Integration of Embedded Devices Through Web Services: Requirements,
Challenges and Early Results*

Guilherme Bertoni Machado
Frank Siqueira
Federal University of Santa Catarina
Floriandpolis, Brazil
{bertoni,frank } @inf.ufsc.br

Abstract

Integration of the currently available computing systems
and platforms is one of the most envisaged goals achie-
ved by computer scientists, which starts to become a re-
ality nowadays. System integration technologies, such as
Web Services, can provide a middleware for systems that
were originally independent. This technology is being em-
ployed successfully for the integration of business software,
allowing the interaction between systems run by different
companies. Despite the high level of integration achieved
in business to business interactions, the same integration is
not always obtained at different levels within a corporation.
The factory floor is an important example of lack of system
integration. At this environment, several independent devi-
ces and communication systems coexist, and their integra-
tion often relies on customized solutions. Our goal in this
paper is to investigate the adequacy of Web Services for the
integration of the numerous devices that are found in a ma-
nufacturing cell in order to make these devices more easily
reconfigurable and able to adapt themselves to changes in
the production environment. This will be achieved by evalu-
ating the support provided by a typical embedded platform
and therefore identifying any limitation for its integration
with other devices. Along the paper, we also propose chan-
ges in the firmware of these devices in order to allow their
integration through the use of Web Services.

1 Introduction

Most of the devices that surround us nowadays - home
appliances, mobile phones, audio and video equipment,
PDAs and, of course, desktop computers - are not fully

*This research was supported by CNPq and FunPesquisa-UFSC

Robinson Mittmann
Carlos Augusto Vieira e Vieira
Boreste
Floriandpolis, Brazil

{bob.mittmann,carlos.vieira} @boreste.com

integrated, requiring them to be operated individually th-
rough their own user interfaces. Due to the availability of
network connection between most of these devices though
wired or wireless networks, it is possible for them to com-
municate with each other. But this is not all. Scientists are
working on ways to allow them to interact - and not only
to communicate - through standardized interfaces and com-
munication protocols so that they can work in an integrated
fashion. This will, in the near future, allow users to easily
control these devices though any other device connected to
the same network. This revolution was named “ubiquitous
computing” by Mark Weiser in the early nineties [1], being
also called “pervasive computing” nowadays.

Integration is also necessary between the different infor-
mation systems employed by businesses. Aiming to pro-
vide means for easily integrating these systems, computer
scientists have developed integration technologies such as
CORBA [2] and Web Services [3]. These technologies have
been successfully employed for the integration of informa-
tion systems between different corporations with business
ties, integrating the whole supply chain - all the way from
the raw material provider to the product retailer. Integra-
tion of different information systems is also possible within
a company through the use of Web Services, allowing dif-
ferent systems to exchange information, increasing the flow
of information between different departments of a corpora-
tion.

The same degree of integration is desired within a com-
pany at a different level. The different devices that are
employed in a manufacturing cell are often incompatible
and unable to interact properly without the development of
customized software, communication bridges and protocol
converters. The addition of new equipment in the produc-
tion cell or the manufacturing of a new product may re-
quire new software to be written, installed or configured.
Awkward solutions are often employed for integrating and
controlling these devices, resulting either in fully centrali-



zed or in a hierarchical topology in which production equip-
ment is connected to controllers that have to coordinate their
operation. In hierarchical topologies, low-level controllers
are controlled by their higher-level counterparts, which co-
ordinate different production cells in the factory floor. Fi-
gure 1 illustrates these topologies. Both have several draw-
backs such as limited performance, central points of failure
and difficult maintainability.

High-Level Controller

Controller Controller
| |

Controller
i \ i \
D D D D

@ ®)

I S s R S N M
1 1 1 1 1 1 1 1
D D D D D D D D

Figure 1. Centralized (a) and hierarchical con-
trol (b) of devices in a manufacturing cell.

Following the approach adopted for integration in perva-
sive computing and in business systems, this work aims to
investigate ways of allowing fully independent manufactu-
ring devices to interact without the necessity of employing
controlling devices. This fully distributed approach aims to
eliminate the previously described limitations of centralized
and hierarchical architectures.

Limitations found in the software employed by manu-
facturing equipment are mainly related to integrated opera-
tion and management. Devices often are unable to interact
without manual configuration, sometimes requiring specia-
lized software to be written to allow interoperability. With
the current diversity of equipment, such task is almost im-
possible to be performed. In order to overcome this limita-
tion, scientists are looking for ways to allow device intero-
peration without human intervention.

The Web Services technology has been employed in or-
der to allow the computer systems of different companies
to interact naturally, due to the adoption of standardized
ways of discovering and using the services that are provi-
ded by these systems. Furthermore, this technology adopts
open, widely available communication protocols and a stan-
dard data format, avoiding complex protocol translations
and data conversion along the communication path and at
the target systems.

