
Federation Web: A Scheme to Compound Authorization Chains
on Large-Scale Distributed Systems*

Altair Olivo Santin1,3, Joni da Silva Fraga1, Frank Siqueira2, Emerson R. de Mello1
1Department of Automation and Systems (DAS) and 2Department of Computer Science (INE)

Federal University of Santa Catarina (UFSC), Brazil
{santin, fraga, emerson}@das.ufsc.br, frank@inf.ufsc.br

3Graduate Program in Applied Computer Science – Exact Sciences and Technology Center
Pontifical Catholic University of Paraná (PUCPR), Brazil

Abstract

 Traditional security systems are not easily scalable
and can become single points of failure or performance
bottlenecks when used on a large-scale distributed
system such as the Internet. This problem occurs also
when using a Public Key Infrastructure (PKI) with a
hierarchical trust model. SDSI/SPKI is a PKI that
adopts a more scalable trust paradigm, which is focused
on the client and based on authorization chains.
However, the task of locating the chain that links a
client to a server is not completely addressed by
SDSI/SPKI. Aiming to overcome this limitation, this
paper proposes extensions to the SDSI/SPKI
authorization and authentication model. The proposed
approach introduces the concept of Federation Webs,
which allow the client to build new authorization chains
linking it to a server when a direct path does not exist.
A prototype implementation of this proposal has shown
promising results.

1. Introduction*

 Internet applications require authentication and
authorization models in which the trust relationships can
be established on a flexible, scalable, and distributed
way. However, in traditional authentication and
authorization system, while authorization service is
generally implemented in a distributed way, the
authentication service is centralized by the naming
service. This approach limits the use of these
mechanisms to the local naming domain, and
consequently it is usually adopted in corporate networks.
When employed in a large-scale distributed system such

* This project has been partially supported by the Brazilian Research

Council – CNPq, under grant 552.175/2001-3.

as the Internet, this approach grows in complexity,
leading to poor scalability, and eventually creating single
points of failure or performance bottlenecks. In order to
overcome the scalability limitations, it is necessary to
define inter-domains trust relationships, allowing the
coverage of a global naming space. Under such
circumstances, the management of these relationships
may become a difficult task.

Public Key Infrastructures (PKI) offer means to carry
out authentication on a global context. However, the
most commonly used PKI are unsuitable for building
trust relationships between principals spread through a
large-scale distributed system.

The X.509 PKI [1], for example, adopts a global
naming system (X.500), which is based on a hierarchical
trust model formed by Certification Authorities (CA). In
this model, the authentication chains start from a root
CA and lead to a principal (a user, for example).
Although the X.509 PKI is widely used, its global model
faces difficulties on adjusting to each country’s
legislation, and is difficult to use due to its complex and
inflexible scheme. In addition, trust models based on a
centralized entity (names / authentication service),
besides representing critical points regarding faults and
vulnerability, may constrain performance and scalability
on large-scale environments [2].

Pretty Good Privacy (PGP) [3], employed to cipher
and authenticate computer files and electronic mail,
adopts a structure for key and certificate management
based on a web of trust. Comparing to the X.509
hierarchies, the PGP web of trust – built up on an
arbitrary way – is quite flexible and very well adapted to
the characteristics of the Internet. On the other hand, the
use of pondered trust decisions implies that multiple
signatures may be necessary on a single certificate to
assure credibility, leading to a complex authorization
process.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

This paper introduces a new approach to establish
trust relationships for authentication and authorization in
large scale distributed systems. The proposed approach
makes use of the Federation notion, responsible for a
certificate repository as well as for establishing trust
relationships with other federations spread through the
distributed system. Federations define domains in which
trust relationships between principals are valid, creating
Federation Webs. Therefore, in the absence of a given
authorization chain, principals can locate certificates in
the federation web and negotiate privileges in order to
create new authorization chains.

This paper is structured as follows: section 2
overview trust management and describes systems that
adopt this paradigm, giving particular attention to
SPKI/SDSI, which will be employed in this work; section
3 describes the proposed model for building trust
relationships between principals and explains how new
authorization chains can be established; section 4
presents a prototype implementation of this model and
evaluates its performance; and finally, section 5 outlines
the conclusions resulting from this work.

2. Trust Management

Trust management is defined as a paradigm focused
on authorization [4], unifying security policies,
identification, access control and authorization in a
single framework. This framework is based on an
egalitarian trust model, which has the main purpose of
adapting authentication and authorization models to the
distributed worldwide network environment – i.e. the
Internet.
 Two different approaches are found in the technical
literature that can follow this concept. In the first one,
the trust management is based on a language for
authorization and credentials description and on a
compliance checking engine. PolicyMaker and KeyNote
[5] are systems that use this approach.

