

Digital Integrated Circuits A Design Perspective

Semiconductor Memories (Part 1)

<u>Reference</u>: Digital Integrated Circuits, 2nd edition, Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic

<u>Disclaimer</u>: slides adapted for INE5442/EEL7312 by José L. Güntzel and Luiz dos Santos from the book's companion slides made available by the authors.

© Digital Integrated Circuits^{2nd}

Lecture Summary

Memory Classification Memory Architectures The Memory Core (ROM Memories)

Memory Timing: Definitions

© Digital Integrated Circuits^{2nd}

Semiconductor Memory Classification

Read-Write Memory		Non-Volatile Read-Write Memory	Read-Only Memory
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH	

Memory Architecture: Decoders

Decoder

Memory Architecture: Decoders

Intuitive architecture for N x M memory Too many select signals: N words == N select signals

Decoder reduces the number of select signals $K = log_2 N$

© Digital Integrated Circuits^{2nd}

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

© Digital Integrated Circuits^{2nd}

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

© Digital Integrated Circuits^{2nd}

Hierarchical Memory Architecture

Advantages:

- **1. Shorter wires within blocks**
- 2. Block address activates only 1 block => power savings

Block Diagram of 4 Mbit SRAM

4Mbit = 32 blocks x 128Kbit = 32 blocks x 1024 rows x 128 columns Z = 5, Y = 7, X = 10

© Digital Integrated Circuits^{2nd}

Contents-Addressable Memory

© Digital Integrated Circuits^{2nd}

Memory Timing: Approaches

DRAM Timing Multiplexed Addressing

SRAM Timing Self-timed

DRAM external timing signals:

RAS= Row Address Strobe CAS=Column Address Strobe SRAM: no external timing signals!

© Digital Integrated Circuits^{2nd}

Read-Only Memory Cells

MOS ROM1: BL must be resistively clamped to ground MOS ROM2: BL must be resistively clamped to Vdd

© Digital Integrated Circuits^{2nd}

MOS OR ROM

© Digital Integrated Circuits^{2nd}

MOS NOR ROM

Each column is a pseudo-NMOS (WLs are the inputs)!

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

MOS NOR ROM Layout

MOS NAND ROM

All word lines high by default with exception of selected row

© Digital Integrated Circuits^{2nd}

MOS NAND ROM Layout

© Digital Integrated Circuits^{2nd}

NAND ROM Layout

Programming using Implants Only

No contacts at all!

Polysilicon

Threshold-altering implant

Metal1 on Diffusion

© Digital Integrated Circuits^{2nd}

Equivalent Transient Model for MOS NOR ROM

Model for NOR ROM

Word line parasitics

- Wire capacitance and gate capacitance
- Wire resistance (polysilicon)
- □ Bit line parasitics
 - Resistance not dominant (metal)
 - Drain and Gate-Drain capacitance

© Digital Integrated Circuits^{2nd}

Equivalent Transient Model for MOS NAND ROM

Model for NAND ROM

- □ Word line parasitics
 - Similar to NOR ROM
- □ Bit line parasitics
 - Resistance of cascaded transistors dominates
 - Drain/Source and complete gate capacitance

Precharged MOS NOR ROM

PMOS precharge device can be made as large as necessary, but clock driver becomes harder to design.

ROM memories: user perspective

□ Application specific ROMs

- Designer can use any mask layer to program the device
- Commodity ROM chips
 - Mask programmable (one layer only)
 Late processing phase: either contact or metal
 - Variant: only a fraction of die is mask programmable (compatible with SoC approach)

Conclusions

Large variety of memory types according to:

- Function
- Volatility
- Access pattern
- I/O (ports)
- Application

Conclusions

Memory structure varies with size

- Unidimensional array (of words)
- Bidimensional array of words
 - Rows and colums
- Tridimensional arrays of words
 - -Rows, columns, and blocks

Conclusions

□ ROM cores vary in

- Structure (OR, NOR, NAND)
- Programmable layers
 - -Active area,
 - -Contact
 - Threshold lowering implant
- Pull-up mechanism
 - PMOS transistor load
 - PMOS precharging transistors

Digital Integrated Circuits A Design Perspective

Semiconductor Memories (Part 1)

<u>Reference</u>: Digital Integrated Circuits, 2nd edition, Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic

<u>Disclaimer</u>: slides adapted for INE5442/EEL7312 by José L. Güntzel and Luiz dos Santos from the book's companion slides made available by the authors.

© Digital Integrated Circuits^{2nd}