

#### Universidade Federal de Santa Catarina

Departamento de Informática e Estatística Bacharelado em Ciências da Computação



INE~5406 - Sistemas~Digitais - semestre~2011/2 Prof. José Luís Güntzel guntzel@inf.ufsc.br www.inf.ufsc.br/~guntzel

## 1<sup>a</sup> Lista de Exercícios

#### Observações gerais:

- Os exercícios desta lista não serão cobrados. Entretanto, é altamente recomendável que os alunos tentem resolvê-los, a fim de se prepararem minimamente para a 1ª prova.
- Para os exercícios 2, 3, 4, 5, 6 e 7, assumir operandos com *n* bits.

## Exercício 1 (Deslocador programável ou barrel shifter)

Utilizando multiplexadores 2:1 e eventualmente, portas lógicas, desenhe o esquemático do nível lógico de um deslocador programável que recebe como entrada um número binário de 4 bits  $\mathbf{E}$  e o desloca para a direita "i" bits ("i"  $\in \{0,1,2,3\}$ ), conforme detalhado pela Tab. 1.

Tab. 1 - Funcionamento do deslocador programável a ser projetado nesta questão.

| op1 | op0 | Operação   |
|-----|-----|------------|
| 0   | 0   | S = E      |
| 0   | 1   | S = E >> 1 |
| 1   | 0   | S = E >> 2 |
| 1   | 1   | S = E >> 3 |

#### Observações:

- o símbolo ">>" significa "deslocar para a direita". O número que segue à direita de ">>" indica o número de bits que se deseja deslocar. O ou os novos bits que entram pela esquerda devem valer "0".
- represente cada multiplexador 2:1 pelo seu símbolo, conforme mostrado na aula 2T.

#### Exercício 2 (Unidade funcional extratora de módulo)

Utilizando um subtrator como elemento básico (e eventualmente, outros componentes RT e/ou portas lógicas), desenhe o esquemático (RT) de uma unidade funcional (UF) que recebe um número inteiro com sinal  $\bf A$ , representado em binário (assumindo negativos representados em complemento de dois), e fornece em sua saída o módulo deste número ( $\bf S = |\bf A|$ ). Comente o problema do *overflow*, (e se necessário, redesenhe a UF solicitada), considerando as seguintes situações:

- a) A entrada e a saída desta UF (A e S, respectivamente) possuem n bits.
- b) A entrada desta UF (A) possui n bits, ao passo que a saída (S) possui n+1 bits.

## Exercício 3 (Unidade funcional "max")

Utilizando um subtrator como elemento básico (e eventualmente, outros componentes RT e/ou portas lógicas), desenhe o esquemático (RT) de uma unidade funcional (UF) que recebe dois números inteiros com sinal  $\bf A$  e  $\bf B$ , representados em binário (assumindo negativos representados em complemento de dois), e fornece em sua saída o maior dentre eles ( $\bf S = \max\{A,B\}$ ). Uma eventual situação de *overflow* no subtrator deve não pode afetar o resultado. Observação: assuma que o subtrator seja capaz de operar sobre números inteiros (positivos e negativos) representados em binários com n bits.

### Exercício 4 (Unidade funcional "min")

Utilizando um subtrator como elemento básico (e eventualmente, outros componentes RT e/ou portas lógicas), desenhe o esquemático (RT) de uma unidade funcional (UF) que recebe dois números inteiros com sinal  $\bf A$  e  $\bf B$ , representados em binário (assumindo negativos representados em complemento de dois), e fornece em sua saída o menor dentre eles ( $\bf S = \min\{A,B\}$ ). Uma eventual situação de *overflow* no subtrator deve não pode afetar o resultado. Observação: assuma que o subtrator seja capaz de operar

sobre números inteiros (positivos e negativos) representados em binários com n bits.

### Exercício 5 (Unidade funcional combinada "min/max")

Utilizando um subtrator como elemento básico (e eventualmente, outros componentes RT e/ou portas lógicas), desenhe o esquemático (RT) de uma unidade funcional (UF) que recebe dois números inteiros com sinal **A** e **B**, representados em binário (assumindo negativos representados em complemento de dois), e fornece em sua saída o menor ou o maior dentre eles, conforme um sinal de controle "C". A operação desta unidade funcional combinada está detalhada na Tab. 2. Uma eventual situação de *overflow* no subtrator deve não pode afetar o resultado. Observação: assuma que o subtrator seja capaz de operar sobre números inteiros (positivos e negativos) representados em binários com *n* bits.