The concept of trust management can also be
implemented using a standardized information structure,
which allows the description of credentials for
authorization and security policies. The Simple
Distributed Security Infrastructure / Simple Public Key
Infrastructure (SDSI/SPKI) is a good example of this
approach.
 The SDSI/SPKI infrastructure employs an egalitarian
trust model: principals are not only identified by public
keys, but they can also sign and issue certificates. As a
result, there is no need for a Certification Authority like
the one existing in the X.509 environment. This
approach eliminates the limitations and the complexity

presented by X.509 resulting from the adoption of a
global naming scheme.

SDSI and SPKI were developed separately, but have
been combined due to their complementary features.
SDSI [6] is a security infrastructure whose main purpose
is to simplify the implementation of secure distributed
applications. SPKI [7], on the other hand, is the result of
an effort to design a simple and well-defined
authorization model. After being merged, SPKI and
SDSI provide, mainly, a simple infrastructure for
authentication and authorization of distributed
applications in large-scale environments.

2.1. Authentication and Authorization using
SDSI/SPKI

 Two different kinds of certificate are defined by
SDSI/SPKI: a name certificate and an authorization
certificate.

A name certificate links names to public keys or to
other names. A principal always signs certificates issued
by one with his/her private key. Names described on a
name certificate are meaningful and unique only within
the namespace of its issuer – i.e. they can have different
meanings in other namespaces. The concatenation of the
public key of the issuer with a local name is recognized
as a SDSI/SPKI unique global identifier.

Names and naming chains are used by SDSI/SPKI to
simplify the search for the actual identifiers: the public
keys of principals. In order to resolve names, the whole
chain must be examined until the corresponding public
key is reached. This procedure is known as “naming
chain reduction”.
 SDSI/SPKI authorization certificates grant access
permissions to a name, to a special group of principals –
called “threshold subjects” – or to a public key. Through
these certificates, the issuer can authorize principals (i.e.
other public keys) to access a resource or a service that it
provides or controls.
 Authorization certificates held by a principal may
also be delegated to other principals. A “public”
authorization certificate (with the delegation bit on)
allows a principal not only to access the resource but
also to delegate (grant) access to other principals – either
as a whole or partially. Otherwise, when the delegation
bit is off, the received privileges cannot be forwarded. In
such case, the authorization certificate is “private”, i.e.
only the principal holding the certificate can use it [8].
 For the access control procedures, the rights granted
through consecutive delegations (authorization chains)
must be summarized into a single certificate containing
the intersection of all the privileges granted to that

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

subject, in a procedure called “authorization chain
reduction”.
 The trust model adopted by SDSI/SPKI is said to be
focused on the client due to its authorization procedure.
According to this procedure, authorization chains are
built through the delegation of access privileges,
ensuring trust paths between a server and its clients. The
authorization flow is illustrated by Figure 1, in which
client A is receiving an authorization certificate (CSA)
from server S and delegating this privilege to client B
(CSA+CAB). Clients A and B, after receiving their
certificates, have authorization chains that allow them to
access server S – in most cases, these authorization
chains are built arbitrarily. The privilege owner must
keep the corresponding certificate and present it to the
server when accessing the protected resource. In this
example, client B (Figure 1) has to present a signed
access request and the corresponding authorization
certificate chain (CSA+ CAB) for having access to the
resource.

 Caption:

SELF: Reserved word, used only in server’s ACLs PKx : x public key identification

Application Server

 Server S

ACL´s repository

(PK S_SERVER , PK A_CLIENT
, “delegation allowed” ,

“authorization” ,
 “time restrictions”)

(“SELF” , PKA_CLIENT ,
“delegation allowed” ,

“authorization” ,
 “time restr ictions”)

Client A

Local certificate
repository

signed access request +
authorization certificate

chain (CSA + CAB)

(PK A_CLIENT , PKB_CLIENT ,
“delegation not allowed” ,

“authorization” ,
“time restrictions”)

CSA

CAB

issuer

subject

Client B

Local certificate
repository

Figure 1 – SDSI/SPKI Authorization Flow

2.2. Discovery of SDSI/SPKI Authorization
Certificates

 The main difficulty faced by a principal (client) using
SDSI/SPKI is to find an authorization chain which
certifies that it has authorization to access an object or a
service in the distributed environment. Several
architectures and algorithms have been proposed in the
technical literature to help a client to search for a
certificate chain. However, none of these proposals offers
alternatives to the client when a valid certificate chain is
not found (i.e. the search for a certificate chain is
unsuccessful).

In [9], Nikander and Viljanen have shown how the
DNS service can be used for storing and retrieving
SDSI/SPKI certificates. In that proposal, DNS extensions
added by RFC 2065 have been used to allow the storage
of certificate records by using entities that store

identification and authorization certificates in DNS
databases. In addition, the search algorithms include
some filtering of the certificates being retrieved.

