
The Device Service Bus: A Solution for

Embedded Device Integration through Web Services

Gustavo Medeiros Araújo
Federal University of Santa Catarina

Informatics and Statistics Department
Florianópolis, SC – Brazil – 88040-900

gustavo.medeiros@inf.ufsc.br

Frank Siqueira
Federal University of Santa Catarina

Informatics and Statistics Department
Florianópolis, SC – Brazil – 88040-900

frank@inf.ufsc.br

ABSTRACT

This paper presents a middleware infrastructure for integration of

heterogeneous embedded devices in ubiquitous computing

environments. The proposed infrastructure employs the Devices

Profile for Web Services (DPWS) as the underlying integration

technology, allowing devices that adopt different networking

standards to interact with each other, through the use of

interconnection devices and software components responsible for

building a communication path among them. A prototype

implementation of this middleware infrastructure is also

described, and results of performance measurements obtained

with this prototype are presented.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures. D.2.12

[Software Engineering]: Interoperability.

General Terms

Design, Standardization.

Keywords

Web Services, Interoperability, Embedded Systems, Ubiquitous

Computing.

1. INTRODUCTION
The computing paradigm is rapidly changing from a computer-

centric model to a highly distributed and mobile scenario, in

which several devices are involved in the execution of

computational tasks. These devices range from high-end devices,

such as mobile phones and PDAs, to more limited equipment,

such as wireless sensors and RFID tags. The communication

technologies employed by these devices are different from servers

and desktop computers, which avail from a stable networking

infrastructure. In this scenario, devices build ad-hoc networks

using wireless network protocols, and have to identify

dynamically other devices and the services available on the

network. This scenario characterizes what has been called a

ubiquitous (or pervasive) computing environment [1].

Recent developments in wireless and mobile networking led to the

development of different networking standards, which are targeted

at different applications and classes of devices. The integration of

different classes of devices, which employ different networking

technologies, is still an open research area.

In this paper we introduce a middleware infrastructure which aims

to provide means for the integration of heterogeneous devices in

ubiquitous computing environments. The proposed solution is

based on the Web Services technology, which has been employed

successfully as the integration media for business systems and for

building distributed applications. In order to support the

execution of web services on devices with limited computing and

communication capabilities, the proposed architecture adopts the

Devices Profile for Web Services (DPWS) [2], a standard tailored

for the construction of web services in such environment.

The remainder of this paper is organized as follows. Section 2

presents the concepts and technologies adopted in the

development of the proposed solution. The proposed middleware

infrastructure for device integration is described in section 3.

Section 4 presents the prototype implementation of the

architecture, and performance measurements obtained with this

prototype are shown in section 5. Section 6 compares the

proposed architecture with similar projects found in the literature.

Finally, section 7 summarizes the contribution of this paper and

describes perspectives for further development in this field.

2. CONCEPTS AND TECHNOLOGIES
This section first analyzes the use of the Service Oriented

Architecture (SOA) in the context of embedded systems. In the

sequence, we describe the Devices Profile for Web Services

(DPWS) – a SOA-based protocol stack that allows the interaction

among heterogeneous embedded devices.

2.1 SOA and Embedded Systems
The Service Oriented Architecture (SOA) may be defined as a

paradigm that allows the construction of loosely-coupled software

components, which provide services to clients and may be

dynamically located and invoked using a well-known

communication protocol.

Web Services are the most popular technology for implementing

service-oriented software. The Web Services technology adopts a

set of standards for data representation and communication, so

that service providers and consumers may interact. These

standards - basically XML, HTTP and SOAP - are already

available in most platforms, allowing the deployment of web

services on virtually any computing device [3].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

Figure 1 – DPWS Protocol Stack

SOA and Web Services have been successfully adopted in

business environments, where the different information systems

employed by a company for automating business activities are

being turned into services which may easily interact with each

other. This integration among systems allows companies to

redirect their focus to business processes, instead of spending

resources on system operation and maintenance. Despite being the

most common scenario in which SOA is being used nowadays,

this is not the only scenario in which SOA is capable of providing

seamless integration among software [4].

