
An Adaptive Fault-Tolerant Component Model

Joni Fraga1, Frank Siqueira2, Fábio Favarim1
1Department of Automation and Systems (DAS) and 2Department of Computer Science (INE)

Federal University of Santa Catarina (UFSC), Brazil
fraga@das.ufsc.br, frank@inf.ufsc.br, fabio@das.ufsc.br

Abstract

This paper presents a component model for building
distributed applications with fault-tolerance
requirements. The AFT-CCM model selects the
configuration of replicated services during execution
time based on QoS requirements specified by the user.
The configuration is managed using a set of components
that deal with the non-functional aspects of the
application. The characteristics of this model and the
results obtained with its implementation are described
along this paper.

1. Introduction

 Current distributed software systems operate in highly
dynamic and large-scale environments such as the
Internet. Distributed applications are difficult to build and
maintain, taking into account the complexity and the
characteristics of these environments. This difficulty is
increased further when the application has quality of
service (QoS) requirements regarding timeliness and
dependability.
 The component-based software development
approach, which is based on composing applications from
pre-existing self-contained components with well-defined
interfaces, aims to simplify the implementation and the
maintenance of complex applications, such as distributed
systems. By composing applications from pre-existing
components, the cost and the duration of the software
development process can be reduced sharply [1]. In
addition, the use of replaceable software components that
provide services through well-defined interfaces allow the
developer to handle components as independent
configuration units, bringing more flexibility to the
implementation and maintenance process. The
component-based software development approach can
also been employed as a base for creating automated
techniques for software production.
 In the last few years, the concept of software
components is being integrated to existing middleware

technologies. Examples of these efforts are CCM
(CORBA Component Model) [2], which was defined by
CORBA 3.0 specification [3]; EJB (Enterprise
JavaBeans) developed by Sun Microsystems, which is
part of Java 2 Enterprise Edition [4]; and .NET, proposed
by Microsoft, which is an evolution of the COM
(Component Object Model) platform [5]. These
middleware technologies provide limited support for
fault-tolerance in the form of mechanisms for data
persistence.
 In this paper, dynamic configuration of components is
employed to provide adaptive fault-tolerance, which
allows a component-based distributed application to
behave as expected despite possible component and
machine faults. Different kinds of faults may occur as a
consequence of the dynamic changes that occur in the
system environment, and the adaptation of fault-tolerance
mechanisms according to these variations aims to
maintain the level of dependability and availability of the
system. Different levels of reliability can be provided by
using different replication techniques and an appropriate
number of components replicas, allocating only the
necessary resources in order to obtain the desired
behavior from the application.
 As a result, we have developed the AFT-CCM model
(Adaptive Fault-Tolerance on the CORBA Component
Model), which implements a model that employs adaptive
fault-tolerance in a way completely transparent for the
application. The AFT-CCM is formed by software
components that are responsible for implementing fault-
tolerance techniques, defining and controlling the
behavior of replicated services. This paper presents a
proposal to integrate support for QoS requirements to the
component model. The QoS requirements specified by the
user guide the definition of the replicated services
employed in order to increase the application
dependability. Different levels of QoS can be specified,
aiming to provide different fault-tolerance requirements.
The AFT-CCM has fault detection mechanisms that
activate the adaptation, triggering changes in replication
techniques and in the application configuration, aiming to

maintain user-defined QoS requirements. This process is
accomplished without compromising the performance and
the stability of the application.
 This paper is organized as follows: section 2 presents
an overview of the component-based software
development approach and describes the CORBA
Component Model; section 3 presents the AFT-CCM
model; in section 4 is presented the prototype
implementation of AFT-CCM and the obtained results;
section 5 analyses related proposals found in the
literature; and section 6 presents our conclusions.

