
An Adaptive Fault-Tolerant Component Model  
 
 

Joni Fraga1, Frank Siqueira2, Fábio Favarim1 
1Department of Automation and Systems (DAS) and 2Department of Computer Science (INE) 

Federal University of Santa Catarina (UFSC), Brazil 
fraga@das.ufsc.br, frank@inf.ufsc.br, fabio@das.ufsc.br 

 
 

Abstract 
 

This paper presents a component model for building 
distributed applications with fault-tolerance 
requirements. The AFT-CCM model selects the 
configuration of replicated services during execution 
time based on QoS requirements specified by the user. 
The configuration is managed using a set of components 
that deal with the non-functional aspects of the 
application. The characteristics of this model and the 
results obtained with its implementation are described 
along this paper. 

1. Introduction 

 Current distributed software systems operate in highly 
dynamic and large-scale environments such as the 
Internet. Distributed applications are difficult to build and 
maintain, taking into account the complexity and the 
characteristics of these environments. This difficulty is 
increased further when the application has quality of 
service (QoS) requirements regarding timeliness and 
dependability.  
 The component-based software development 
approach, which is based on composing applications from 
pre-existing self-contained components with well-defined 
interfaces, aims to simplify the implementation and the 
maintenance of complex applications, such as distributed 
systems. By composing applications from pre-existing 
components, the cost and the duration of the software 
development process can be reduced sharply [1]. In 
addition, the use of replaceable software components that 
provide services through well-defined interfaces allow the 
developer to handle components as independent 
configuration units, bringing more flexibility to the 
implementation and maintenance process. The 
component-based software development approach can 
also been employed as a base for creating automated 
techniques for software production. 
 In the last few years, the concept of software 
components is being integrated to existing middleware 

technologies. Examples of these efforts are CCM 
(CORBA Component Model) [2], which was defined by 
CORBA 3.0 specification [3];  EJB (Enterprise 
JavaBeans) developed by Sun Microsystems, which is 
part of Java 2 Enterprise Edition [4]; and .NET, proposed 
by Microsoft, which is an evolution of the COM 
(Component Object Model) platform [5]. These 
middleware technologies provide limited support for 
fault-tolerance in the form of mechanisms for data 
persistence. 
 In this paper, dynamic configuration of components is 
employed to provide adaptive fault-tolerance, which 
allows a component-based distributed application to 
behave as expected despite possible component and 
machine faults. Different kinds of faults may occur as a 
consequence of the dynamic changes that occur in the 
system environment, and the adaptation of fault-tolerance 
mechanisms according to these variations aims to 
maintain the level of dependability and availability of the 
system. Different levels of reliability can be provided by 
using different replication techniques and an appropriate 
number of components replicas, allocating only the 
necessary resources in order to obtain the desired 
behavior from the application.  
 As a result, we have developed the AFT-CCM model 
(Adaptive Fault-Tolerance on the CORBA Component 
Model), which implements a model that employs adaptive 
fault-tolerance in a way completely transparent for the 
application. The AFT-CCM is formed by software 
components that are responsible for implementing fault-
tolerance techniques, defining and controlling the 
behavior of replicated services. This paper presents a 
proposal to integrate support for QoS requirements to the 
component model. The QoS requirements specified by the 
user guide the definition of the replicated services 
employed in order to increase the application 
dependability. Different levels of QoS can be specified, 
aiming to provide different fault-tolerance requirements. 
The AFT-CCM has fault detection mechanisms that 
activate the adaptation, triggering changes in replication 
techniques and in the application configuration, aiming to 



maintain user-defined QoS requirements. This process is 
accomplished without compromising the performance and 
the stability of the application.   
 This paper is organized as follows: section 2 presents 
an overview of the component-based software 
development approach and describes the CORBA 
Component Model;  section 3 presents the AFT-CCM 
model; in section 4 is presented the prototype 
implementation of AFT-CCM and the obtained results; 
section 5 analyses related proposals found in the 
literature; and section 6 presents our conclusions. 