During the last few years has been observed a sharp increase in

the production of embedded devices and the ubiquity of these

devices in our daily life. Such devices have also gained increasing

processing power and novel features, which include the capacity

of interacting with peers using communication technologies such

as wireless networks, and also the capacity of running high-level

network protocols such as the ones required by SOA. The

availability of interconnection mechanisms allows interoperation

among devices such as mobile phones and PDAs, industrial

machinery, health care equipment and home appliances.

Despite the rapid growth in the manufacturing of embedded

devices, the lack of widely adopted standards in this field is

making difficult and sometimes even impossible the exchange of

information among such devices. Some technologies, such as

UPnP [5] and Jini [6], have been proposed aiming to standardize

the communication and service location mechanisms, allowing the

interaction among devices. Jini provides a robust solution for

allowing device interoperability, but it is limited to the Java

platform. UPnP adopts well-known, implementation-independent

Internet standards such as HTTP, SOAP and XML for

communication among devices, but this standard is also

constrained by the boundaries of the communication network.

The next section describes DPWS, a protocol specification

proposed by a group of companies, which intends to allow

interoperability among devices and is not constrained by network

boundaries or by characteristics of the computing platform.

2.2 Devices Profile for Web Services (DPWS)
The Devices Profile for Web Services (DPWS) is a protocol stack

that provides high-level communication mechanisms for device

interoperability. Aligned with the standards adopted by web

services, DPWS becomes a link, in the embedded systems

scenario, to the world of SOA-based applications, offering to

embedded applications the same level of interoperability already

available in business applications. The protocol stack presented

by Figure 1 shows how DPWS leverages from Internet protocols

such as TCP, UDP (both multicast and unicast) and HTTP. For

message exchange, both SOAP-over-UDP and SOAP-over- HTTP

are used.

DPWS allows the construction of two kinds of services:

 Hosting Services: service that hosts other services and

receives different kinds of messages. In general, it represents

the device in which services are hosted.

 Hosted Service: service hosted by a hosting service, with a

lifetime that is limited by the lifetime of the hosting service.

Hosted services are visible on the network, and are addressed

independently from the hosting service.

As shown by Figure 1, the standard protocols adopted by the Web

Services technology are also leveraged by DPWS. These are:

 WS-Addressing: groups all the network addressing

information in message header fields, such as ‘To:’ and

‘Reply to:’. This allows the SOAP protocol to be

independent from the underlying transport protocol.

 WS-MetadataExchange: provides dynamic access to

metadata describing hosted and hosting services.

 WS-Discovery: provides plug-and-play mechanisms for

device location. The device discovery is performed using a

multicast protocol for locating services available on the

network. To extend the discovery to other networks, the

standard defines a Discovery Proxy, which also reduces the

network traffic generated by multicast communication.

 WS-Policy: provides a way to add information to a WSDL

description in the form of policies supported by services.

 WS-Eventing: defines operations for event notification,

allowing services to publish/receive asynchronous messages.

 WS-Security: provides mechanisms for securing the

interaction among services, guaranteeing security properties

such as authenticity, confidentiality and integrity.

The metadata of hosting and hosted services is divided into four

sections:

 ThisModel: describes characteristics that are common to a

group of devices that belong to the same class, such as

manufacturer name and URL, model name and code.

 ThisDevice: describes characteristics that may be different

from one device to another, such as SerialNumber,

FriendlyName and FirmwareVersion.

Figure 2 – DPWS Messages

Figure 3 – The Device Service Bus

 Relationship: describes the relationship among services,

giving details about a hosting service and its hosted services.

 WSDL: describes all operations, faults and data structures

supported by a particular hosted service.

The messages exchanged during the discovery process by devices,

its services and clients are shown by Figure 2. A Hello message is

an advertisement multicast by a device that has just joined the

network. By multicasting a Probe message, a client tries to locate

hosting services (i.e. devices) with particular characteristics,

which respond with ProbeMatch messages containing metadata in

which the hosted services are listed. The available services may be

described issuing Get messages, which result in GetResponse

messages being returned to the client, containing the description

of the queried service.