2. Software Components

Component-based software development consists in
composing applications from pre-existent software
entities, called components. This means that the software
development process is centered on software reuse:
building applications from components that have been
tested during their development phase and have proven
efficiency in other applications, implies in maintenance
cost reduction. System maintenance, which is possible
through component exchange, is facilitated because it
targets only the necessary components.
 Every component-based implementation must adopt a
component model. This model defines the form in which
the component interface must be published and the way to
specify the methods and events that make its services
available to the clients; interfaces define the access points
to services offered by components, separating the
specification from the implementation itself, and
protecting users from implementation details. The
component model must also provide guidelines for
component creation and implementation [6].
 Considering the existing middleware technologies
available, the CORBA Component Model (CCM) is
among the most promising ones. Since CCM is totally
based on CORBA, it provides language and operating
system independence, features that are not found in other
component models, which are usually language (EJB) or
platform dependant (.NET). CCM, described in the next
section, was adopted in this work because of the
comprehensive collection of services provided by
CORBA [7] and due to the flexibility presented by its
component model compared to other available
technologies.

2.1 The CORBA Component Model

The CORBA Component Model (CCM) is an
extension to the CORBA distributed object model. The
component modeling, programming, packaging,
deployment and execution stages described in the CCM
specification organize objects in components,

incorporating the characteristics regarded to component-
based software development to the application
development process defined by CORBA. Component
interfaces are specified using CORBA IDL (Interface
Description Language), which since version 3.0 was
extended to allow component definition.
 CORBA components have attributes and
communication ports. Attributes are properties employed
to configure component behavior. Communication ports
are connecting points between components, through
which they interact. Figure 1 illustrates the four kinds of
ports defined by CCM specification [2]: facets,
receptacles, event sources and event sinks1.

Just like CORBA objects, components instances are
characterized by interfaces and a reference. The
component reference allows clients to browse through the
ports of a component instance and connect these ports to
their compatible ports – i.e. connect facets to receptacles
with the same interface types, and connect source to sink
ports with the same event type. Compatible ports can be
connected at deployment time (static configuration) or
during execution time, characterizing dynamic
configuration.

CCM defines the container, a standard execution
support for components, which allows transparent access
to a set of common CORBA services for implementing
non-functional aspects of an application. These CORBA
services are composed by transaction, persistence, life
cycle, security and event notification services. In other
words, the container separates functional and non-
functional aspects of the component. This way,
application development is simplified, since the developer
concentrates efforts on the functional part of the
application.
 Some programming facilities are defined in CCM to
allow the description of the interaction between the
functional and non-functional parts of applications. CCM

1 Facets represent IDL interfaces through which a component receives

requests to its services; receptacles are the connection points through
which services provided by other components can be requested; and
event sources and event sinks are ports that allow the exchange of
events between components.

event source

receptacle

event sink

facet

component reference

attributes

Figure 1. A CORBA Component

provides a Component Implementation Framework (CIF),
which uses the Component Implementation Definition
Language (CIDL) – a declarative language used to
describe the structure of component implementations.
From the information obtained from the CIDL and IDL
descriptions of the component, the CIDL compiler
generates its implementation skeleton.
 Components are packaged to be distributed and
deployed. A package contains one or more component
implementations and descriptors. Since one component
may have implementations targeted at different platforms,
one package may contain more than one implementation.
The descriptors are written in XML [8] and specify the
binary files necessary to deploy components in different
platforms, as well as the CORBA services used by
components. CCM also establishes rules to deploy a
component-based application, enabling the automation of
the deployment process and contributing to increase
component reuse.

3. Description of the AFT-CCM Model

According to Kim and Lawrance [9], adaptive fault-
tolerance is an approach to meet the dynamically and
widely changing fault tolerance requirements by
efficiently and adaptively utilizing a limited and
dynamically changing amount of available redundant
processing resources. Large-scale distributed systems,
such as the ones built with resources available through the
Internet, can benefit from adaptive policies. Adaptive
fault-tolerant mechanisms use adaptive policies for
managing redundancies, in order to maintain efficiency
despite frequent changes in the computing environment.
 An adaptive program usually is seen as one that can
have its configuration modified due to changes in its
system environment. Changes in configuration based on
adaptive fault-tolerance approaches can be triggered, for
example, by changes in the adopted communication
patterns, by the frequency of partial failures in the system
or by new necessities of the application [10]. The adaptive
fault-tolerance can involve the exchange of algorithms
and policies during execution time to adapt the
application configuration to changes in the system
environment [11].
 The proposed model employs adaptive fault-tolerance
using the flexibility that arrives from the adoption of a
component-based technology. In this project we have
chosen to use the CORBA Component Model [2] due to
its rich communication semantics and to its openness,
which allows it to be used in an heterogeneous
environment, in which different programming languages,
middleware and operating systems may coexist.