In [10], Aura describes the trust net built by the
propagation of SDSI/SPKI authorization certificates as
an oriented graph. The author considers that, in typical
corporate environments, such graph is hourglass-shaped,
due to the fact that there is much more client and server
keys than intermediary keys. Therefore, starting from
these premises, the author uses the DFS forward and
backward algorithms, and their combination, to perform
fast searches in a database having only one intermediary.
Experiments using the distributed search algorithms
proposed in [10] are reported in [11]. This work also
reports some improvements in the DFS forward
algorithm.

All previously described works have been conceived
for preliminary versions of SDSI/SPKI, in which some
aspects of the model still had not been solved. Some
premises assumed at that time are now considered
obsolete, no longer complying with the RFC 2693
specifications. However, these papers have valuable
contributions in terms of system architecture.
 The chain search algorithms and other aspects
considered in [12], suggested by Clarke, are deeper
refinements of RFC 2693 recommendations. The author
of this work also presents an implementation of the
current version of SPKI, quite rich in content, although
no architectural solution for distributed systems has been
proposed.
 In [13], Li argues that SDSI/SPKI local names can be
viewed as distributed groups of principals for name
resolution. Based on this assumption, the author proposes
algorithms based on logic programming, supposed to be
more efficient in chain search when compared to
conventional implementations. Since the main purpose of
this paper was to define search algorithms based on logic
programming, a new architecture has not been proposed.
Nevertheless, the interpretation of local names as
distributed groups can be considered a significant
contribution.

3. A Proposal of Extensions to the
SDSI/SPKI Trust Model

 This section presents the proposed extensions to the
SDSI/SPKI trust model, which allow building new
authorization chains. The proposed trust model is based
on the concept of Federations, which group principals
with common interests. A federation assists its members
on reducing names and on building new authorization
chains.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

 By joining a federation, principals have access to the
federation facilities, and new trust relationships among
these principals can be established. In this sense, the
SDSI/SPKI trust model is supported by a Certificate
Manager (CM), which offers a certificate search
alternative, either for reducing names or for creating new
authorization chains.
 Figure 2 shows a federation CM integrated to the
SDSI/SPKI trust model, in which client A stores its
public certificates in the federation certificate repository.
Through a search on the CM repository, client B – which
has no access to server S – can identify a principal in the
federation (client A) holding such privilege (CSA). Client
B can then negotiate with A in order to receive (by
delegation) this privilege (the authorization chain
CSA+CAB).

 Federation X
CM

Public certificate
repository

Public
certificate

storage

Client A

Local
certificate
repository

Application Server

Server S

ACL´s repository

Public certificate autorization searching

Delegation
request

signed request + authorization
certificate chain (CSA + CAB)

CAB

CSA

Client B

Local
certificate
repository

Figure 2 – SDSI/SPKI Extended Trust Model

 The presence of a client at distinct federations allows
this client to easily access the public authorization
certificates held by members of these federations.
However, the number of federations a client must join in
order to have an acceptable visibility in the worldwide
network can also be considered a scalability problem.
The scalability requirements are achieved in the
proposed model by associating federations. Certificate
managers can then be associated to each other, linking
those who, due to existing affinity, can better represent
the needs of their members. Such associations are done
through trust relationships which form Federation Webs
(in Figure 3, for example, the CM of federation X is
associated to the CM of federation Y). This approach
frees clients and servers from joining a considerably
large number of federations to achieve global scope.
 Figure 3 illustrates how the entities that comprise a
federation web are organized. Client authorization
certificates – both private and public – are stored in a
local repository under the responsibility of an agent that
represents this principal in its local domain. Clients
make name certificates issued by their corresponding
principals and their public authorization certificates
available through the CMs of the federations they belong.

The certificates available through CMs are used in the
search for potential issuers of delegable permissions.
 The proposed trust model has no centralized entities
or hierarchical arrangement, i.e. federation webs are
arbitrarily formed, and do not play any active role in the
authorization chains – they just carry out support roles in
the authorization procedure.
 A federation is basically composed of three entities:
clients, servers and a certificate manager, which will be
explained in the following topics.

X’s

member

Y’s

member

Y’s

member

X’s

member

 Client B

B’s Agent

Local certificate
repository

Principal

 Federation Y
CM

Public certificate
repository

Federations web

Associated

 Federation X
CM

Public certificate
repository

 Client A

A’s Agent

Local certificate
repository

Principal

 Server T

Application
Server

ACL´s repository

 Server S

Application
Server

ACL´s repository

 Figure 3 – Federation Web Overview

3.1. Clients and Application Servers

 The client represents the principal who creates name
certificates, propagates the authorization certificates by
delegation, takes part in threshold certificates, requests
access and composes new chains.
 The storage and retrieval of certificates in the client
naming space is responsibility of the client’s agent
(Figure 3). This agent is a software entity that manages
the certificates available at the local repository. These
tasks include checking and effecting signatures,
searching for certificate chains, negotiating permission
grants, issuing new authorization certificates and
maintaining local names consistency. The agent must be
instantiated during the client’s lifetime, and it interacts
with the client through a binding to its operational
interface.
 The application server implements the service
objects, which are protected by SPKI ACLs, kept by a
guardian (reference monitor). In order to perform
delegations and negotiations to propagate permissions,
the server can also make use of an agent. In the
certificates reduction procedure, the server can issue
authorization certificates to clients that present new
delegation chains and/or include the public keys of these
clients in the guardian’s ACLs.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