Our goal in this paper is to investigate the adequacy of
the Web Services for the integration of the numerous devi-
ces that are found in production cells. This will be achieved
by evaluating the support provided by a typical embedded
platform and therefore identifying any limitation for its in-

tegration with other devices. Along the paper, we also pro-
pose changes in the firmware of these devices in order to
allow their integration through the use of Web Services.

The following section describes the technologies em-
ployed by Web Services, which will be adopted for system
integration. The architecture though which devices will be
integrated will be described in section 3, together with a
use case scenario. The following section presents the com-
puting platform, the operating system and the Web Services
toolkit that will be employed for device integration in the
production environment. Section 5 presents the tests perfor-
med with the platform in order to evaluate the adequacy of
web services for device integration. Related academic and
commercial initiatives are described in section 6 and com-
pared to the architecture proposed in this paper. Finally, the
authors present their conclusions and perspectives for future
work.

2 Integration Technologies

Integration technologies are intended to provide, at diffe-
rent levels, means of exchanging information between dis-
tributed applications in an heterogeneous environment. The
most important of these are the Universal Plug and Play de-
vice architecture - uPnP [4], the Common Object Request
Broker Architecture (CORBA) [2] and the Web Services ar-
chitecture the main subject of our study.

The Web Services architecture seeks to provide means of
integrating applications by using open standards, protocols
and languages widely adopted on the Internet, despite the
intrinsic heterogeneity of the distributed environment.

Based in a XML-based service-oriented distributed ar-
chitecture (SOA) paradigm [5], Web Services provide
the interconnection of systems through TCP/IP networks,
which have been widely adopted for the integration of bu-
siness applications. However, this sort of integration is still
not provided at the device level due to the lack of support
for this technology in most of these devices.

The core of the Web Service architecture is composed
by an Internet protocol (HTTP in most cases), through
which encapsulated XML messages are exchanged using
the SOAP protocol [6]. As superior layers we have the web
services description language (WSDL) [7] and the reposi-
tory that can be employed to publish and locate web servi-
ces - UDDI (Universal Description, Discovery and Integra-
tion) [8]. Beyond these layers, more recent studies aim to
improve some characteristics of the Web Services, such as:
Security, Quality of Service, etc [9, 10, 11].

Figure 2 illustrates the interaction between service con-
sumers, providers and brokers.



r—Service—\

SOAP

Application
SOAP

if

Client Processor
Response
tional :
2. Lookup (optional) Bussines
WSDL Logic
(. )
1. Register

Figure 2. Web Services interaction

3 Architecture

Nowadays most of the embedded systems are capable
of running standard Internet protocols such as TCP/IP and
HTTP. Based on the support provided by these protocols
and using a web services development toolkit suitable for
embedded systems, we have proposed an architecture (Fi-
gure 3) for integrating embedded devices using Web Servi-
ces [12].

SERVICES

Web Services
Library
Skeletons 1

( TCP /IP )

O0S KERNEL
NETWORK < |H | > NETWORK
INTERFACE NETWORK INTERFACE

HOSTS Embedded System

Figure 3. Environment Architecture

CLIENTS

SOAP (gSOAP,
AXIS, eSOAP,

SOAP + HTTP

( TCP/IP )

OS KERNEL

In our environment one or more hosts have clients which
sends its XML/SOAP messages according to the required
service type (previously known through the WSDL file lo-
cated in the Embedded System and/or in a UDDI repository)
through the HTTP protocol.

This massage reaches the Web Services library used to
built the service(s) and then the method invoked by the cli-
ent will be processed by the microcontroller. After the exe-
cution, a reply generated by the service may be returned to
the client.

3.1 Use Case Scenario

The proposed architecture has been employed in an hy-
pothetical scenario for industrial networks control systems
integration.

Integration Element

. Protocol
(Webserwce

Converter

K

INDUSTRIAL CAN BUS

I =2
|
el

Ethernet

=

Integration Element

Protocol

— (Webservice
Converter

Figure 4. Scenario

As shown by figure 4, the proposed architecture can pro-
vide a support for the integration of heterogeneous indus-
trial networks, such as Controlled Area Networks (CAN)
[13] and PROFIBUS [14]. The integration element works as
a protocol converter for each network bus and, for the other
devices connected to the network, each industrial equip-
ment will be seen as a Web Service. Therefore, a super-
visory control and data acquisition PC for each network in
the factory will be no more necessary, increasing the reli-
ability, reducing bottlenecks and also eliminating the need
for customized - and expensive - integration software.

In this scenario, SOAP messages will be exchanged
between integration elements and its clients, while inside
each industrial networks messages in network-specific for-
mat are exchanged. Each network implements its own con-
trol mechanisms, allowing the timing constraints imposed
by each production cell to be fulfilled in a deterministic
fashion.