 The AFT-CCM model (Adaptive Fault-Tolerance on
the CORBA Component Model) allows the application
programmer to specify quality of service (QoS)
requirements, defining desired levels of dependability of
the service. The proposed model introduces logical
entities – i.e. components – that provide the non-
functional code that monitors the fault occurrences in the
application and adapts its configuration in order to
maintain the desired level of QoS specified by the user.
Reached configurations employ replication techniques
aiming to fulfill such requirements.
 Figure 2 illustrates the different components that form
the execution-time support of the AFT-CCM model in a
possible configuration in which components are disposed
on four hosts of a distributed system. Essentially, these
non-functional components configure and monitor
application components, replicating components and
using a replication technique in order to achieve the
desired levels of reliability. In the example shown in
Figure 2, a component identified as the primary server is
located on host 2; its replica is placed on host 3 (the
backup server). In our model, the coordination protocol of
the replication technique used is implemented by a
component: the replication coordinator (figure 2). In this
way, when the passive replication technique 2 is used,
replicas states are synchronized by the replication
coordinator using mechanisms of state transfer. The
replication technique can be easily changed at run-time by
replacing this component with another coordinator that
implements a different replication technique.
 The client gets access to the services of the component
through a connector, which hides from the client eventual
changes in the configuration of the application. For
example, the exchange of replicas, where the backup
replica would replace the primary, does not affect the
behavior of the client. If the primary replica fails, the
connector re-directs calls for the backup replica of the
server.
 For each component with fault-tolerant requirements,
an adaptive fault-tolerance manager (AFT Manager) is
created. The AFT manager defines the current
configuration, based on the QoS requirements demanded
for the application and on the frequency of partial failures.
A reconfiguration of the application is started when
monitoring data collected by the AFT manager shows that
the current configuration is not appropriate for
maintaining the QoS requirements of the application –
i.e., it may be in lack or in excess of resources (replicas)

2 In the passive replication technique [12], after executing a client

request, the primary server must send a copy of its state to
synchronize backup replicas.

or using a replication technique weaker or stronger than
necessary.

Faults are monitored using the fault detection agents
(FD agents, in Figure 2). Each component replica and
replication coordinator is bound to a FD agent, which is
responsible for sending monitoring data to the AFT
manager. By using the FD agents, two levels of faults can
be detected: host faults – in case the FD agent stops
responding – and component faults – i.e., when a
component stops answering calls from the FD agent.
 The AFT-CCM model assumes that hosts and
components are subject to crash faults and that the
communication between components is reliable. This last
premise is based on the fact that the CORBA remote
method invocation mechanism provides at-most-once
semantics and benefits from the error and flow control
mechanisms supplied by the IIOP/TCP/IP stack.
 In this context, the CORBA exception support is
employed to detect component and host crashes. For
detecting host faults, the FD agent receives periodically
“are you alive?” messages from the AFT manager through
CORBA method calls. Host faults are assumed when the
call to the FD agent results in an exception. In the absence
of faults, this call returns monitoring information to the
AFT manager.
 For detecting component faults, the FD agent
periodically calls the _non_existent method
provided by class CORBA::Object, which is inherited by

all components. Component faults are assumed when the
call to the component results in an exception, being
reported periodically to the AFT manager by the FD
agent.
 Both component and host crash faults are handled by
the AFT manager, which tries to adapt the configuration
of the application, restoring faulty replicas or changing
the replication technique, taking into account the QoS
requirements specified by the user.
 The QoS manager allows the user to specify his QoS
requirements. Through the QoS manager different levels
of QoS related to the reliability of the application can be
specified. As shown by Figure 3, these requirements can
be seen as states, and the occurrence or absence of faults
can trigger state transitions. The requirements specified
by the user are passed on to the AFT manager, which
interprets them and defines a proper configuration for the
application – i.e., the number of replicas and the
replication technique that will be used. The AFT manager
tries to keep the requested level of QoS with the resources
currently available. The AFT manager changes the
configuration of the system when it detects that the
requirements are not being fulfilled. QoS requirements
can be changed at any time through the QoS manager.
Any change in the requirements is informed to the AFT
manager, which may need to reconfigure the application
in order to enforce the new QoS requirements. The QoS
manager also informs to the user the current configuration

