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Functional and Procedural
Languages and Data
Structures Learning
Jõao Dovicchi and Jõao Bosco da Mota Alves1

Abstract: In this paper authors present a didactic method for teaching Data
Structures on Computer Science undergraduate course. An approach using func-
tional along with procedural languages (Haskell and ANSI C) is presented, and
adequacy of such a method is discussed. Authors are also concerned on how
functional language can help students to learn fundamental concepts and acquire
competence on data typing and structure for real programming.

1.1 INTRODUCTION

Computer science and Information Technology (IT) undergraduate courses have
its main focus on software development and software quality. Albeit recent in-
troduction of Object Oriented Programming (OOP) have been enphasized, the
preferred programming style paradigm is based on imperative languages. FOR-
TRAN, Cobol, Algol, Pascal, C and other procedural languages were frequently
used to teach computer and programming concepts [Lev95]. Nowadays, Java is
the choice for many computer science teaching programs [KW99, Gri00, Blu02,
GT98], although “the novelty and popularity of a language do not automatically
imply its suitability for the learning of introductory programming” [Had98].

Inside undergraduatecurricula, Data Structures courses has some specific re-
quirements that depends on mathematical formalism. In this perspective, concepts
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on discrete mathematics is very important on understanding this formalism. These
courses’ syllabuses include concept attainment and competence development on
expression evaluation, iteration, recursion, lists, graphs, trees, and so on. Many
other authors have already discussed the application of Functional Programming
on discrete mathematics learning process [Hen02, dR02] and many course pro-
grams include functional programming as first programming language, but this
practice is not yet a commonplace [Pag01].

We can say that programming languages are approximation of mathematic
language. Generally, they can express reasonably well an algorithm to be held by
a computer machine. Although they may lack of expressivity and conciseness,
unlike mathematical formulas, we dare to say that any calculable algorithm can
be implemented. Data types and structures can formalize well-formed expres-
sions in a clean and simple way as mathematic language does, since data typing
can guarantee evaluation precision. We strongly believe that use of functional
programming can highly improve this formalization, thanks to its strongly-typed
data and its semantics clarity.

In our course, we apply Functional Language (Haskell) and Procedural Para-
digm (ANSI C) as strategy on Data Structures to teach concepts on data abstrac-
tion. This paper discusses the adequacy of such a method on learning conceptual
basis of mathematic formalism through a functional programming approach com-
pared to a procedural language. More precisely, we centered the program on
definitions, operations, algorithms and functions instead of focusing expression
evaluation, iteration, recursion, graphs, trees, lists, and other basic subjects which
can be learned from other point of view. This does not means that such concepts
are not important, but they can be learned through a mathematical formalism. We
are particularly concerned on how functional languages can help students to learn
concepts and acquire competence on these subjects. Moreover, we observed how
it helps on understanding Abstract Data Types in a procedural language such as
ANSI C.

1.2 THE SYLLABUS

Overall, Data Structures course covers topics on data types, operation on data,
algorithm and data manipulation. This comprises expression evaluation, iteration,
recursion and structures (such as graphs, trees and lists). A generic syllabus for
Data Structures program can be described as:

1. Data types— aspects of data structure, data specification;

2. Data arrangement— stacks, queues, lists, arrays and structures;

3. Operation on data— expression evaluation and operation precedence;

4. Algorithms — conditionals, branching, iteration and recursion;

5. Data manipulation — functions, graphs, trees, searching, sorting and hash-
ing.
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Students should be able to:

1. Identify and understand data types such as integers, reals, strings, booleans,
lists, tuples, arrays, and which kind of operator can be applied to each type;

2. Achieve concepts on stacks, queues and other kinds of data collection;

3. Develop competence on data manipulation and algorithm development for
functions, data organization and data retrieval.

In order to accomplish these goals students should understand abstract struc-
tures, and we noticed that the way we were teaching Data Structures implies that
they had to do it by themselves. Based on this experience we started to review
our syllabus paradigm and try a functional approach mixed with its procedural
correlate.