Only high level control messages such as start, stop and



status are exchanged between integration elements and their
clients, and whenever it is possible this messages are defi-
ned in WSDL files for each web service in the factory.

4 Development and Execution Platform

After searching for a suitable embedded platform and
a Web Services development toolkit, we have chosen the
SHIP board [15] and the gSOAP toolkit [16] for the inte-
gration of industrial equipment using web services. During
this study we have employed the SHIP development version
with a 33MHz ARM7TDMI Micro-controller and gSOAP
version 2.7.3.

4.1 SHIP

Through an agreement firmed with Boreste (the com-
pany that manufactures the SHIP board) we have obtained
this ARM based socket card which has built-in support for
the TCP/IP protocol stack and an Ethernet interface. The
SHIP can be plugged to diverse external devices, such as
factory automation equipment. The SHIP board has a mi-
nimal operation system, but with enough features for de-
ploying Web Services, leaving approximately 448KBytes
of memory free for applications. The application server ge-
nerated by gSOAP running a minimal web service takes ap-
proximately 65KBytes of memory. Additional services take
as low as 2KBytes of memory each, depending on the com-
plexity of the service. The Ethernet controller firmware of
the SHIP board had to be reviewed to allow it to dispatch
requests with a reasonable response time and to support a
large amount of simultaneous requests.

4.2 gSOAP

Created by Professor Robert Van Engelen at the Florida
State University, the gSOAP toolkit is able to deploy C and
C++ web services applications and clients. As mentioned
in [17], full SOAP interoperability is provided.

Using the soapcpp2 compiler we obtained a transparent
binding between C and C++ data types and SOAP/XML
data types. The generated file contains the stubs and skele-
tons to send messages using the SOAP protocol.

It was necessary to make some changes in the source
code in order to make gSOAP compatible with the SHIP
operating system. Some gSOAP definitions at configure.h,
soapdefs.h and stdsoap2.h files were changed to adjust
SHIP capabilities. Also some GNU libc constants portabi-
lity issues were changed to values conforming to glibc-2.2.

5 Performance Tests

At the present stage, web services have been developed
and deployed successfully in the SHIP board using gSOAP
and have been tested using a desktop computer as client.
Our preliminary results were obtained trough SOAP/XML-
RPC requests using JMeter 2.1.1 [18] on a P4 2.8GHz with
Windows XP and Java 1.4.2. We use the response time me-
tric to analyze our environment.

The service employed for testing purposes consists in a
calculator service. So, when a client requests one of the
available services (i.e., the four basic mathematical operati-
ons, implemented by methods ns__add, ns__sub, ns__mul
and ns__div) a soap message is sent to the SHIP board,
which performs the operation and replies with a SOAP mes-
sage containing the result. After this, the server starts to
wait for another service request.

As we can see in the performance measurements pre-
sented by figure 5, when a single client performs requests
to the services, the average response time is 156 millise-
conds with a very small deviation between samples. On the
other hand, if more clients request services simultaneously,
the behaviour observed shows that some requests have to
wait longer while others are processed immediately. All the
SOAP/XML-RPC requests have 464 bytes.

1 Client Test
1000
T 00 Lk
s
S ool
& 600
i B
E o0
: |
E 200 - ==
77—
1 2 3 4 5 6 7 8 % 10 11 12 13 14 15 16 17 18 13 20
Samples
2 Client Test
4000
— 3500
E 3000 1?\\. I‘?\\‘ —— 0 second Ramp-UP
2 2500 = \L |J \ —s— 1 second Ramp-UP
£ 2000 f'l 1 J, \ 2 seconds Ramp-UP
E— 1500 fl 1‘| ,[ \‘ A 5 seconds Ramp-UP
E 1000 ,I U 5‘ / \ —+— 10 seconds Ramp-UP
= 500 g i y Y
L e e e o e e e e e
1 3 5 7 3 M i 15 T 19
Samples

Figure 5. 20 Samples 1 and 2 Client Test

In a next stage, other tests, specially those who concern
about memory usage, processing, transmission capacity and




priority between services will be made to achieve more de-
tailed results.

6 Related Work

Related academic and commercial initiatives are found
in the literature. Embedded platforms[19], [20], [21], [22]
and [23], among others, present the functionalities (native
TCP/IP stack and HTTP support) necessary to integrate de-
vices in distributed environments through these embedded
systems using Web Services. There also exists a reasonable
amount of Web Services development toolkits ([24], [25]
and [26], for example) able to work in embedded systems.

The related experiments found in the literature are des-
cribed with little level of detail. In [27] is described the
iPC embedded system which already has the complete set of
protocols for web services from TCP/IP to XML/SOAP. On
the other hand, [28] describe the use of the gSOAP toolkit
for web services development on more powerful embedded
platforms, such as Personal Digital Assistants (PDAs) and
also cite gSOAP as part of software development packages
for embedded systems.