2. Software Components 

Component-based software development consists in 
composing applications from pre-existent software 
entities, called components. This means that the software 
development process is centered on software reuse: 
building applications from components that have been 
tested during their development phase and have proven 
efficiency in other applications, implies in maintenance 
cost reduction. System maintenance, which is possible 
through component exchange, is facilitated because it 
targets only the necessary components.  
 Every component-based implementation must adopt a 
component model. This model defines the form in which 
the component interface must be published and the way to 
specify the methods and events that make its services 
available to the clients; interfaces define the access points 
to services offered by components, separating the 
specification from the implementation itself, and 
protecting users from implementation details. The 
component model must also provide guidelines for 
component creation and implementation [6].  
 Considering the existing middleware technologies 
available, the CORBA Component Model (CCM) is 
among the most promising ones. Since CCM is totally 
based on CORBA, it provides language and operating 
system independence, features that are not found in other 
component models, which are usually language (EJB) or 
platform  dependant (.NET). CCM, described in the next 
section, was adopted in this work because of the 
comprehensive collection of services provided by 
CORBA [7] and due to the flexibility presented by its 
component model compared to other available 
technologies. 

2.1 The CORBA Component Model 

The CORBA Component Model (CCM) is an 
extension to the CORBA distributed object model. The 
component modeling, programming, packaging, 
deployment and execution stages described in the CCM 
specification organize objects in components, 

incorporating the characteristics regarded to component-
based software development to the application 
development process defined by CORBA. Component 
interfaces are specified using CORBA IDL (Interface 
Description Language), which since version 3.0 was 
extended to allow component definition.  
 CORBA components have attributes and 
communication ports. Attributes are properties employed 
to configure component behavior. Communication ports 
are connecting points between components, through 
which they interact. Figure 1 illustrates the four kinds of 
ports defined by CCM specification [2]: facets, 
receptacles, event sources and event sinks1. 

Just like CORBA objects, components instances are 
characterized by interfaces and a reference. The 
component reference allows clients to browse through the 
ports of a component instance and connect these ports to 
their compatible ports – i.e. connect facets to receptacles 
with the same interface types, and connect source to sink 
ports with the same event type. Compatible ports can be 
connected at deployment time (static configuration) or 
during execution time, characterizing dynamic 
configuration. 

CCM defines the container, a standard execution 
support for components, which allows transparent access 
to a set of common CORBA services for implementing 
non-functional aspects of an application. These CORBA 
services are composed by transaction, persistence, life 
cycle, security and event notification services. In other 
words, the container separates functional and non-
functional aspects of the component. This way, 
application development is simplified, since the developer 
concentrates efforts on the functional part of the 
application.  
 Some programming facilities are defined in CCM to 
allow the description of the interaction between the 
functional and non-functional parts of applications. CCM 
                                                           
1 Facets represent IDL interfaces through which a component receives 

requests to its services; receptacles are the connection points through 
which services provided by other components can be requested; and 
event sources and event sinks are ports that allow the exchange of 
events between components. 
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Figure 1. A CORBA Component 



provides a Component Implementation Framework (CIF), 
which uses the Component Implementation Definition 
Language (CIDL) – a declarative language used to 
describe the structure of component implementations. 
From the information obtained from the CIDL and IDL 
descriptions of the component, the CIDL compiler 
generates its implementation skeleton. 
 Components are packaged to be distributed and 
deployed. A package contains one or more component 
implementations and descriptors. Since one component 
may have implementations targeted at different platforms, 
one package may contain more than one implementation. 
The descriptors are written in XML [8] and specify the 
binary files necessary to deploy components in different 
platforms, as well as the CORBA services used by 
components. CCM also establishes rules to deploy a 
component-based application, enabling the automation of 
the deployment process and contributing to increase 
component reuse. 

3. Description of the AFT-CCM Model 

According to Kim and Lawrance [9], adaptive fault-
tolerance is an approach to meet the dynamically and 
widely changing fault tolerance requirements by 
efficiently and adaptively utilizing a limited and 
dynamically changing amount of available redundant 
processing resources. Large-scale distributed systems, 
such as the ones built with resources available through the 
Internet, can benefit from adaptive policies. Adaptive 
fault-tolerant mechanisms use adaptive policies for 
managing redundancies, in order to maintain efficiency 
despite frequent changes in the computing environment.  
  An adaptive program usually is seen as one that can 
have its configuration modified due to changes in its 
system environment. Changes in configuration based on 
adaptive fault-tolerance approaches can be triggered, for 
example, by changes in the adopted communication 
patterns, by the frequency of partial failures in the system 
or by new necessities of the application [10]. The adaptive 
fault-tolerance can involve the exchange of algorithms 
and policies during execution time to adapt the 
application configuration to changes in the system 
environment [11]. 
  The proposed model employs adaptive fault-tolerance 
using the flexibility that arrives from the adoption of a 
component-based technology. In this project we have 
chosen to use the CORBA Component Model [2] due to 
its rich communication semantics and to its openness, 
which allows it to be used in an heterogeneous 
environment, in which different programming languages, 
middleware and operating systems may coexist. 