Tab. 2 - Funcionamento desejado para a unidade funcional "min/max".

| op | operação          |
|----|-------------------|
| 0  | $S = max\{A,B\}$  |
| 1  | $S = \min\{A,B\}$ |

### Exercício 6 (Unidade lógico-aritmética)

Desenhe o esquemático no nível lógico de uma unidade lógico-aritmética (ULA) que recebe como entradas dois números inteiros com sinal **A** e **B**, representados em binário (assumindo negativos representados em complemento de dois), e opere sobre eles conforme detalhado na Tab. 3. Esta ULA não deve utilizar mais de um somador, além de, possivelmente, elementos de interconexão e portas lógicas. Observação: representar cada somador completo como uma caixa identificada por "SC".

Tab. 3 - Funcionamento desejado para a ULA desta questão.

| op1 | op0 | Operação  |
|-----|-----|-----------|
| 0   | 0   | S = A + B |
| 0   | 1   | S = A+1   |
| 1   | 0   | S = A-1   |
| 1   | 1   | S = A - B |

### Exercício 7 (Unidade lógico-aritmética)

Dispõe-se um somador-subtrator (+/-) e de uma unidade funcional (UF) "AND/OR" capazes de operar com dados de 8 bits (sendo que o somador/subtrator é capaz de operar com números binários inteiros positivos e negativos). A Tab. 4 detalha o comportamento destas UFs. Além dos sinais mostrados nesta tabela, somador-subtrator possui uma saída de *carry* e uma saída de *overflow*, conforme mostrado na Fig. 1.

Tab. 4 - Funcionamento da UF somador-subtrator (+/-) e da UF "AND/OR".

|   | c0      | +/-        | cl | AND/OR                                                                                                                                        |
|---|---------|------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------|
|   | 0       | X = A + B  | 0  | Y= A AND B                                                                                                                                    |
|   | 1       | X= A - B   | 1  | Y=A OR B                                                                                                                                      |
| 0 | verflow | A B +/- c0 | -  | $ \begin{array}{cccc} A & B \\ \downarrow 8 & \downarrow 8 \\ \hline AND/OR & \longleftarrow c1 \\ \downarrow 8 \\ \downarrow Y \end{array} $ |

Fig. 1– Representação das UFs a serem usadas como elementos básicos para a ULA solicitada.

Utilizando estas UFs e outros componentes (como multiplexadores, fios e eventualmente, portas lógicas), construa uma Unidade lógico-aritmética (ULA) que opere conforme detalhado na Tab. 5. Esta ULA deve possuir uma saída de *overflow* que seja coerente com os tipos de operações e os tipos de dados.

| op2 | op1 | op0 | operação                               |  |
|-----|-----|-----|----------------------------------------|--|
| 0   | 0   | 0   | R = A + B                              |  |
| 0   | 0   | 1   | R = A - B                              |  |
| 0   | 1   | 0   | R = A AND B                            |  |
| 0   | 1   | 1   | R = A OR B                             |  |
| 1   | X   | X   | Se A $\geq$ B então R = 0, senão R = 1 |  |

Tab. 5 - Funcionamento desejado para a ULA desta questão.

### Exercício 8 (Uso de somadores)

Desenhe o esquemático de uma unidade funcional que calcula S = A + B + C + D, onde os operandos de entrada A, B, C e D são números inteiros sem sinal, representados em binário com 8 bits. Adicionalmente, esta unidade funcional deve:

- realizar o cálculo especificado em um único passo
- proporcionar máxima precisão (i.e., evitando ocorrência de overflow)
- tirar proveito do paralelismo existente no cálculo especificado.
- possuir o menor atraso possível, uma vez satisfeitos os requisitos anteriores.

Dica: usar tantos somadores quanto necessário.

#### Exercício 9 (Temporização em registradores de carga paralela)

Suponha que o registrador de carga paralela da Fig. 2 possua as características temporais indicadas na Tab. 6. Nesta situação, complete a forma de onda para o sinal Q, na Fig. 3.

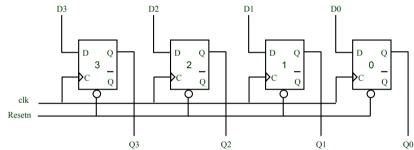



Fig. 2 – Registrador com carga paralela.

