
Large-Scale Media Delivery using a Semi-Reliable Multicast Protocol*

* This work is partially supported by CNPq (Brazilian National Research Council) through processes 481523/2004-9 and 506639/2004-5.

Christiane M. Bortoleto, Lau Cheuk Lung
Pontifícia Univ. Católica do Paraná, Brazil

cbortoleto@ibest.com.br, lau@ppgia.pucpr.br

Frank Siqueira
Univ. Federal de Santa Catarina, Brazil

frank@inf.ufsc.br

Abstract

This paper proposes a semi-reliable multicast
protocol that evaluates the necessity of retransmitting
lost packets, taking into account the priority
associated to each lost packet. The protocol relies on
the neighboring receivers for retransmitting lost
packets, resulting in much faster recovery. This paper
also demonstrates how the proposed protocol is able
to increase the quality of video streams transmitted
over the Internet, employing knowledge on the
transmitted MPEG frames to drive the recovery when
the packet containing the frame is lost.

1. Introduction

The scientific literature is rich on examples of
protocols which adopt a best-effort, multicast-based
strategy for distributed multimedia applications, in
which packets may be lost, corrupted or delivered out
of order; and on reliable multicast protocols, which are
employed by applications that demand fully reliable
message delivery (e.g., fault tolerant applications).
Semi-reliable multicast, a more recent proposal that
was not fully explored yet [3,4,5,6,7], emerges as an
alternative for these two approaches, which is
appropriate for applications such as audio and video
streaming.

This paper presents an efficient semi-reliable
multicast protocol, designed for distributing
information with different reliability requirements,
which are taken into account by the data recovery
mechanisms implemented by the protocol. This paper
also shows how this protocol can be employed by
group-based distributed multimedia applications (e.g.
digital video multicast) for efficient delivery of media

streams. The protocol requires that the video encoders
employed by the applications define some kind of
frame hierarchy, allowing the establishment of
priorities that are taken into account while recovering
lost frames.

The remainder of this paper is organized as
follows. Section 2 defines the main concepts related to
semi-reliable multicast. A recovery algorithm for
semi-reliable multicast is described in section 3. The
implementation of a semi-reliable protocol for delivery
of MPEG video streams which employs the proposed
recovery algorithm is described in section 4. An
application scenario and a performance evaluation
study are presented in section 5. Finally, the
conclusions of the authors are presented in section 6,
together with perspectives for further developments.

2. Semi-Reliable Multicast

Semi-reliable multicast is a communication
paradigm in which not every packet is necessarily
retransmitted when it is lost; most important packets
for the application are given higher priority. This
means that the reliable delivery for a given set of
packets which will be sent in a receiver group is
granted only to a subset of these (i.e., the packets with
higher priority). The other packets that suffered
transmission errors, which have lower priority, will
only be corrected if the network conditions (i.e. traffic,
congestion, latency, and so on) allow it.

It is possible to find in the technical literature
papers proposing multicast protocols with semi-
reliable characteristics. PRTP (Partially Reliable
Transport Protocol) [13], for example, is a partially
reliable protocol that does not insist on recovering all
the lost data. Instead, it recovers only part of the lost
packets, based on a minimum reliability defined by the

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

application. When the parameter level of reliability is
above the requested limit, the receiver that detects a
lost packet does not request its retransmission.

PRMP (Polling-based Reliable Multicast Protocol)
[1] is a reliable multicast protocol with a source-based
recovery mechanism, in which the packet rate at the
source is controlled in a way that it does not exceed
source or network capacity.

SRP [12] (Selective Retransmission Protocol)
adjusts the amount of retransmission based on QoS
factors, including total loss, latency, RTT (round trip
time), network congestion and user requirements. The
protocol is able to adjust the loss and latency levels of
each application, employing a decision algorithm to
determine if a retransmission request for a lost packet
should be answered or not. By adopting this strategy,
just a fraction of the lost data is retransmitted.

The WAIT protocol [9] provides an improved
quality of service for applications exchanging data
through the Internet, adjusting itself to different
quality requirements and reducing the network load.

A different approach, which is based on
semantically reliable multicast protocols, is presented
in [11]. The proposed approach eliminates obsolete
messages to sustain a higher throughput and to avoid
network congestion. Both the source and the receivers
eliminate obsolete messages from their buffers when
the buffer capacity is reached.

Interesting strategies for packet recovery are also
found in reliable multicast protocols. SRM (Scalable
Reliable Multicast) [6], for example, is a reliable
multicast protocol in which the retransmission is
performed by the receivers. In this protocol, every time
a loss is detected, a negative acknowledgement
(NACK) is sent to the whole multicast group and any
member having the requested packet may resend it. To
avoid packet flooding, every receiver waits for a
random time before sending a NACK and before
retransmitting a lost packet. If another node multicasts
the packet or NACK it was about to send, it assumes
that it is not necessary to do it.