Currently, as far as we know, there are no other viability
studies or experiments with the same intent of the work des-
cribed in this paper i.e., the integration of embedded devices
through Web Services.

7 Conclusions and Perspectives

Integration of embedded devices through Web Services
is possible, therefore the adequacy of Web Services for the
integration of the numerous devices that are found in a ma-
nufacturing cell in order to make these devices more easily
reconfigurable and able to adapt themselves to changes in
the production environment can be done.

Using the Web Services paradigm brings lots of vantages
such as:

e Modular and reconfigurable manufacturing cell. Ins-
tead of designing or buying a new and different su-
pervisory control and data acquisition system for each
industrial network, an integration element will work as
a middleware to interconnect each manufacturing cell
to the hole enterprise environment;

e Easy adopt - new devices, control flow, products and
process;

e Cost - achieved trough open standards, protocols and
languages widely adopted on the Internet and also, in
our case, the development toolkit software and embed-
ded platform operating system and runtime libraries
are open code;

e Easy integration between factory floor and the other
organization levels.

Our initial results demonstrate that the performance is via-
ble to a significant set of applications (best-effort and soft
real-time) and as a future work we intent to develop and de-
ploy our ideas in a real scenario such as presented in this

paper.
References

[1] M. Weiser. Hot Topics: Ubiquitous Computing. /EEE Com-
puter, 26(10):71-72, October 1993.

[2] Object Management Group (OMG). Common object request
broker architecture specification. Omg specification, OMG,
Dec. 2005.

[3] D. Booth et al Web services architecture.
http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/.

[4] U.Forum. UPnP Device Architecture. http://www.upnp.org.

[5] J. Roy and A. Ramanujan. Understanding web services.
IEEE Internet Computing, 3(6):69 — 73, Nov. - Dec. 2001.

[6] W3C. Xml  protocol  working  group.
http://www.w3.0rg/2000/xp/Group/.

[7] W3C. Web services description language (wsdl).
http://www.w3.org/TR/wsdl.

[8] UDDI. Universal description, discovery and integration.
http://www.uddi.org/.

[9] M. Conti, M. Kumar, S. K. Das, and B. A. Shirazi. Quality
of service issues in internet web services. IEEE Transactions
on Computers, 51(6):593 — 594, June 2002.

[10] D. A. Menascé. Qos issues in web services. IEEE Internet
Computing, 6(6):72 — 75, Nov. - Dec. 2002.

[11] D. A. Menascé. Reponse-time analysis of composite web
services. IEEE Internet Computing, 8(1):90 — 92, Jan. - Feb.
2004.

[12] G. B. Machado, F. Siqueira, R. Mittmann, and C. A. V. e Vi-
eira. Embedded systems integration using web services. In
Proceedings of Fifth International Conference on Networ-
king (ICN’06), Mauritius Island, April 2006. IEEE Compu-
ter Society Press. To be published.

[13] R. Bosh. CAN  Specification  Version 2.0.
www.algonet.se/ staffann/developer/CAN.htm.

[14] PROFIBUS International. PROFIBUS Technology and Ap-
plication - System Description. www.profibus.com.

[15] Boreste. Ship - embedded ethernet board.
http://www.boreste.biz/s.nl/sc.2/category.18/it. A/id.15/ 1.

[16] GENIVIA Inc. gsoap - c/c++ web services and clients.
http://www.genivia.com/.

[17] R. A. V. Engelen and K. A. Gallivan. The gsoap toolkit for
web services and peer-to-peer computing networks. In CC-
GRID ’02: Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, page 128.
IEEE Computer Society, 2002.

[18] The Apache Jakarta Project.
http://jakarta.apache.org/jmeter/.

[19] Ethernut. Open source hardware and software project for
building embedded ethernet devices.

[20] ATMEL. Avr embedded internet toolkit.

Apache jmeter.



(21]
(22]

(23]
(24]

[25]

(26]
(27]

(28]

Unicoi Sytems Inc. Fusion web.

NetBurner. Netburner  standard  hardware.
http://www.netburner.com/.

Lightner Engineering. Picoweb server.

EXOR International Inc. esoap - embedded soap.
http://www.embedding.net/eSOAP/.

IBM - International Business Machines Corpora-
tion. alphaworks emerging technologies toolkit.
http://www.alphaworks.ibm.com/tech/ettk.

Sun Microsystems. Java 2 platform, micro edition (j2me).
http://java.sun.com/j2me/.

WBC-Europe. Web services on a single chip. PIM - Project
Information Manual, 2004.

R. van Engelen. Code generation techniques for develo-
ping light-weight xml web services for embedded devices.
In SAC *04: Proceedings of the 2004 ACM symposium on
Applied computing, pages 854-861. ACM Press, 2004.