3.2. Certificate Manager

 The main purpose of the certificate manager is to
facilitate the interaction between clients and servers. A
certificate manager only serves the principals that belong
to its federation. The public keys of its members are seen
as a SDSI group [7]. As the CM does not actively
participate on any authorization chain, it is not
considered a public key, and therefore is not seen as a
principal – it is mainly a repository of certificates.
 In order to any ordinary principal join a federation,
an endorsement in the form of a threshold certificate is
demanded [14]. The threshold certificate signature
depends on “k out of n” federation members. Each
federation defines the number of members (k) that must
sign the endorsement request.

Upon joining a federation, the principal’s name
certificate is included in the federation repository. The
federation’s certificate manager will store name
certificates in order to ease principal identification (this
procedure will be explained in more detail in section
3.3).

For every new member joining the federation, a name
certificate stating SDSI group inclusion it is issued in
order to prove membership. The creation of associations
among federations (federation webs) is also interpreted
as membership of the SDSI groups of each federation
involved. In this case, the new member – i.e. the other
federation – is recognized as a group defined and
administered within another naming space, according to
the definition of SDSI groups.
 Besides managing the information related to the
members and associations of its own federation, the CM
has the ability to include or exclude members and
associations to other federations, observing any conflicts
of interest. Procedures for storing and retrieving name
and authorization certificates are made available to
federation members through standard interfaces offered
by the federation CM.

3.3. Authentication, Authorization and Auditing

 The authentication of SDSI/SPKI principals is
performed using public keys instead of names. The
authentication of principals is done by checking their
digital signatures. In order to check the digital signature
on the destination, the principal’s public key must arrive
there securely. Since there is no entity responsible for
public key distribution in the SDSI/SPKI infrastructure,
the public keys demanded by an authentication procedure
are available through authorization certificate chains.

 Mutual authentication is achieved with SDSI/SPKI
on an authorization chain basis. The client making a
request to a server must sign it and send it along with the
authorization chain that grants the required access
privileges. The authorization chain sequence associated
to a request is checked by the resource guardian upon its
arrival. The guardian makes use of the last key in the
authorization chain (the client’s key, in the subject field)
to check the digital signature on the request. Having this
check been successful, then client’s authenticity is
confirmed.
 Every authorization certificate carries the public key
of the principal signing that certificate (the issuer field).
Therefore, to authenticate a server (always expressed as a
public key starting an authorization chain), the client
should require the server’s name certificate, retrieved
from a federation web. After that, the client uses the
certificate’s public key for validating the server’s
signature in the first chain’s authorization certificate.
When all the mentioned procedures are successfully
done, then the server identity can be assured.
 All accesses by public keys to the server are locally
logged, and these log records can be used for auditing
purposes. If needed, the searching of the corresponding
name certificate can be performed on the federation web
to identify the principal corresponding to the public key
that performed a given access.
 The whole authentication and authorization
procedure described in this paper is in compliance with
the current SDSI/SPKI specifications.

3.4. Creation of New Authorization Chains

 There are several experiences in the technical
literature regarding procedures for searching SDSI/SPKI
certificates, such as the ones that were presented in
section 2.2. However, in all these approaches, if a
certificate chain is not found, the search reports an
exception (failure), and the client is unable to access the
server. This work proposes a schema based on the use of
federations that enables a client to locate in a federation
web a certificate holding the needed authorization. Later
on, the client can negotiate with the privilege holder such
grant to build an authorization chain that allows one to
access the server.
 In order to show the chain creation process, consider
the example illustrated by Figure 3. At first, an
authorization certificate is stored in the CM of federation
X, after been propagated from the server S to the client A
(A is a member of the federation X).
 Figure 4 shows the messages exchanged between a
client and two associated federations when an

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

authorization chain between client B and server S does
not exist. Client B, member of federation Y, starts by
requesting an access to server S (message m1). Server S
replies by sending a challenge message back to B. In this
challenge message (m2), server S reports the ACL
protecting the requested object and asks for client B to
prove that there is an authorization chain allowing the
requested access. In this case, SDSI/SPKI ACL data is
effective to accelerate the searching process.
 Having the ACL, B’s agent performs a local search
for an authorization chain allowing the requested access
that links client B to server S. This search must retrieve
all the authorization chains that include the required
permission, and have the requested server S as the issuer.
Supposing that the local search turns to be unsuccessful,
B’s agent asks the CM of the federation it belongs (Y) to
search for authorization certificates holding the required
rights for accessing server S (message m3). The attributes
considered in the search are the required permissions and
the public key of server S.