This idea came out based on the study of a conceptual map constructed after
the subjects of our Data Structures program, where analysis of the concepts and
its relations, have shown that definitions, operations, algorithms and functions
play an important role on understanding basic subjects of Data Structures (see
figure 1.1). Traditionally, the course program was centered on basic subjects (such
as data types, conditions, iterations, recursion, graphs, and trees), but this new
suggestion, using functional along with an imperative language, both centered on
true conceptual subjects could yield better results on teaching and learning Data
Structures fundamentals.

Data Structures

Abstract Data Types

Data Types

Definitions

Int, Real
Bool, ...

ADD
SUB
CONCAT
...

FunctionsOperations

Algorithms

ExpressionsPrecedence

Conditions
Branches
Iteration
Recursion

Graphs
Trees
Sorting
Hashing
...

FIGURE 1.1. Conceptual map for Data Structures subjects

The new syllabus was proposed in 4 parts for one semester course on Data
Structures with 6 hours per week, half and half for theoretical and practical classes.
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Introduction Basis of functional pro-
gramming

Functional programming versus imperative pro-
gramming; expression evaluation; functions as
first class values; introduction toλ-calculus as
theoretical basis.

Data Types Types and operations Types (Int, Real, Bool, String), type schemas,
type inference; polymorphism versus overload-
ing; exceptions; expression evaluation.

Algorithms Recursion, iteration,
conditionals and branch-
ing

Recursion and fixed-point combinatory; refer-
ences and controlled side effects; lazy evalua-
tion; parameter transfer and processing of infi-
nite objects.

Manipulation
of data

Functions and structures Functions, graphs, trees, searching, sorting,
data storage and retrieval.

TABLE 1.1. Data Structures course: syllabus details

First part should focus on basis of functional programming; second on types, type
schemas, type inference and polymorphism; third on recursions, iterations, con-
ditions and lazy evaluation; and fourth on structures such as graphs and trees and
algorithms like sorting and search (see table 1.1).

Languages chosen to realize this syllabus was ANSI C and Haskell because,
as a procedural language, C is easy and flexible, and Haskell has an intuitive and
friendly syntax. Besides, Haskell’sForeign.C modules map C types to corre-
sponding Haskell types, which can improve comparison of data types descrip-
tions. Another reason for this choice is that Gnu C Compiler (GCC) and Glasgow
Haskell Compiler (GHC) can both run on open and free Operating Systems such
as FreeBSD, OpenBSD and Linux, because in countries like Brazil, cost of labo-
ratory assembly is an important issue.

1.3 A FUNCTIONAL REAL WORLD

Once Functional Languages are not usual in programming, why use it on Data
Structure course, which is one of the main courses for computer science educa-
tion? Considering its features, these languages are excelent to study data con-
structors and types, using a powerful ability to represent procedures as functions.
Another assertion is on its easeness in modularization concepts. In his famous
article [Hug89] John Hughes points to limitations of conventional imperative lan-
guage in modularization concepts, which is improved in functional languages. He
states that “since modularity is the key to successful programming, functional lan-
guages are vitally important to the real world”. He also shows that concepts like
higher-order functions and lazy evaluation, can contribute greatly to modularity.

Functional paradigm can also reveal new horizons to students on IT and Com-
puter Science courses, and we argue that mathematical formalism can be better
explored for the conception of data structure basis.

We recognize that mathematical representation of functions are concise, pre-
cise and easy to interpret; the same happens in functional programming since
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functional description can address the real problem for a real world. Addition-
ally, functional aproaches can help students to understand Data Structures on a
procedural paradigm.