3. THE DEVICE SERVICE BUS
The Device Service Bus (DSB) is a software infrastructure based

on a lightweight, portable platform which may run on machines

ranging from a workstation to a small device. Following the SOA

principle, DSB provides a way to integrate devices by acting as a

broker between service providers and consumers. The main goal

of this infrastructure is to create a tunnel that provides a way to

expose devices which employ specific communication

technologies, such as RFID [7] and Bluetooth [8] as web services.

As shown in Figure 3, the Device Tunnel, which implements the

DPWS stack [2], exposes devices and services found by Bridges

and Converters. The Bridge handles all Converters available and

is responsible for connecting Virtual Devices to the core of the

architecture. The Converter, in the bottom of the stack, handles

technology-specific issues for all devices which employ that

particular technology. Therefore, DSB allows non-DPWS devices

to interact with other devices, including DPWS-capable devices,

through the provided communication infrastructure.

3.1 DSB Components
The architecture is composed by the following components, as

shown by Figure 3:

 Device Tunnel: is a Hosting Service which implements the

DPWS specification. The Device Tunnel can discover other

Device Tunnels and other DPWS-capable devices.

 Virtual Device: provides a DPWS interface for a non-DPWS

device. Each Virtual Device can host one or more Virtual

Services, which represent services implemented by non-

DPWS devices. Moreover, a Virtual Service may have one or

more Virtual Action and Virtual Events, which represent

actions and events implemented by these services.

Figure 4 – Device and Service Discovery

 Bridge: maintains the Virtual Device cache. When a Virtual

Device is added or removed by the Bridge, Hello and Bye

messages are sent, according to the DPWS specification [2].

The Bridge allows the interaction among DPWS devices and

Virtual Devices. A Bridge can be either local (i.e. may run on

the actual device) or remote. Remote Bridges are employed

when the device is not capable of running the whole DSB

stack. The Remote Bridge is similar to the Discovery Proxy

defined by the WS-Discovery specification [9].

 Converter: knows details about the device implementation,

its interface and services. The Converter can manage more

than one device that employs the same networking

technology. The Converter is responsible for extracting

device metadata and service descriptions and must know how

to invoke the services provided by managed devices.

The actual devices plugged to the DSB Stack have their own

lifecycle, and may become off-line without any advertisement. To

deal with this situation, the Converter employs a keep-alive

mechanism, which tracks all managed devices. If a

communication timeout happens, the Converter notifies the

Bridge, which removes the device from the Virtual Device Cache.

The number of devices that can be plugged into the stack and the

timeout employed by the keep-alive mechanism may be

configured, and the keep-alive mechanism can be switched off in

constrained environments in order to save bandwidth and energy

consumption.

3.2 DSB Dynamics
As shown by Figure 4, when clients send DPWS messages with

the intent of searching for a device, asking for device metadata or

for a service description, the Device Tunnel deals with the

incoming requests. The exact description of the Virtual Device

and its Virtual Service(s) is taken from the Virtual Device Cache.

Figure 5 illustrates the service invocation process. If a service is

invoked by a client, the Device Tunnel forwards the invocation to

the Bridge. Then, the Bridge redirects the incoming request to the

corresponding Converter. Similarly, the Converter forwards the

request to the corresponding device, which performs the service.

Furthermore, the Converter can wait for the service to be

concluded in a request-response interaction. After the device has

executed the service, the response is transferred to the client

through the DSB stack.

Figure 5 – Service Invocation

4. IMPLEMENTATION
A prototype implementation of the DSB has been built on top of

the WS4D framework [7], which was employed for developing

the Device Tunnel. The WS4D framework was extended to deal

with virtual devices and services. The remaining components of

the stack were implemented in Java ME CDC 1.1.2.

Each virtual device has its own metadata, with data corresponding

to the description of the actual device – i.e. serial number, name

and model number, manufacturer name, friendly name and so on –

in order to comply with the DPWS specification. Virtual devices

encapsulate descriptions of virtual services, establishing a one-to-

many association among them. The Device Tunnel exposes as

web services all virtual devices and their virtual services,

associating a particular endpoint with each of them. The endpoint

address is used by the Device Tunnel for demultiplexing requests

and to tell the bridge which virtual device and service have been

invoked. The bridge keeps in its cache a list of converters, and

each converter provides an interconnection point for devices

which use a particular communication technology.