Host 2 (primary)

Host 1
Client

Host 4

Replication
Coordinator

Server
(primary)

state

FD Agent

sync

Connector

QoS
Manager

alive

Host 3 (backup)

QoS

Replication
Coordinator

Server
(backup)

state

FD Agent

sync

alive

fwd fwd

status

Figure 2. Overview of AFT-CCM

of its application – i.e., the number of replicas, their
location, the replication technique being used by AFT-
CCM and statistics about the frequency of faults in the
application.

4. AFT-CCM Implementation

As presented in the previous section, the AFT-CCM
model is composed of a set of software components that
together aim to provide fault tolerant support for
application services in distributed environments. These
components were implemented in a prototype using
OpenCCM version 0.2 [13], which is a partial
implementation of the CCM specification. OpenCCM was
chosen because it was the first open source
implementation available of CCM. This version of
OpenCCM runs on three different ORBs. In this project
we have adopted ORBacus version 4.0.5 [14].

4.1. Implementation Issues

Several issues had to be sorted out in order to build
the prototype of the AFT-CCM model. These issues and
the adopted solutions are described along this section.
 In order to receive invocations for servers with
different interfaces, the connector must be generic, i.e.
independent of IDL types accepted by the communication
ports of the server. However, the establishment of a
connection between components implies that the
interconnecting ports must have the same type. CORBA’s
dynamic skeleton interface (DSI) was used to implement
the connector, in order to make it generic. This dynamic
invocation is represented in Figure 2 with a dashed line.
When a invocation arrives at the connector, it simply
forwards the invocation to the primary replication
coordinator through a connection with its fwd facet.
 Replication coordinators implement replication
techniques. Three different replication coordinators are
provided by this prototype: a void coordinator, which
does not implement any replication technique, a second

that implements the passive replication technique and a
third coordinator that implements the semi-active
technique (semi-active replication is described in [15]).
Active replication was not implemented, because it
requires group communication mechanisms that are not
provided by ORBacus.
 Every replication coordinator has two facets: sync
and fwd. The sync facet is used by passive and semi-
active coordinators to synchronize state between the
primary replica and its replicas. Moreover, the passive
coordinator uses this facet to synchronize the state of
replicas when the state of the primary component changes.
The fwd facet is implemented by all replication
coordinators to receive client invocations from the
connector. Beyond this use, this facet is also used by the
leader coordinator in semi-active replication, to forward
the invocations received from clients to the coordinators
connected to the followers. The fwd facet has only a
method responsible for calling the method invoked by the
client on the replicated component. Since the coordinator
does not know previously to which IDL interface
(communication port) it is associated, CORBA’s interface
repository and dynamic invocation interface (DII) are
used to discover at execution time how to build and issue
a method invocation on a component.
 Components must implement the state interface
(Figure 2) in order to provide a standard way to update
the state of their replicas. This interface provides
operations to recover (get_state) and update state
(set_state). These operations are identical to the
operations for accessing state defined by the FT-CORBA
specification [16].
 In order to monitor component replicas, the AFT
manager calls method is_alive from the alive facet
of the FD agent in time intervals defined by the QoS
Manager. As a result of this call, the AFT manager
receives information about the situation of the monitored
components.