 m4: return (“ search.null,
 associated certificate”)

 m1: request (“ without chain ”)

Client B Server S

 m2: challenge (“ object.ACL ”)

 m3: search (“ certificate chain ”)

Federation
Y’s CM

 m5: search (“ certificate chain ”)

 m6: return (“ certificate chain ”)

Federation
X’s CM

 m7: negotiation (“ start ”)

 m8: negotiation (“ requirements ”)

Client A

 m9: negotiation (“ attributes ”)

 m10: granting (“ privilegies ”)

 m11: response (“ request, certificate chain ”)

Figure 4 – Messages Exchanged to Compound
the Authorization Chain

 In the case considered in Figure 4, the search does
not result in any authorization chain. In this situation,
the CM of federation Y returns to client B, as a result of

the search, member certificates 1 of the associated
federations – i.e. client B receives the member certificate
of federation X – so that it can contact the associated
federations (message m4).
 Having the certificates of associated federations,
client B contacts the CMs of these federations. Message
m5 corresponds to the queries on federation X in the
considered example. In message m6, client B receives as
return from the CM of federation X a chain – the
authorization certificate with the access permission
granted by server S to client A (CSA). Then client B sends
to the permission holder – i.e. client A – the request for
delegation of access rights (message m7). The grant of
permissions can be carried out in a simple way, because
both the client and the rights holder belong to the same
federation, for example. However, depending on the
application semantics, more complex negotiations may
be demanded. Figure 4 represents this situation: the
requested rights holder notifies client B about a set of
requirements for granting the permission (message m8).
The client gathers the demanded requirements and sends
them to client A (message m9). Once the application
requirements are satisfied, the rights holder issues a
certificate granting permissions to client B (CAB) and
sends it on message m10. With this last message, the
chain compounding process is concluded, and client B
can now answer the challenge proposed by server S
sending the response message m11.

3.5. Case Study: Internet Commerce Application

In this section is depicted a scenario to illustrate the
usage of federation webs, which synthesizes the proposed
schema. This scenario is built upon a Web-based sales
application, which illustrates access privileges location
and negotiation. One should notice that the proposed
schema is quite general and can be applied to distinct
situations.
 In order to understand the example, first consider a
credit card operator (CC) and a banking institution
which have a business agreement that allows electronic
financial transactions to be performed. Based on this
agreement, the credit card institution grants to the bank
the right to allow purchases if payments are to be
charged to credit cards issued by the credit card operator.
The bank, whenever receives an SDSI/SPKI
authorization certificate with the delegation flag on,
stores it on the CM of the federation it belongs (Bank
federation).

1 A SDSI/SPKI name certificates that state SDSI groups inclusion (the

federation is implemented as a SDSI group)

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

Based on the message exchanged presented in the
Figure 4, the steps on Table 1 summarize the actions
showed in Figure 5 for the purchase transactions
example implemented by an Internet-based application.
In order to monitor the “allow purchase” privilege
delegations, the credit card operator receives a copy of all
paid purchase bills from the internet site server S.

m4: return (‘search.null’,
‘certificate(‘CC federation’)’)

m1: request (‘operation: checkout’, ‘without chain’)

Client B Server S

m2: challenge (‘Server S’, ‘credit card’, ‘true’,

‘allow purchase’, ‘date-time’, ‘purchase bill’)

m3: search (‘Server S’,
‘auth: allow purchase’)

CM of Bank
Federation

m5: search (‘Server S’, ‘auth: allow purchase’,
‘certificate(‘CC federation’)’)

m6: return (‘CC’, ‘bank’,
… , ‘allow purchase’, …)

CM of CC
Federation

m7: request (‘grant (‘allow purchase’)’)

m8: requirement (‘pay the bill’)

Banking
Institution

m9: payment (‘bill’)

m10: response (‘grant (‘allow purchase’)’)

m11: response (‘operation: checkout’, ‘bank’,

‘client B’, ‘false’, ‘allow purchase’, ‘date-time’)

Figure 5 – Messages Exchanged by the

Web-based Sales Application during a Purchase

In the scenario described above, no authorization

chains exist linking the credit card operator to client B.
However, the scheme proposed by the federation web
model allowed to dynamically and automatically creating
the requested authorization chain, in order to complete
the purchase operation on the site server S. Of course, if
the chain holding the requested authorization was not
found in the CC federation’s CM, the search would
continue on the associated federations until an
appropriate chain was found. It should also be noticed
that the server ACL does not have an entry for client B
allowing it to access the services. Therefore, it is no
longer required to register the clients on the server ACL
to allow their access to the services. Consequently, all
clients’ private information is stored only in those
institutions with which they have direct relationships. In
the example above, the client can pay for the purchase
not only if it is a credit card customer – but also being

only an ordinary bank customer. By doing so, no credit
card numbers or other client-related information is
transmitted through the network. Also, the entire client’s
information is stored only by its banking institution.