In this prototype implementation, illustrated by Figure 6, a

converter has been implemented for RFID equipment. The

prototype was tested with the Sun Java Toolkit 1.0 for CDC and

with the Mercury M5 and M5e RFID readers. A converter for

Bluetooth devices [8] is also being developed. Devices with

support for Java ME CDC, such as some smartphones, PDAs and

SunSpot sensors [11] are considered native DPWS devices and do

not require a converter to interact with other devices.

5. PERFORMANCE TESTS
Tests have been performed with the intent of evaluating if the

Device Service Bus (DSB) was capable of handling a large

amount Virtual Devices and of dealing with simultaneous requests

to Virtual Services. These tests were executed on a testbed with

the following configuration:

 DPWS Stack with WS4D extended.

 Sun Java Toolkit 1.0 for CDC as client.

 Client running on a Pentium 4 with 2.4 GHz processor with

512 MB of memory, with Windows XP operating system.

 DSB (Local Bridge) implemented using Java SE 1.5,

executed on a Intel Core 2 Duo 2.0 GHz processor with 2GB

of memory, running the Windows Vista operating system.

Figure 6 – Prototype Implementation

 Wireless router 802.11g with 2.4GHz.

 Two types of passive tags (UMP RAFLATAC shortdipole

model and ALN-9540)

 Mercury M5 and M5e RFID readers.

The experiment was performed with two actual devices plugged to

the DSB – the Mercury M5 and M5e RFID readers, shown in

Figure 6 – and up to 98 simulated Virtual Devices plugged to the

DSB. Each simulated Virtual Device had one Virtual Service and

each Virtual Service had one Virtual Action with one input

parameter and one output parameter. Each RFID reader had one

service and one action, which was responsible for reading RFID

tags and returning the contents of the tags read.

All requests were made remotely to the Virtual Device that

represented the RFID reader. Therefore, the DSB had to locate the

Virtual Device in its cache to send the correct probe match, device

metadata, and service description. The client and the Bridge were

running on different machines, with the M5e RFID Reader

connected locally to the Bridge and the M5 Reader connected

directly to the network. One hundred requests were performed in

each round.

The first performance tests measured the response time to locate

a device. The discovery process was considered the time to send a

probe request, to process the probe match response, to get the

Virtual Device metadata and the Virtual Service description. The

average time to locate a Virtual Device and Virtual Service

through the DSB stack is 38,74 ms for the M5 reader, and 32,86

ms for the M5e. It is important to notice that the discovery process

requires three exchanges of messages through the network, as

shown by Figure 2. One request is a SOAP-over-UDP multicast

message to probe devices and the other two requests are sent

through SOAP-over-HTTP to get device metadata and service

description.

The second test consisted in measuring the invocation time,

varying the amount of data returned by the RFID reader. The

invoke process was considered just the time to invoke the action

and to receive the response, which ranged from 10 to 100 KBytes.

Figure 7 presents the results of these tests. The results show that

the response time grows at a lower rate than the return size,

showing that the invocation mechanism works well even for

services that return data at a high transmission rate.

Figure 7 – Average Response Time

6. RELATED WORK
Several research efforts have been made with the aim of

improving interoperability among devices, such as [12], which

proposes interconnecting Bluetooth and RFID devices, using the

first as the enabling technology for RFID reader mobility. On the

other hand, projects such as [13] and [14] employ the same

approach adopted by DSB, allowing devices provided with

different networking technologies to be interconnected. However,

the solutions presented by [13] and [14] require a robust

infrastructure to manage devices and services available on the

network. The solution proposed in this paper requires a more

lightweight and portable core, which may be deployed on devices

with limited resources such as a PDA or a Smartphone. In order to

achieve this, the DSB stack can be configured according to the

resources available in the hosting device. Besides, since DSB may

be available in multiple devices, several access points may be

created in order to exchange information through the DSB stack.