These protocols present important improvements
necessary for some applications; however, they adopt a
common strategy for all transmitted packets. In the
next sections we propose a semi-reliable multicast
protocol and a recovery algorithm that take into
account the reliability of different classes of packets,
which can be adjusted for different application
scenarios. In this paper we also describe how this
protocol may be employed for multimedia delivery,
and show that it is able to improve the quality of the
exhibited media.

3. A Recovery Algorithm for Semi-Reliable
Multicast

The Semi-Reliable Recovery Algorithm proposed
in this paper is based on two main principles:

• Error correction can be made not only by the
source, but also by the receivers belonging to a
multicast group;

• Error correction mechanisms must take into
account information on the lost data in order to,
based on quality of service (QoS) requirements,
decide if it is necessary to recover this data.

Packets are multicast directly to the group, without
requiring previous knowledge of its members. Packet
loss is determined by finding gaps in the sequence
numbers of packets belonging to a packet flow. In
order to decide if a lost packet must be retransmitted, a
receiver must know the priority of this packet. This
information must be either carried by control messages
or by previous or subsequent packets in the same
packet flow. Therefore, when a packet is lost, the
application can still determine if it must be recovered.

The proposed algorithm is described in Figure 1.
Each receiver stores the new received packets in its
buffer (line 4), from where the application will fetch
them. In line 6, the receiver cancels any possible
retransmission request of the received message. If the
received message has already been received, it is a
retransmission sent to another receiver that requested
this packet, and it is not necessary to retransmit it
again (line 9). Then, receivers detect lost packets (line
11) through the search for gaps in the buffer, which
are detected verifying the sequence number of stored
packets. When a loss is detected, the receivers evaluate
if it is necessary to request retransmission through a
NACK message (lines 12 and 13). This evaluation is
based on the current packet loss rate and on
application-specific QoS requirements, which
represent the relevance of the lost packet for the
receiver and the usability of the lost packet by the time
it arrived at the receiver. Network parameters taken
into account are packet loss rate and acceptable delay.
A lost packet that is considered relevant (line 14) has
its retransmission requested through a NACK message
that is multicast to the group after waiting for a
random time (lines 15 to 19). Otherwise, if the packet
is not relevant, the receiver ignores the lost packet.
Any process (sender or receiver) which receives a
NACK and has the requested packet, evaluates again
the parameters (line 26) and, if retransmission is
required, multicasts it again to the group after a
random time (lines 28 to 32).

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

RECEIVER ALGORITHM
1. WHEN receive(m) {wait until a message is received}
2. IF m IS data {if this is a data message}
3. IF m ∉ buffer {if m is not in the buffer}
4. buffer ← m {add m to buffer}
5. IF m ∈ nack_list {if there is a NACK pending for this message}
6. nack_list → m {cancel NACK for m}
7. END-IF
8. ELSE IF m ∈ recovery_list {if recovery of m was requested by another receiver}
9. recovery_list → m {cancels retransmission of m}
10. END-IF
11. FOR EVERY ml ∉ buffer {for every message delayed or lost}
12. IF ml.expired = false AND {if the message has not expired and the required...}
13. ml.loss > current_loss {...loss rate for ml is greater than the current loss}
14. nack_list ← ml {add ml to the list of messages to be recovered}
15. WAIT random(Tnack) {wait for a random time}
16. IF ml ∈ nack_list {if ml has not been received or NACKed by others}
17. multicast(ml) {multicast NACK for this message to the group}
18. nack_list → ml {remove from the list of NACKs to be sent}
19. END-IF
20. END-FOR
21. END-IF
22. ELSE IF m IS nack {if this message is a retransmission request}
23. IF m ∈ nack_list {if the retransmission of m was waiting to be requested}
24. nack_list → m {cancel NACK for m because it has already been sent}
25. ELSE IF m ∈ buffer {if the requested message is in the buffer}
26. IF m.loss > current_loss {if m must be recovered to fulfill the required quality}
27. recovery_list ← m {add m to the list of messages to be recovered}
28. WAIT random(Trepair) {wait for a random time}
29. IF m ∈ recovery_list {if m was not recovered during this time}
30. multicast(m) {multicast the lost message to the group}
31. recovery_list → m {remove m from the recovery list}
32. END-IF
33. END-IF
34. END-IF
35. END-IF
36. END-WHEN

Figure 1. Proposed Protocol – Receiver Algorithm

The loss rate at each receiver is calculated based on
a sample window of size N, i.e., the last N multicast
packets. The current_loss variable (lines 13 and 26)
holds the percentage of lost packets in the sample,
calculated based on the number of missing packets in
the sample and the sample size. The relevance of a
packet is verified through the reception buffer. The
expired attribute of buffered packets (line 12) is set to
true when the application tries to fetch a packet from
the buffer and it is not available.

To avoid NACK or retransmission explosions, a
wait function interrupts the execution during a
random interval. Before sending a NACK, a receiver
Ri waits for a random time limited by Tnack (line 15). If
during this time it receives a NACK from another
receiver requesting the same packet, the receiver
cancels its NACK (line 24). In a similar way, when it
receives a NACK and has the requested packet, it
waits for a random time limited by Trepair before
multicasting this packet (line 28). However, if within
this period it receives the requested packet, the
receiver cancels the retransmission (line 9).