 The AFT-CCM model (Adaptive Fault-Tolerance on 
the CORBA Component Model) allows the application 
programmer to specify quality of service (QoS) 
requirements, defining desired levels of dependability of 
the service. The proposed model introduces logical 
entities – i.e. components – that provide the non-
functional code that monitors the fault occurrences in the 
application and adapts its configuration in order to 
maintain the desired level of QoS specified by the user. 
Reached configurations employ replication techniques 
aiming to fulfill such requirements.  
 Figure 2 illustrates the different components that form 
the execution-time support of the AFT-CCM model in a 
possible configuration in which components are disposed 
on four hosts of a distributed system. Essentially, these 
non-functional components configure and monitor 
application components, replicating components and 
using a replication technique in order to achieve the 
desired levels of reliability. In the example shown in 
Figure 2, a component identified as the primary server is 
located on host 2; its replica  is placed on host 3 (the 
backup server). In our model, the coordination protocol of 
the replication technique used is implemented by a 
component: the replication coordinator (figure 2). In this 
way, when the passive replication technique 2  is used, 
replicas states are synchronized by the replication 
coordinator using mechanisms of state transfer. The 
replication technique can be easily changed at run-time by 
replacing this component with another coordinator that 
implements a different replication technique. 
  The client gets access to the services of the component 
through a connector, which hides from the client eventual 
changes in the configuration of the application. For 
example, the exchange of replicas, where the backup 
replica would replace the primary, does not affect the 
behavior of the client. If the primary replica fails, the 
connector re-directs calls for the backup replica of the 
server.  
 For each component with fault-tolerant requirements, 
an adaptive fault-tolerance manager (AFT Manager) is 
created. The AFT manager defines the current 
configuration, based on the QoS requirements demanded 
for the application and on the frequency of partial failures. 
A reconfiguration of the application is started when 
monitoring data collected by the AFT manager shows that 
the current configuration is not appropriate for 
maintaining the QoS requirements of the application – 
i.e., it may be in lack or in excess of resources (replicas) 
                                                           
2  In the passive replication technique [12], after executing a client 

request, the primary server must send a copy of its state to 
synchronize backup replicas.  



or using a replication technique weaker or stronger than 
necessary. 

Faults are monitored using the fault detection agents 
(FD agents, in Figure 2). Each component replica and 
replication coordinator is bound to a FD agent, which is 
responsible for sending monitoring data to the AFT 
manager. By using the FD agents, two levels of faults can 
be detected: host faults – in case the FD agent stops 
responding – and component faults – i.e., when a 
component stops answering calls from the FD agent.  
  The AFT-CCM model assumes that hosts and 
components are subject to crash faults and that the 
communication between components is reliable. This last 
premise is based on the fact that the CORBA remote 
method invocation mechanism provides at-most-once 
semantics and benefits from the error and flow control 
mechanisms supplied by the IIOP/TCP/IP stack.   
  In this context, the CORBA exception support is 
employed to detect component and host crashes.  For 
detecting host faults, the FD agent receives periodically 
“are you alive?” messages from the AFT manager through 
CORBA method calls. Host faults are assumed when the 
call to the FD agent results in an exception. In the absence 
of faults, this call returns monitoring information to the 
AFT manager.  
 For detecting component faults, the FD agent 
periodically calls the  _non_existent method 
provided by class CORBA::Object, which is inherited by 