Table 1 – Description of Messages from Figure 5

M
es

sa
ge

Action description

m1

Client B navigates through the web pages
offered by internet site server S. After selecting
some items to purchase, client B proceeds to
checkout.

m2

Server S sends back to the client a message
containing the purchase bill and a challenge: the
principal holding the privilege “allow purchase”
is CC - requiring from the client the
authorization chain issued by CC.

m3

Client B queries its local repository and finds no
chains linking it to CC. Then, client B sends a
chain search message to the Bank federation’s
CM containing the public key of server S and
the requested privilege “allow purchase”.

m4

CM of bank federation searches in its public
certificates repository for the required chain. It
sends back to client B a “chain not found”
message along with the member certificate of
associated federation (federation CC).

m5

Client B sends a query chain search message to
CC federation’s CM (associated federation),
which contains the public key of server S and
the requested privilege “allow purchase”.

m6

CC federation’s CM performs a search on its
public certificates repository and finds the
required chain. It sends back to client B the
chain between the server S and the banking
institution.

m7 Client B requests to the banking institution the
“allow purchase” privilege delegation.

m8
The bank notifies client B that delegating the
requested privilege requires paying the purchase
bill using one of the payment options.

m9 Client B pays the bill using one of the options
offered by the bank.

m10 The bank delegates the “allow purchase”
privilege to client B.

m11

Client B sends the authorization chain to server
S, along with the request in a response message
and the server can concludes the purchase
transaction.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

4. Implementation and Results

 This section presents the prototype implementation of
the model described in the previous section. Performance
measurements obtained with this prototype are also
presented.

4.1. Prototype Implementation

 The SDSI/SPKI infrastructure and the policies
applied in the model previously described are totally
independent from the technology adopted to build it. In
this sense, the technologies employed to build the
prototype, which are shown in Figure 6, have been
highly influenced by the model usage in the Internet –
environment assumed as the context of this work.

Figure 6 – Technologies Employed to Build
the Prototype Implementation of the Mode

 The motivation for adopting CORBA as middleware
is to take advantage of the services provided by this
platform, mainly in aspects related to object lookup
(name resolution) and secure remote access invocation.
SSL (Secure Socket Layer) was adopted for remote
communication. In order to establish a secure channel
between a client and a server (holding SSL integrity and
confidentially properties), mutual authentication for the
principals (client and server) is required. However, since
SPKI uses keys as principals instead of names, an
operation to translate SDSI/SPKI name certificates into
SSL name certificates had to be developed.
 The SDSI/SPKI integration with the distributed
object middleware was done using CORBASec at
application level (CORBASec Security Level 2) [15]
implemented by Adiron´s ORBAsec [16] on top of
Ionas´s ORBAcus [17] using IAIK´s SSL module [18].
Figure 7 shows such integration.
 Security Level 2 is not helpful in structuring security
functions at application level. However, in order to make
use of the CORBA security model, a minimum set of
objects originally present at the ORB level had to be
maintained at the application level. These objects, which

are show in Figure 7, are: PrincipalAuthenticator,
SecurityManager and Credentials.
 Figure 7 shows other implementation details. The
CM public certificate repository is implemented using
Apache Xindice (which stores XML native data) [19].
The CM is implemented as an extension module of the
Apache server [20]. All messages exchanged between
members and the CM are written in XML. The
SDSI/SPKI certificates, originally coded as
S-expressions, are translated into XML in our prototype
for portability and standardization reasons (XML
translations are based on [21]). The SDSI/SPKI resolver
object shown in Figure 7 is a partial implementation of
the client’s agent, covering chain searching, local name
consistency and digital signature management. Finally,
the reference monitor (guardian) is implemented by the
SDSI/SPKI Access Decision object. The client and server
integration onto the prototype environment was greatly
facilitated by using plug-ins and applets in the
application deployment.