Lets see, for example, how an Abstract Data Type (ADT) can be implemented
in C, and in Haskell as in figures 1.2 and 1.3 which shows a simple data abstraction
of Rational type in both languages.

abstract typedef <integer,integer> RATIONAL;
condition RATIONAL[1] <>0;

abstract RATIONAL makerational (a,b) int a,b;
precondition b<>0;
postcondition makerational[0] == a;

makerational[1] == b;

abstract RATIONAL add(a,b) /* written a + b */
RATIONAL a,b;
postcondition add[1] == a[1] * b[1];

add[0] == a[0] * b[1] + b[0] * a[1];

abstract RATIONAL mult(a,b) /* written a * b */
RATIONAL a,b;
postcondition mult[0] == a[0] * b[0];

mult[1] == a[1] * b[1];

abstract RATIONAL equal (a,b) /* written a == b */
RATIONAL a,b;
postcondition equal == (a[0] * b[1] == b[0] * a[1]);

FIGURE 1.2. Example of abstraction for Rational type implemented in ANSI C

Implementing an ADT in C is not so dificult, but the concept behind its code
can be better exemplified in its functional counterpart. Representation in figures
1.2 and 1.3 shows how operations onRational data type is more accurate, for
example, givena+b, where

a =
a0

a1
, and b =

b0

b1
,

it is not so evident, in C, that

a+b =
a0×b1 +b0×a1

a1×b1
,

which is clearer in Haskells definition.
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data (Integral a) => Ratio a = !a :% !a deriving (Eq)
type Rational = Ratio Integer

(%) :: (Integral a) => a -> a -> Ratio a

reduce 0 = error "Ratio.% : zero denominator"
reduce x y = (x ‘quot‘ d) :% (y ‘quot‘ d)

where d = gcd x y

instance (Integral a) => Num (Ratio a)
where

(x:%y) + (x’:%y’) = reduce (x*y’ + x’*y) (y*y’)
(x:%y) * (x’:%y’) = reduce (x * x’) (y * y’)

FIGURE 1.3. Example of abstraction for Rational type implemented in Haskell

1.3.1 Array, stacks and queues

We can say that there are some important structures which are very dificult to
concieve. Frequently, students have great dificulties in achieve concepts of array,
stacks and queues, and on this subject many functional languages are of little help.

Array plays an imortant role in programming, mainly in imperative languages
because it resemble the mathematical notion of vector and can be efficiently im-
plemented. Abstraction ofarray type is another example on how two program-
ming paradigm can help its understanding. Figure 1.4 shows how an ATD for an
array type is implemented.

This is another facility provided by Haskell’s use for the language has an effi-
cient implementation of arrays, which contributes to its performance, although we
have consider the difference between array construction and array subscription,
and since its complexity is blurred to the students, parts of its definition can be user
to exemplify its structure. See, for instance, the modulesData.Array.Base ,
Data.Array.IArray , Data.Array.MArray andData.Ix of Haskell’s
base library.

Even though, there is an apparent complexity, in this kind of structure, some
students stated that Haskell’s implementation of array can ease assimilation of
its conception in C. This may be true if students has access to Haskell’s library
and studyData.Array.Base to understand how arrays, array indices, array
bounds and its associations are implemented inGHC.Arr (see listing in figure
1.5).
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abstract typedef <<eltype,ubound>> ARRTYPE (ubound,eltype);
condition type (ubound) == int;

abstract eltype extract (a,i) /* written a[i] */
ARRTYPE (ubound, eltype) a;
int i;
precondition 0 <= i < ubound;
postcondition extract == a i;

abstract store (a, i, elem) /* written a[i] = elem */
ARRTYPE (ubound, eltype) a;
int i;
elemtype elem;
precondition 0 <= i < upbound;
postcondition a[i] == elem;