all components. Component faults are assumed when the 
call to the component results in an exception, being 
reported periodically to the AFT manager by the FD 
agent.   
 Both component and host crash faults are handled by 
the AFT manager, which tries to adapt the configuration 
of the application, restoring faulty replicas or changing 
the replication technique, taking into account the QoS 
requirements specified by the user.  
 The QoS manager allows the user to specify his QoS 
requirements. Through the QoS manager different levels 
of QoS related to the reliability of the application can be 
specified. As shown by Figure 3, these requirements can 
be seen as states, and the occurrence or absence of faults 
can trigger state transitions. The requirements specified 
by the user are passed on to the AFT manager, which 
interprets them and defines a proper configuration for the 
application – i.e., the number of replicas and the 
replication technique that will be used. The AFT manager 
tries to keep the requested level of QoS with the resources 
currently available. The AFT manager changes the 
configuration of the system when it detects that the 
requirements are not being fulfilled. QoS requirements 
can be changed at any time through the QoS manager. 
Any change in the requirements is informed to the AFT 
manager, which may need to reconfigure the application 
in order to enforce the new QoS requirements. The QoS 
manager also informs to the user the current configuration 
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of its application – i.e., the number of replicas, their 
location, the replication technique being used by AFT-
CCM and statistics about the frequency of faults in the 
application.   

4. AFT-CCM Implementation 

As presented in the previous section, the AFT-CCM 
model is composed of a set of software components that 
together aim to provide fault tolerant support for 
application services in distributed environments. These 
components were implemented in a prototype using 
OpenCCM version 0.2 [13], which is a partial 
implementation of the CCM specification. OpenCCM was 
chosen because it was the first open source 
implementation available of CCM. This version of 
OpenCCM runs on three different ORBs. In this project 
we have adopted ORBacus version 4.0.5 [14].  

4.1. Implementation Issues 

Several issues had to be sorted out in order to build 
the prototype of the AFT-CCM model. These issues and 
the adopted solutions are described along this section. 
 In order to receive invocations for servers with 
different interfaces, the connector must be generic, i.e. 
independent of IDL types accepted by the communication 
ports of the server. However, the establishment of a 
connection between components implies that the 
interconnecting ports must have the same type. CORBA’s 
dynamic skeleton interface (DSI) was used to implement 
the connector, in order to make it generic. This dynamic 
invocation is represented in Figure 2 with a dashed line. 
When a invocation arrives at the connector, it simply 
forwards the invocation to the primary replication 
coordinator through a connection with its fwd facet. 
 Replication coordinators implement replication 
techniques. Three different replication coordinators are 
provided by this prototype: a void coordinator, which 
does not implement any replication technique, a second 

that implements the passive replication technique and a 
third coordinator that implements the semi-active 
technique (semi-active replication is described in [15]). 
Active replication was not implemented, because it 
requires group communication mechanisms that are not 
provided by ORBacus.   
 Every replication coordinator has two facets: sync 
and fwd. The sync facet is used by passive and semi-
active coordinators to synchronize state between the 
primary replica and its replicas. Moreover, the passive 
coordinator uses this facet to synchronize the state of 
replicas when the state of the primary component changes.  
The fwd facet is implemented by all replication 
coordinators to receive client invocations from the 
connector.  Beyond this use, this facet is also used by the 
leader coordinator in semi-active replication, to forward 
the invocations received from clients to the coordinators 
connected to the followers. The fwd facet has only a 
method responsible for calling the method invoked by the 
client on the replicated component. Since the coordinator 
does not know previously to which IDL interface 
(communication port) it is associated, CORBA’s interface 
repository and dynamic invocation interface (DII) are 
used to discover at execution time how to build and issue 
a method invocation on a component.  
 Components must implement the state interface 
(Figure 2) in order to provide a standard way to update 
the state of their replicas. This interface provides 
operations to recover (get_state) and update state 
(set_state). These operations are identical to the 
operations for accessing state defined by the FT-CORBA 
specification [16].
 In order to monitor component replicas, the AFT 
manager calls method is_alive from the alive facet 
of the FD agent in time intervals defined by the QoS 
Manager. As a result of this call, the AFT manager 
receives information about the situation of the monitored 
components. 
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 For deploying components, the AFT-CCM uses the 
deployment APIs specified by CCM and provided by 
OpenCCM. However, some APIs are not implemented in 
version 0.2 of OpenCCM, such as the API for 
configuration of attributes in execution time, making it 
necessary to implement such functionality.  
 The AFT manager maintains a data structure with the 
global vision of all the components deployed in the 
system. This structure contains references, the location, 
the replication technique used by each component and 
other additional information. This data allows the AFT 
manager to accomplish the necessary reconfigurations in 
the system, for example, to establish connection between 
component’s ports or to remove components from a host. 
The AFT manager also uses this data to supply 
information about system execution to the QoS Manager, 
such as the replication technique that is being used, the 
location of replicated components and the failures 
suffered by the components. The failure of the AFT 
manager and the consequent loss of this information 
would compromise the recovery of faults.   
 To prevent loss of the state information kept by the 
AFT manager, this data is stored on a persistent storage 
device. Thus, in case this component presents failure and 
has to be deployed on another host, its state will be 
recovered. This becomes necessary because OpenCCM 
0.2 does not implement containers, which are responsible 
for managing the persistent state of components. If the 
container was available, the AFT manager would have 
been implemented as an entity component, which has 
persistent state that can be managed transparently by the 
container. The remaining components that compose AFT-
CCM would have been session components, because 
losing the state of these components does not compromise 
the consistency of the system. 