According to [2], the fact that DPWS employs a discovery proxy

allows the area coverage to be extended, and also transfers the

processing load generated by the discovery process to a different

machine, allowing more limited devices to save resource

consumption. In the DSB stack, the Bridge may run remotely,

such as a discovery proxy, in a way that allows devices to benefit

from less resource consumption.

The core of the DSB project is the DPWS implementation, which

allows the project to profit from the benefits of a loosely coupled

service-oriented architecture, built on top of largely available

protocols such as SOAP, HTTP and UDP (both multicast and

unicast). The plug and play capability, which is not a

characteristic present in regular web services, allows the dynamic

discovery of services and simplifies the effort necessary for

exposing services provided by devices. This feature is employed

by DSB to expose services and devices which do not support

DPWS natively.

7. FINAL REMARKS
This paper introduced the Device Service Bus, a middleware

infrastructure for integration of heterogeneous devices, which is

based on the Devices Profile for Web Services (DPWS). DSB

integrates devices that employ different communication

technologies, such as RFID and Bluetooth, allowing devices and

services provided by them to be exposed as web services.

The proposed solution for device integration is much lighter than

other solutions proposed in the literature, being able to run on

devices such as mobile phones and PDAs. Nonetheless, more

limited devices such as wireless sensors and RFID tags may also

be integrated through interconnecting devices, which host bridges

and connectors tailored for a particular networking technology.

Currently we are working on the support for Bluetooth devices

and SunSpot sensors. In the near future we intend to keep

working on connectors to incorporate even more networking

technologies to the Device Service Bus, in order to allow seamless

integration of different classes of embedded devices in a truly

ubiquitous and heterogeneous environment.

8. REFERENCES
[1] Weiser, M. Hot Topics: Ubiquitous Computing. IEEE

Computer, 26(10):71–72, October 1993.

[2] Microsoft Corporation. Devices Profile for Web Services

(DPWS). February 2006. Available at

http://schemas.xmlsoap.org/ws/2006/02/devprof/.

[3] W3C. Web Services Architecture. February 2004. Available

at http://www.w3.org/TR/ws-arch/.

[4] Machado, Guilherme Bertoni et al. Integration of Embedded

Devices Through Web Services: Requirements, Challenges

and Early Results. Proceedings of the 11th IEEE Symposium

on Computers and Communications (ISCC'06). Calgary,

Italy, June 2006.

[5] UPnP Forum. UPnP Device Architecture v1.0. July 2006.

Available at http://www.upnp.org/resources/documents.asp.

[6] Sun Microsystems. JINI Specifications Archive v2.1, 2005.

Available at http://java.sun.com/products/jini/2_1index.html.

[7] Want. R. An Introduction to RFID Technology. IEEE

Pervasive Computing, Vol 5(1), January 2006.

[8] Chatschik, B. An Overview of the Bluetooth Wireless

Technology. IEEE Communications Magazine, Vol. 39(12),

December 2001.

[9] Microsoft Corporation. The Web Services Dynamic

Discovery (WS-Discovery). April 2005. Available at

http://specs.xmlsoap.org/ws/2005/04/discovery/.

[10] Zeeb, Elmar et al. Service-Oriented Architectures for

Embedded Systems Using Devices Profile for Web Services.

21st International Conference on Advanced Information

Networking and Applications Workshops, 2007.

[11] Sun Microsystems. Getting Started with Sun SPOT, 2008.

Available at http://www.sunspotworld.com/docs/.

[12] Siegemund, F., Flörkemeier, C. Interaction in Pervasive

Computing Settings using Bluetooth-Enabled Active Tags

and Passive RFID Technology together with Mobile Phones.

Proc. IEEE PerCom 2003, March 2003.

[13] Yim, Hyung-Jun et al. Design of DPWS Adaptor for

Interoperability between Web Services and DPWS in Web

Services on Universal Networks. Proceedings of the IEEE

International Conference Convergence Information

Technology (ICCIT), November 2007.

[14] Raverdy, Pierre-Guillaume et al.: Efficient Context-aware

Service Discovery in Multi-Protocol Pervasive

Environments. Proceedings of the IEEE 7th Intl. Conference

on Mobile Data Management (MDM'06), May 2006.