FIGURE 1.4. Abstraction for Array Type in ANSI C

array :: Ix i => (i,i) -> [(i, e)] -> Array i e
array (l,u) ies =

unsafeArray (l,u) [(index(l,u) i,e)|(i,e)<-ies]

bounds :: Ix i => Array i e -> (i,i)
bounds (Array l u ) = (l,u)

indices :: Ix i => Array i e -> [i]
indices (Array l u ) = range (l,u)

elems :: Ix i => Array i e -> [e]
elems arr@(Array l u ) =

[unsafeAt arr i | i <- [0 .. rangeSize(l,u) - 1]]

assocs :: Ix i => Array i e -> [(i, e)]
assocs arr@(Array l u ) =

[(i,unsafeAt arr (unsafeIndex(l,u) i))|i<-range(l,u)]

FIGURE 1.5. Abstraction for Array Type (Extracted from GHC.Arr in Glasgow
Haskell Compiler’s code distribution)
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1.3.2 Graph-rewriting and lambda reductions

Computer programs make the computer emulate an ”engine” used to make cal-
culations. These ”engine” are of various types, and each can be described in
an abstract mathematical way, which enable us to perform formal checks on the
correctness of computer programs and also to understand the limits on their com-
putational power.

Concepts of abstract transformation which can be used to explain structure
sharing and ciclic structures is seldom explored in Data Structures. This is often
implemented in functional languages because they are based in graph-rewriting
or term-rewriting.

Using concepts of lambda reductions, the notion of graph-rewriting is pre-
sented to student that can easily understand abstract transformation. In this per-
spective it is important to introduce some Lambda-Calculus Theory for better
comprehension of identifiers renaming or abstraction replacement in expressions.
This helps students to understand why functional paradigm lacks of variable value
attribution and how high-order functions work.

Lambda-Calculus is used to enphasize a precise notation to represent data
computing and functional programming. This allow students to:

• Synthesize design solutions;

• Evaluate programming languages;

• Compare programming languages and their features;

• Analyse algorithmic solutions based on their complexity;

• Solve problems and evaluate solutions; and

• Express ideas in writing code.

Students exposed to Lambda-Calculus can easily master program reading in a
functional language such as Haskell, and manipulate abstract data types and lists.
Besides, they acquire comparative understanding of different kinds of program-
ming languages, and the features that distinguish them, improving their knowl-
edge of basic theoretical results on computability.

1.3.3 Infinity and lazy evaluation

A functional approach can ease sets and lazy evaluation concepts and how it can
be applied to infinite streams or data sets. Use of list comprehensions helps the
understanding of finite and infinite lists for use in auxiliary functions.

Our course’s syllabus includes concepts of partial processing of infinite ob-
jects. In most non-strict languages the non-strictness extends to data constructors.
This allows us to teach concepts of infinite data structures such as sets of integers,
prime numbers, odd or even numbers, and other infinite sets. The way functional
languages uses “lazy evaluation” let us manipulate it the same way as ordinary
finite data structures. It also allows structure description for the use of very large
but finite data structures such as trees and graphs.
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1.3.4 Polymorphism

Another additional advantage in use of functional languages is for concepts of
polymorphic and algebraic types. Sometimes it is necessary to specify different
types in formal description of data. This alternative implementation depends on
concepts of polymorphism — seldom used on Data Structures courses — which
implies in correctness on functions prototyping.

Concepts such function arity, rewriting rule and universal quantifier, which are
not discussed in depth when procedural languages are applied, can be unmistak-
ably learned and employed with competence by the students.

1.3.5 Recursivity: Factorial Factor Fact

Recursivity is another top subject in Data Structures which can be mathmatically
implemented such as the mathematical definition of factorial. Once if it can be
defined as a product ofn integers:

n! = 1×2×·· ·×n

students were exposed to the factorial problem through a procedural solution at
first (see figure 1.6).

long factorial (int n) {
int i;
long product = 1;
for(i = n; i>0; i--) {

product = product *i;
}
return product;

}

FIGURE 1.6. Procedural implementation of factorial

Then the mathematical definition is improved, showing the recursive defini-
tion:

n! = n× (n−1)!

and a functional approach is implemented (see figure 1.7). At this time, they are
asked to solve the algorithm in a procedural paradigm using a recursive definition
of factorial which yields a code similar to listing in figure 1.8.