Finally, the QoS Manager was implemented with a 
graphical interface that allows the user to specify QoS 
requirements (Figure 4). The QoS manager receives status 
information about the system from the AFT manager 
through the status facet. This information is shown to 
the user through the graphical interface of the QoS 
manager. When the QoS Manager notices that it is not 
receiving information from the AFT manager, it reinstalls 
the AFT manager in another host.  

4.2. Obtained Results  

In order to verify the performance of the prototype 
implementation of the AFT-CCM model, some tests were 
executed on a testbed composed by Pentium IV 1.6Ghz 
computers with 256Mb of memory, running Linux 
Mandrake 9.0 operating system and Java 1.4, linked by an 
Ethernet 100Mbps local network.  
 The first test3 measured the response time of calls to 
the replicated component in different configurations, that 
is, with different replication techniques. The following 
configurations were mounted: one without the addition of 
the AFT-CCM, with a coordinator who does not 
implement any replication technique, a second with a 
passive replication coordinator, and a third configuration 
with a semi-active replication coordinator, using two 
replicas in the last two cases. The tests were run on a 
component with only one facet with an empty method. In 
this way, the influence of the processing time of the 
method in the results was minimized, evaluating only the 
overload generated by the addition of AFT-CCM 
components. 
 It is possible to observe on the graph presented in 
Figure 5 that the AFT-CCM model without replication 
increases the response time in about 1.1ms in relation to 
the direct call to the component. This difference reaches 
                                                           
3 These results were obtained from the average of 1000 executions. 
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1.8ms using the passive replication technique and 
increases to 2.5ms when the semi-active replication 
technique is used.  The rise in response time was 
expected and can be considered acceptable, taking into 
account that AFT-CCM includes a set of components 
responsible for providing fault-tolerance requirements and 
to do so they have to intercept calls and coordinate 
replicas.   
 The second experiment 4  verified the average time 
spent to create a component replica in a new host together 
with its replication coordinator and its FD agent, and the 
average time to exchange the replication technique 
(exchange replication coordinators).  It was observed that 
the average time to deploy a new replica was of 330ms, 
while the time for alternating between passive and semi-
active replication was of 260ms. 

5. Related Work 

Although the first works in the area of software 
components have appeared already in the 60s [1], the 
incorporation of this programming style to middleware is 
recent. Implementations of CCM are only beginning to 
appear. Additionally, despite the advantages of using 
software components to develop distributed applications, 
applications with requirements related to timeliness, fault-
tolerance, load balancing, among others, do not find 
support for these requirements in the current component 
models. This is because the execution environment – the 
container – does not offer support to QoS requirements.  
The work presented in this paper is an effort towards 
using CCM to structure applications with redundancies 
managed by the execution support.   
 Some proposals that aim to provide support for QoS 
requirements of applications, in some cases using adaptive 
fault-tolerance, are described in the literature. QuO 
(Quality Objects) [17] is an example of architecture that 
gives support for the development of distributed 
applications based on CORBA with QoS requirements. 
QuO provides ways to specify, monitor and control the 
QoS requirements of applications, as well as to adapt its 
behavior due to changes in the environment. Applications 
developed with Quo specify their QoS requirements at 
application level through QoS contracts.   
 The AQuA architecture (Adaptive Quality of Service 
Availability) [18] aims to supply adaptive fault-tolerance 
for distributed applications.  AQuA allows applications 
developers to specify the desired levels of dependability, 
which are reached through the configuration of the system 
in accordance with the availability of resources and the 
faults occurred. AQuA uses QuO to specify QoS 
requirements at application level, and the Proteus 
                                                           