Low Medium High

Passive replication
3 replicas
Timeout 100ms
Checkpoint 250ms

Semi-active replication
5 replicas
Timeout 50ms

 Without
replication Timeout

1 fault 2 faults in 10s

Without faults in 10s Without faults in 30s

1 fault

1 fault

 Figure 3. Example of QoS Specification

 For deploying components, the AFT-CCM uses the
deployment APIs specified by CCM and provided by
OpenCCM. However, some APIs are not implemented in
version 0.2 of OpenCCM, such as the API for
configuration of attributes in execution time, making it
necessary to implement such functionality.
 The AFT manager maintains a data structure with the
global vision of all the components deployed in the
system. This structure contains references, the location,
the replication technique used by each component and
other additional information. This data allows the AFT
manager to accomplish the necessary reconfigurations in
the system, for example, to establish connection between
component’s ports or to remove components from a host.
The AFT manager also uses this data to supply
information about system execution to the QoS Manager,
such as the replication technique that is being used, the
location of replicated components and the failures
suffered by the components. The failure of the AFT
manager and the consequent loss of this information
would compromise the recovery of faults.
 To prevent loss of the state information kept by the
AFT manager, this data is stored on a persistent storage
device. Thus, in case this component presents failure and
has to be deployed on another host, its state will be
recovered. This becomes necessary because OpenCCM
0.2 does not implement containers, which are responsible
for managing the persistent state of components. If the
container was available, the AFT manager would have
been implemented as an entity component, which has
persistent state that can be managed transparently by the
container. The remaining components that compose AFT-
CCM would have been session components, because
losing the state of these components does not compromise
the consistency of the system.

Finally, the QoS Manager was implemented with a
graphical interface that allows the user to specify QoS
requirements (Figure 4). The QoS manager receives status
information about the system from the AFT manager
through the status facet. This information is shown to
the user through the graphical interface of the QoS
manager. When the QoS Manager notices that it is not
receiving information from the AFT manager, it reinstalls
the AFT manager in another host.

4.2. Obtained Results

In order to verify the performance of the prototype
implementation of the AFT-CCM model, some tests were
executed on a testbed composed by Pentium IV 1.6Ghz
computers with 256Mb of memory, running Linux
Mandrake 9.0 operating system and Java 1.4, linked by an
Ethernet 100Mbps local network.
 The first test3 measured the response time of calls to
the replicated component in different configurations, that
is, with different replication techniques. The following
configurations were mounted: one without the addition of
the AFT-CCM, with a coordinator who does not
implement any replication technique, a second with a
passive replication coordinator, and a third configuration
with a semi-active replication coordinator, using two
replicas in the last two cases. The tests were run on a
component with only one facet with an empty method. In
this way, the influence of the processing time of the
method in the results was minimized, evaluating only the
overload generated by the addition of AFT-CCM
components.
 It is possible to observe on the graph presented in
Figure 5 that the AFT-CCM model without replication
increases the response time in about 1.1ms in relation to
the direct call to the component. This difference reaches

3 These results were obtained from the average of 1000 executions.

AFT-CCM
without

replication

Without
AFT-CCM

AFT-CCM
passive

replication

AFT-CCM
 semi-active
replication

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4

Figure 5. Performance of the AFT-CCM Prototype

Figure 4. Graphical User Interface
of the QoS Manager

1.8ms using the passive replication technique and
increases to 2.5ms when the semi-active replication
technique is used. The rise in response time was
expected and can be considered acceptable, taking into
account that AFT-CCM includes a set of components
responsible for providing fault-tolerance requirements and
to do so they have to intercept calls and coordinate
replicas.
 The second experiment 4 verified the average time
spent to create a component replica in a new host together
with its replication coordinator and its FD agent, and the
average time to exchange the replication technique
(exchange replication coordinators). It was observed that
the average time to deploy a new replica was of 330ms,
while the time for alternating between passive and semi-
active replication was of 260ms.

5. Related Work

Although the first works in the area of software
components have appeared already in the 60s [1], the
incorporation of this programming style to middleware is
recent. Implementations of CCM are only beginning to
appear. Additionally, despite the advantages of using
software components to develop distributed applications,
applications with requirements related to timeliness, fault-
tolerance, load balancing, among others, do not find
support for these requirements in the current component
models. This is because the execution environment – the
container – does not offer support to QoS requirements.
The work presented in this paper is an effort towards
using CCM to structure applications with redundancies
managed by the execution support.
 Some proposals that aim to provide support for QoS
requirements of applications, in some cases using adaptive
fault-tolerance, are described in the literature. QuO
(Quality Objects) [17] is an example of architecture that
gives support for the development of distributed
applications based on CORBA with QoS requirements.
QuO provides ways to specify, monitor and control the
QoS requirements of applications, as well as to adapt its
behavior due to changes in the environment. Applications
developed with Quo specify their QoS requirements at
application level through QoS contracts.
 The AQuA architecture (Adaptive Quality of Service
Availability) [18] aims to supply adaptive fault-tolerance
for distributed applications. AQuA allows applications
developers to specify the desired levels of dependability,
which are reached through the configuration of the system
in accordance with the availability of resources and the
faults occurred. AQuA uses QuO to specify QoS
requirements at application level, and the Proteus

