Systems 210 Finite State Machines page 12 

Implementing Finite State Machines in Software 

Software finite state machines can provide a highly reliable code by following certain guidelines.  The 
following flowcharts illustrate how the code should be structured.  This structure can be accommodated in 
almost any programming language. 

 

Figure 11: Finite State Machine implementation in software: overall flowchart. 

In figure 11 we can see that the code is structured in the form of a "switch" statement (in C, C++ or Java) 
with a case for every state.  A "case" structure should be used in LabVIEW.  Note that there is also a 
default state to cover the case of an unknown value for the variable "state".  This can happen if there is a 
mistake in the code so the default code is simply used to detect the fact that this kind of error has occurred.  
Never use a default case for legitimate state values.  This is lazy coding and leads to disasters. 

The local variables "oldstate" and "newstate" are used within the code for each state to detect conditions 
under which the prelude or post lewd actions should be executed.  This is shown in the following flowchart.  
Note that the values of "state" and "oldstate" must be retained between successive executions of the code.  
They cannot be allocated to temporary local storage unless that storage is guaranteed to be preserved. 

The last section of the code is verification code.  This code is included to ensure that the module operates 
correctly.  Finite state machine code is usually critical to all other aspects of the operating software so it is 
essential to confirm that operates correctly.  The verification code, at the least, will record every state 
change to a log file or some other form of permanent storage.  In the case of a high reliability application 
the verification code could incorporate a state transition table that defines all legitimate state transitions so 
that it can flag an error if an illegitimate state transition occurs.  Note that recording data to a log file can be 
time-consuming, at least in some real-time applications, and separate notes provide some useful techniques 
for recording data in time- and space-efficient manner. 
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Figure 12: Flowchart template for each state 

The code for each state follows a template and consists of four separate sections.  At the beginning the code 
checks to see whether the state value has changed on the previous time the code was executed and, if so, 
executes prelude actions such as initialising timer values.  Similarly, at the end, the code executes postlude 
actions if the state is about to be changed.  In between the code performs actions specific to this particular 
state and no other state.  This is the most important feature of the code template.  By having separate code 
for every distinct state changes can be made to one state without having to be concerned that these changes 
may have side-effects in the other states.  After this the code checks to see whether the state should be 
changed and if so sets the new state value into the variable "newstate". 
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