4 These results were obtained from the average of 100 executions. 

dependability manager [19] to configure the system in 
response to faults and availability requirements. Ensemble 
[20] is also used by AQuA in order to provide group 
communication services.   
 Despite having mechanisms to specify QoS 
requirements with equivalent functionality, QuO and 
AQuA require QoS requirements to be defined at 
compilation time, while AFT-CCM allows QoS 
requirements to be modified at execution time, taking 
advantage of the flexibility provided by the use of 
software components.   

In [21] is presented the AFTM (Adaptive Fault-
Tolerant Manager), which is an adaptive fault-tolerant 
middleware that uses a CORBA-compliant object request 
broker. The AFTM acts as an interface between the 
application and the underlying software layers that 
transparently monitors application behavior as well as 
resource availability, and adaptively reconfigures the 
system resources. AFTM provides several execution 
modes, from which are selected the most suitable fault 
handling and resource allocation modes of the system 
based on the contents of its fault history database.  

The AFTM provides an adaptive fault-tolerance 
support for applications based on CORBA objects, while 
AFT-CCM is aimed at applications based on CORBA 
components (CCM).  AFTM employs fixed fault-
tolerance strategies, while in our proposed model 
strategies can be defined according to the application 
requirements. 

Chamaleon [22] is an adaptive infrastructure that 
provides different levels of availability through an 
architecture composed of ARMORs – Adaptive, 
Reconfigurable, and Mobile Objects for Reliability. 
Chamaleon can select different combinations of ARMORs 
in order to provide different availability levels that can be 
introduced incrementally in the system. Although it uses 
composition mechanisms similar to the ones that exist in 
components models, Chamaleon does not adopt a 
standard components model such as EJB, .NET or CCM, 
which is used in this work.   

Some proposals employ dynamic configuration 
mechanisms in order to tolerate partial failures in a 
distributed system. Some of these experiences also use the 
concept of connectors. In [23], a connector is a 
configuration support that selects from a set of server 
components the one that has the most adequate signature 
to execute an invocation. If an exception occurs during 
the execution, a search for another server component is 
immediately initiated. The idea of connector presented in 
our approach is more similar to that introduced in [24]. 
The connector described in this work concentrates all the 
non-functional aspects of a replication. In the AFT-CCM 
model, connectors assume a much simpler role. They are 



call forwarding elements, which only dispatch calls from 
clients to the replicated components. Non-functional 
aspects are treated by the replication coordinators. Our 
option for a simple connector was based on the fact that 
CCM already has containers, which are responsible for 
many of the non-functional aspects of applications. 

In [25] is presented an approach for CORBA 
components replication. This approach uses interception 
objects that are responsible for capturing the invocations 
made to the component in order to trigger necessary 
actions for replication management. These interception 
objects have the same interface of the replicated 
component. This implies that for every new component 
that you want to replicate, it will be necessary to 
implement a new interception object with the same 
interface of the component.  The AFT-CCM model uses 
a generic connector that is independent of the replicated 
component interface, so that it does not have to be 
modified to be used in different applications. 

6. Conclusions 

This paper presented the AFT-CCM model, which offers 
flexible mechanisms for building software based on the 
CORBA Component Model with fault-tolerance 
requirements. The AFT-CCM model adapts the 
configuration of applications taking into account the QoS 
requirements associated with components and the faults 
that occur in the system.   
 In order to provide support for QoS requirements, the 
AFT-CCM was built from a set of non-functional software 
components, that combined provide fault-tolerance 
requirements to component-based applications. Although 
adaptive techniques have been employed in several other 
works to provide fault-tolerance requirements, these 
works do not take advantage of the flexibility provided by 
the use of software components.   
 A prototype implementation of the AFT-CCM model 
has been built. Performance measurements have shown 
that the model adds a small overhead to the application, 
with the great advantage of providing dependability. 
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