Tab. 6 - Características temporais do registrador com carga paralela da Fig. 2.

| Característica                       | valor |
|--------------------------------------|-------|
| Tempo de setup ( $\mathbf{t}_{SU}$ ) | 2 ns  |
| Tempo de hold (th)                   | 2 ns  |
| Tempo de carga (tco)                 | 5 ns  |

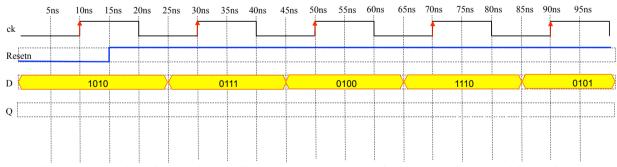



Fig. 3 – Formas de onda para sinais aplicados nas entradas do registrador com carga paralela da Fig. 2 e consequente forma de onda do sinal Q (a completar).

### Exercício 10 (Temporização em registradores de carga paralela)

Suponha que o registrador de carga paralela da Fig. 4 possua as características temporais indicadas na Tab. 7. Nesta situação, complete a forma de onda para o sinal Q, na Fig. 5.

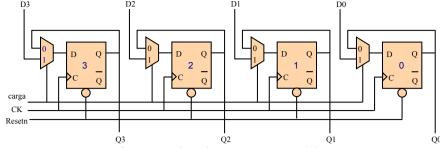



Fig. 4 – Registrador com carga paralela.

Tab. 7 - Características temporais do registrador com carga paralela da Fig. 4.

| Característica                                | valor |
|-----------------------------------------------|-------|
| Tempo de setup ( $\mathbf{t}_{\mathrm{SU}}$ ) | 2 ns  |
| Tempo de hold (th)                            | 2 ns  |
| Tempo de carga ( <b>tco</b> )                 | 5 ns  |

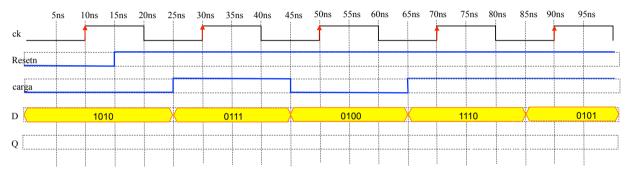



Fig. 5 – Formas de onda para sinais aplicados nas entradas do registrador com carga paralela da Fig. 4 e consequente forma de onda do sinal Q (a completar).

#### Exercício 11

A Tab. 8 mostra as características temporais dos componentes do circuito digital mostrado na Fig. 6.

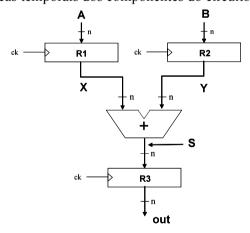



Fig.6 - Circuito digital: um somador com registradores de entrada e saída.

Tab. 8 - Características temporais dos componentes do circuito digital da Figura anterior.

| Característica                                      | valor |
|-----------------------------------------------------|-------|
| Tempo de setup (t <sub>SU</sub> ) para R1, R2 ou R3 | 1 ns  |
| Tempo de hold (th) para R1, R2 ou R3                | 1 ns  |
| Tempo de carga (tco) para R1, R2 ou R3              | 2 ns  |
| Atraso crítico do somador (tds)                     | 2 ns  |

- a) Complete as formas de onda da Fig. 7, de modo a minimizar o período do relógio (ck). Suponha que os dados nas entradas dos registradores R1 e R2 (i.e., sinais A e B) são aplicados ao mesmo tempo.
- b) Desenhe a forma de onda para o relógio.

# c) Qual é o período mínimo do relógio, em ns?

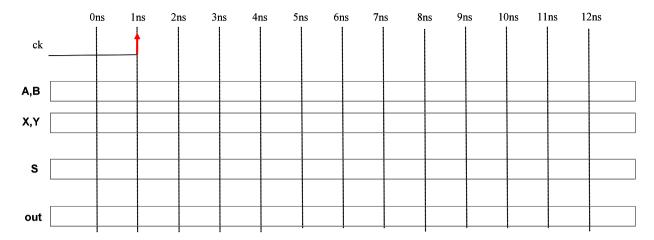



Fig. 7 – Formas de onda nas entradas e nos sinais internos do circuito da Fig. 6, para período mínimo do relógio e forma de onda do relógio (a completar).