Oftenly, they rise the question “How many times recursion can be used?”, and
this leads to a discussion on memory usage, and it is overwhelming to see them
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fac :: Integer -> Integer
fac 0 = 1
fac n = n * fac (n-1)

FIGURE 1.7. Functional implementation of factorial

int factorial( int n ) {
if( n == 0 )

return( 1 );
else

return( n * factorial( n -1 ) );
}

FIGURE 1.8. Recursive procedural implementation of factorial

discover the concept of stacks in controlling function’s reentrancy which comes
to their minds automatically.

1.4 DISCUSSION

Use of functional language in computer science education is not a new issue.
Many authors have discussed its application on introductory programming courses,
discrete mathematics and as first programming language [Pau94], and nowadays
have become a more and more popular choice as the first language for teaching at
many universities.

Functional programming languages have clean semantics. This makes it ideal
for much easier proofs of program correctness, it is also much easier to transform
programs, either by hand or by machine.

A good point of functional programming is its consiseness and clarity. This
may be further enhanced by letting the user define her own syntax. A very power-
ful mechanism for this is the conctypes definition[APS88], which is an extension
to the data type definitions found in languages like SML and Haskell. They allow
a concrete syntax for a type to be defined by a grammar.

Some can argue why use a little known language such as Haskell, which has
not a commercial vendor support, lacks of good performance, has limited resource
control and poor interoperability. Our main argument is that students can easily
attain competence and hability in programming from knowledge of abstract con-
cepts [LG86, KE82] and discrete mathematics [dR02]. They can understand better
the problem if it can be expressed on mathematical basis and described in terms
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of functions.
The methodology used in this course was adapted from Thompson’s method

[Tho99] where is stated that software development implies in:

• Problem understanding;

• Program planning;

• Code writing;

• Code revision;

Modularized programming using Haskell’s Modules is used to declare defi-
nitions and identifiers in an almost mathematical way and how these objects are
exported to other modules, leading the students to understand fundamentals of
OO Programming.

We can certify that students can be better programmers if they master logics,
discrete mathematics and mathematical induction, but this is not a convincing ar-
gument unless we give them a chance to practice this concepts applied to software
development.

In our Data Structures teaching method we noticed that using a procedural
along with a functional approach leads to a better comprehension of Object Ori-
ented paradigm and we were happy to discover that before us, a program of Tech-
nical University of Denmark (based on Java and SML) has also reported a sim-
milar result [KHR01]. Like our students they used different languages in design
and implementation of structures, where the functional language allow them to
develop and compare OO implementation, which is not supported on traditional
teaching methodology.

1.5 CONCLUSIONS

Methods for Data Structures teaching have changed at times, determined by pro-
gramming language novelty and efficiency of Integrated Development Environ-
ments (IDE). For sure, IDE’s facilities can produce better results for programmers
due to its learning curve, but undoubtedly it is not an ideal evironment for con-
cept learning. On the other hand, excess verbosity is not very good either. The
beginner might feel lost trying to grasp the syntax and may miss the conceptual
learning.

In this paper we discussed how a procedural along with functional approach
can be used as a teaching and learning paradigm for a course on Data Structures,
and during our classes we observed that:

• Teaching using functional and procedural languages can focus formal defini-
tions, algorithm implementation and functions instead of basic subjects such
as iteration, recursion, lists, graphs and trees, without loss of fundamental
concepts attainment;
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• Functional programming can help students to understand abstract data types
(even its procedural definitions); infinite data structures; recurrence and ab-
stract transformation;

• The method helps students to identify and understand data typing and oper-
ations that can be applied to it and also achieve concepts of all kind of data
collections.

Finally we believe that a mixed paradigm course can open students perspec-
tives pushing them to competence development on data manipulation, algorithm
design, functions construction, and also data organization and retrieval.
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