4 These results were obtained from the average of 100 executions.

dependability manager [19] to configure the system in
response to faults and availability requirements. Ensemble
[20] is also used by AQuA in order to provide group
communication services.
 Despite having mechanisms to specify QoS
requirements with equivalent functionality, QuO and
AQuA require QoS requirements to be defined at
compilation time, while AFT-CCM allows QoS
requirements to be modified at execution time, taking
advantage of the flexibility provided by the use of
software components.

In [21] is presented the AFTM (Adaptive Fault-
Tolerant Manager), which is an adaptive fault-tolerant
middleware that uses a CORBA-compliant object request
broker. The AFTM acts as an interface between the
application and the underlying software layers that
transparently monitors application behavior as well as
resource availability, and adaptively reconfigures the
system resources. AFTM provides several execution
modes, from which are selected the most suitable fault
handling and resource allocation modes of the system
based on the contents of its fault history database.

The AFTM provides an adaptive fault-tolerance
support for applications based on CORBA objects, while
AFT-CCM is aimed at applications based on CORBA
components (CCM). AFTM employs fixed fault-
tolerance strategies, while in our proposed model
strategies can be defined according to the application
requirements.

Chamaleon [22] is an adaptive infrastructure that
provides different levels of availability through an
architecture composed of ARMORs – Adaptive,
Reconfigurable, and Mobile Objects for Reliability.
Chamaleon can select different combinations of ARMORs
in order to provide different availability levels that can be
introduced incrementally in the system. Although it uses
composition mechanisms similar to the ones that exist in
components models, Chamaleon does not adopt a
standard components model such as EJB, .NET or CCM,
which is used in this work.

Some proposals employ dynamic configuration
mechanisms in order to tolerate partial failures in a
distributed system. Some of these experiences also use the
concept of connectors. In [23], a connector is a
configuration support that selects from a set of server
components the one that has the most adequate signature
to execute an invocation. If an exception occurs during
the execution, a search for another server component is
immediately initiated. The idea of connector presented in
our approach is more similar to that introduced in [24].
The connector described in this work concentrates all the
non-functional aspects of a replication. In the AFT-CCM
model, connectors assume a much simpler role. They are

call forwarding elements, which only dispatch calls from
clients to the replicated components. Non-functional
aspects are treated by the replication coordinators. Our
option for a simple connector was based on the fact that
CCM already has containers, which are responsible for
many of the non-functional aspects of applications.

In [25] is presented an approach for CORBA
components replication. This approach uses interception
objects that are responsible for capturing the invocations
made to the component in order to trigger necessary
actions for replication management. These interception
objects have the same interface of the replicated
component. This implies that for every new component
that you want to replicate, it will be necessary to
implement a new interception object with the same
interface of the component. The AFT-CCM model uses
a generic connector that is independent of the replicated
component interface, so that it does not have to be
modified to be used in different applications.

6. Conclusions

This paper presented the AFT-CCM model, which offers
flexible mechanisms for building software based on the
CORBA Component Model with fault-tolerance
requirements. The AFT-CCM model adapts the
configuration of applications taking into account the QoS
requirements associated with components and the faults
that occur in the system.
 In order to provide support for QoS requirements, the
AFT-CCM was built from a set of non-functional software
components, that combined provide fault-tolerance
requirements to component-based applications. Although
adaptive techniques have been employed in several other
works to provide fault-tolerance requirements, these
works do not take advantage of the flexibility provided by
the use of software components.
 A prototype implementation of the AFT-CCM model
has been built. Performance measurements have shown
that the model adds a small overhead to the application,
with the great advantage of providing dependability.