ORB CORE

S S L

Principal
Authenticator Security

Manager

credentials

Client B

Principal

Local certificate repository

SDSI / SPKI
(Resolver)

ORB
Services

Server S

Application server

ACL´s repository

SDSI / SPKI
(Access Decision)

Principal
AuthenticatorSecurity

Manager

credentials

ORB
Services

associated

<XML><XML> Public certificate
repository

Federation
FBS CM

Public certificate
repository

Federation
FSB CM

Federations
web

ORB CORE

S S L

Principal
Authenticator Security

Manager

credentials

Security
Manager

credentials

Client B

Principal

Local certificate repository

SDSI / SPKI
(Resolver)

Client B

Principal

Local certificate repository

SDSI / SPKI
(Resolver)

ORB
Services

Server S

Application server

ACL´s repository

SDSI / SPKI
(Access Decision)

Principal
AuthenticatorSecurity

Manager

credentials

Security
Manager

credentials

ORB
Services

associated

<XML><XML> Public certificate
repository

Federation
FBS CM

Public certificate
repository

Federation
FBS CM

Public certificate
repository

Federation
FSB CM

Public certificate
repository

Federation
FSB CM

Federations
web

Figure 7 – CORBA-SPKI Integration

4.1 Performance Measurements

 Response times of the architecture shown in Figure 7
were measured in order to evaluate the performance of
the prototype when the client searches for the
authorization certificate chain in three different cases:

• Search for certificates in the client’s local repository
• Search for certificates in the client’s federation

repository, with both located at the same LAN
• Search for certificates in associated federations

distributed through the Internet
The application used for performing these

measurements behaves like the echo function of the
ICMP protocol – i.e., it just copies the input message to
the output flow. All the authentication and authorization

Server
JVM

Client
JVM Client Server

TCP / IP

SSL / TLS

CORBA

CORBASec SL2 Application Protocols
(http, etc)

SDSI/SPKI Infrastructure

Authentication / Authorization Policies

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

mechanisms proposed in this paper were implemented,
except the negotiation mechanisms for granting access
privileges, which are context-dependent.

Analyzing the average response times obtained with
the measurements, for local access (same host) and
through the local area network (Figure 8), and for access
through the Internet (Figure 9), with message size
varying from 256 bytes to 1MB, the following tendencies
have been observed:

• For message sizes up to 1KB, the increase in the
response time is not significant when the client
searches in its repository or in the federation’s
repository located in the same LAN. Over 1KB, the
response time behaves similarly to the
measurements obtained over the Internet, where the
increase is proportional to the message size, i.e. if
the message size doubles, the response time is also
multiplied by two.

• The results also show that for local and LAN
access, the model adds an average overhead of
about 10 times the response time of access using
SSL (ORBacus + ORBAsec). In this situation, the
overhead is caused basically by the
challenge/response protocol and by the search for
the authorization chain. On the other hand, the
average increase in the response time on the
Internet is approximately four times the response
time without any cryptography (ORBacus) for
messages larger than 256 bytes and tends to
decrease until it stabilizes in approximately twice
the response time for messages over 8KB.

Figure 8 – Average Response Times (in

seconds) for Local host and LAN (log graph)

 The results shown in Figure 8 were obtained on a test
bed composed of PCs with 1.4 GHz Pentium IV
processors and 256MB of memory, running Linux
operating system, and connected through a Fast Ethernet

LAN. Tests over the Internet (Figure 9) employed also a
machine linked to the network through a 128Kbps (for
upload) ADSL connection in which a federation
repository was located.
 In a nutshell, one can consider that for local access
and when the interacting entities are on the same LAN,
the prototype of the model inserts a significant overhead
if compared to a secure call only (i.e. a remote method
invocation in CORBA using SSL as underlying security
service). This happens because in addition to the
overhead caused by the use of a secure connection, the
prototype implementation exchanges messages in order
to implement the challenge/response protocol and to
search for the authorization chain. However, due to the
short processing time intervals incurred in the overall
operation, as can be seen on Figure 8, one can consider
that the response time is perfectly acceptable when it is
compared to other similar applications.

The overhead caused by the prototype running on
the Internet, shown in Figure 9, has an acceptable
processing time due to the advantages offered by the
proposed architecture if compared to similar mechanisms
implemented using classic PKIs.

One can also notice that the results of this
experiment can vary significantly according to the
semantic of the applications built using the proposed
schema.

0,01

0,1

1

10

100

1000

256B 1KB 4KB 16KB 64KB 256KB 1MB

ORBacus

ORBacus +
ORBAsec

ORBacus +
ORBAsec +
Model

Figure 9 – Average Response Times (in

seconds) for Internet Access (log graph)

5. Conclusions

 This paper proposed architectural extensions to the
SDSI/SPKI authorization and authentication model,
allowing the client to build new authorization chains in
order to link it to a server when the corresponding path
does not exist. This proposal is centered on the notion of
federations and on entities called Certificate Managers.
The role of certificate managers is to assist in the

0,0001

0,001

0,01

0,1

1

10

256 1KB 4KB 16KB 64KB 256KB 1MB

ORBacus
(Local)

ORBacus
(LAN)

ORBacus +
ORBAsec
(Local)

ORBacus +
ORBAsec
(LAN)

ORBacus +
ORBAsec +
Model (Local)

ORBacus +
ORBAsec +
Model (LAN)