References

[1] Szyperski, C. Component Software: Beyond Object-
Oriented Programming. ACM Press/Addison-Wesley
Publishing Co, 1998.

[2] OMG. CORBA Components. OMG Document formal/02-
06-65, 2002..

[3] OMG. The Common Object Request Broker Architecture
v3.0. OMG Document formal/02-06-33, 2002.

[4] Sun Microsystems. Enterprise JavaBeans Specification.
v2.0, 2001.

[5] Microsoft. Overview of the .NET Framework. MSDN
Library White Paper., 2001.

[6] Bachman, F. et al. Volume II: Technical Concepts of
Component Based Software Engineering. Technical
Report, Technical Report CMU/SEI-2000-TR-08. Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2000.

[7] OMG CORBAservices: Common Object Services
Specification. OMG Document formal/98-12-09, 1998.

[8] W3C. eXtensible Markup Language (XML) v1.0. World
Wide Web Consortium, 1998.

[9] Kim, K.H. and Lawrence, T. Adaptive Fault Tolerance:
Issues and Approaches. In Proceedings of Second IEEE
Workshop on Future Trends of Distributed Computing
Systems. p. 38-46, Cairo, Egypt, 1990.

[10] Hiltunen, M. and Schlichting, R. Adaptive Distributed e
Fault-Tolerant Systems. International Journal of Computer
Systems Science e Engineering, 11(5):125–133, 1996.

[11] Chen, W.-K., Hiltunen, M. A., and Schlichting, R. D.
Constructing Adaptive Software in Distributed Systems. In
21st International Conference on Distributed Computing
Systems, 2001.

[12] Budhiraja, N. et al. The Primary-Backup Approach. In:
Distributed Systems, Chapter 4. Addison-Wesley, 2nd
Edition, 1993.

[13] Marvie, R., Merle, P., and Vadet, M. The OpenCCM
Plataform., 2002. http://corbaweb.lifl.fr/OpenCCM/

[14] Iona Technologies. ORBacus for C++ and Java, version
4.0.5, 2001.

[15] Powell, D. Delta-4 Architecture Guide. Esprit II P2252,
Delta-4 Phase 3, 1991.

[16] OMG. Fault-Tolerant CORBA Specification v.1.0. OMG
Document ptc/2000-04-04, 2000.

[17] Zinky, J. A., Bakken, D. E., and Schantz, R. E.
Architectural Support for Quality of Service for CORBA
Objects. Theory e Practice of Object Systems, 3(1), 1997.

[18] Cukier, M. et al. AQuA: An Adaptive Architecture that
Provides Dependable Distributed Objects. In 17th IEEE
Symposium on Reliable Distributed Systems, 1998.

[19] Sabnis, C. et al. Proteus: A Flexible Infrastructure to
Implement Adaptive Fault Tolerance in AQuA. In 7th IFIP
Internation Working Conference on Dependable
Computing for Critical Applications, 1998.

[20] Hayden, M. G. The Ensemble System. PhD thesis, Cornell
University, 1998.

[21] Shokri, E. Hecht, H., Crane P., Dussault, J., Kim, K. An
approach for Adaptive Fault-Tolerance in Object-Oriented
Open Distributed Systems. In 3rd Workshop on Object-
Oriented Reliable Distributed Systems, 1997.

[22] Bagchi, S. et al. The Chameleon Infrastructure for
Adaptive, Software Implemented Fault Tolerance. In 17th
Symposium on Reliable Distributed Systems, 1998.

[23] Batista, T. V. and Carvalho, M. G. Component-Based
Applications: A Dynamic Reconfiguration Approach with
Fault Tolerance Support. Electronic Notes in Theoretical
Computer Science, volume 65. Elsevier Science Publishers,
2002.

[24] Sztajnberg, A. Flexibility and Separation of Concerns on
the Design and Evolution of Distributed Systems. PhD
Thesis (in portuguese), COPPE/UFRJ, 2002.

[25] Marangozova, V. and Hagimont, D. An Infrastructure for
CORBA Component Replication. In 1st IFIP/ACM
Working Conference on Component Deployment, 2002.