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

construction of authorization chains by locating
principals with privileges needed by other principals. As
the certificate manager does not participate in the
authorization chains, the proposed model can be
considered fully decentralized. Thus, the manager does
not centralize nor turns hierarchical the relationship
between clients and servers, neither it can be considered
a critical point regarding faults, vulnerability or
performance.
 The proposed scheme provides Internet applications
with larger flexibility regarding country-specific legal
aspects than that offered by the X.509 infrastructure. It is
assumed that a client generally negotiates the concession
of privileges with a principal belonging to its domain
(from the same geographical location or country, for
example) and this principal can be inserted in remote
domains. Consequently, there is a strong relationship
between the client and local principals. In addition, there
can be relationship among the local principals and
principals from remote domains, so that contexts
compatible with the universe of each principal can be
defined on an arbitrary way.
 The federation web model proposed in this paper
frees the server from user account management. It also
frees the client from the traditional account creation
procedures in order to have access to a server – even in a
global context.
 The proposed model presents a support to certificate
management which allows the creation of new
authorization chains. This facility is not observed in any
other proposal presented in the technical literature. The
proposed scheme is quite flexible and automatic, even
considering that in some cases the number of messages
exchanged to create a new chain can be expressive.

The prototype implementation of the proposed model
shows its effectiveness in current systems integration. In
addition, the performance measurements obtained with
this prototype can be evaluated positively based on the
experimental results presented in this paper.

References

[1] ITU - International Telecommunication Union (1993).
Recommendation X.509 – Information technology – Open
Systems Interconnection – The Directory Authentication
Framework.

[2] HORST, F. W., LISCHKA, M. (2001). Modular
Authorization. In: Proceedings of the Sixth ACM
Symposium on Access control models and technologies.

[3] GARFINKEL, S. (1995). PGP:Pretty Good Privacy.
O’Reilly & Associates, Inc.

[4] BLAZE, M., FEIGENBAUM, J., LACY, J. (1996).
Decentralized Trust Management. In: Proceedings of the
17th IEEE Symposium on Security and Privacy.

[5] BLAZE, M., FEIGENBAUM, J., LACY, J. (1999). The
KeyNote Trust Management System, Version 2. IETF
RFC2704.

[6] LAMPSON, B., RIVEST, R. L. (1996). A Simple
Distributed Security Infrastructure. [online] available in
http://theory.lcs.mit.edu/~cis/sdsi.html, Last access on
January, 2003.

[7] ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R.,
THOMAS, B., YLONEN, T. (1999). SPKI Certificate
Theory. IETF RFC2693.

[8] GASSER, M., McDERMOTT, E. (1990). An Architecture
for Practical Delegation in a Distributed System. In:
proceedings of the IEEE Symposium on Security and
Privacy.

[9] NIKANDER, P., VILJANEN, L. (1998). Storing and
Retrieving Internet Certificates. In: 3th Nordic Workshop
on Secure IT Systems.

[10] AURA, T. (1998). Fast Access Control Decisions from
Delegation Certificate Databases. In: proceedings of 3th
Australian Conference on Information Security and
Privacy.

[11] AJMANI, S. (2000). A trusted Execution Platform for
Multiparty Computation. Master thesis. Department of
Electrical Engineering and Computer Science of MIT.

[12] CLARKE, D. E. (2001). SPKI/SDSI HTTP Server
Certificate Chain Discovery in SPKI/SDSI. Master
dissertation. Department of Electrical Engineering and
Computer Science of MIT.

[13] LI, N. (2000). Local Names in SPKI/SDSI. In: proceedings
of the IEEE Computer Security Foundations Workshop.

[14] AURA, T. (1998). On the Structure of Delegation
Networks. In: proceedings of 11th IEEE Computer Security
Foundations Workshop.

[15] OMG – Object Management Group (2002). Security
Service Specification, v1.8. [online] available in
http://www.omg.org/cgi-bin/doc?formal/02-03-11.pdf. Last
access on January, 2003.

[16] ADIRON, LLC (2000). ORBAsec SL2 User Guide.
Version 2.1.4.

[17] IONA Technologies Inc. (2001). ORBacus User Guide.
Version 3.3.4.

[18] IAIK (2000). iSaSiLk 3 - Reference Manual. Institute for
Applied Information Processing and Communications
(IAIK). Version 3.

[19] STAKEN, K. (2002). Xindice Developers Guide 0.7.1.
[online] available in http://xml.apache.org/xindice/guide-
developer.html. Last access on January, 2003.

 [20] THAU, R. (2002). Design Considerations for the Apache
API. [online] available in
http://modules.apache.org/reference. Last access on
January, 2003.

[21] TERREROS, Xavier O. S., RIBES, J-M. Mas (2002).
SPKI-XML Certificate Structure. [online] available in
http://www.oasis-open.org/cover/xml-spki.html. Last
access on January, 2003.

Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS’03)
1060-9857/03 $17.00 © 2003 IEEE