4. A Semi-Reliable Multicast Protocol for
Media Transmission

Multimedia data is generated with a fixed rate, and
frames have to be received and rendered in the
receiver with a similar rate to keep the original
meaning of the media. Thus, each packet has a
deadline associated to it. Besides, the loss ratio (i.e.,
the rate of data packets lost during network
transmission or delivered after the time they should
have been rendered) should also be within boundaries
defined by the application. So, the definition of QoS
requirements includes finding the acceptable
boundaries for transmission errors and jitter.

A traditional reliable multicast mechanism is not
appropriated for multimedia multicast for many
reasons. The retransmission strategy with timeout
achieves reliability but implies in latency increase.
Multimedia applications can tolerate errors due to lost
and corrupted frames as long as the loss rate is within
an acceptable limit. Thus, a multimedia transport
protocol demands semi-reliable delivery, where

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

respecting deadlines is more relevant than delivering
every single media packet.

4.1. The MPEG-2 Standard

The MPEG-2 Motion Picture Experts Group)
compression algorithm [1] is based on pixel
correlation and translational movement correlation
between consecutive frames. Most frames in an image
sequence are very similar, except for differences due to
movement, so it is possible to encode a frame
calculating the movement vector related to the
previous frame [6].

The MPEG-2 standard defines three types of
frames:

• I Frames (Intra-coded): a full image, like a JPG
picture;

• P Frames (Predictive): frames defined based on
the previous I frame;

• B Frames (Bidirectional): frames defined using
the previous and the next I or P frame.

A sequence starting with an I frame and ending in
the next I frame is called a group of pictures (GOP).
The dependencies between frames in a GOP are
illustrated by Figure 2.

I frames do not require other frames to be decoded,
but they are necessary for decoding P and B frames. If
an I frame is lost during transmission, it will not be
possible to decode the following frames that arrive
before the next I frame – i.e., the whole GOP. P
frames are needed for decoding B frames and are
based on forward prediction using the previous frame
as reference, which can be a P or I frame. If a P frame
is lost, all the previous B frames until the last P frame
and the subsequent frames in the GOP cannot be
decoded. B frames, though, are not necessary for
decoding other frames.

4.2. Design Principles

This protocol uses the frame hierarchy defined by
the MPEG standard for classifying MPEG frames and
deciding when a lost frame should be recovered,
enforcing a semi-reliable multicast policy.

I PB P BB B

Figure 2. Example of MPEG-2
Group of Pictures (GOP)

Once the frames are classified, error correction can
be performed by the sender or the receivers, according
to the lost frame type (I, P or B) and to the network
conditions.

The main principle behind the protocol is that
every I frame is subject to recovery while it is still
valid; on the other hand, P and B frames are
retransmitted only if the transmission environment
conditions allow it. Both P and B frames are
associated to loss rates, being retransmitted only if the
current loss rate does not exceed the loss rate specified
by this frame type. In general, B frames are considered
less important for the quality of the rendered video
than P frames, therefore they are allowed to suffer
greater loss.

4.3. Protocol Implementation

A prototype of this protocol has been implemented
in Java in order to have its behavior evaluated. IP
multicast was employed as the network protocol, with
the recovery mechanism described in session 3
implemented as a layer on top of it. At this stage of the
development, flow control mechanisms have not been
implemented.

A double buffer is employed to store received
frames before they are rendered by the application.
While the network fills the buffer with new frames,
the stored frames are being read from the buffer by the
application in order to be rendered. The protocol
stores frames that have already been rendered for one
second, if memory is available, so that they can be
retransmitted if required by another receiver. In this
case, the application will employ the algorithm
describe in session 3 in order to decide if it will
answer the retransmission request.

Figure 3 illustrates the buffer structure. Each
column corresponds to a GOP. Each frame is
associated to a frame type and a sequence number.
Shaded frames have already been rendered, and are
kept in the buffer for retransmission purposes. Frames
were marked as ‘ FFFiii’ were lost or delayed, preventing
their exhibition and, depending on the frame type, the
exhibition of frames that required them for being
rendered (e.g., frames 25 to 27 due to the loss of frame
P24, and frames 36 to 41 due to the loss of frame I35).
Frames from 42 to 65 have not reached the time for
being rendered, and the missing ones may still be
recovered in time.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Expired Buffered
I00 I07 I14 I21 I28 III333 555 I42 I49 I56 III666 333
B01 B08 B15 B22 B29 B36 B43 B50 B57 B64

B02 BBB000 999 B16 B23 B30 B37 B44 B51 B58 B65

P03 P10 P17 PPP222 444 P31 P38 P45 P52 PPP555 999
B04 B11 B18 B25 B32 B39 B46 B53 B60

B05 B12 B19 B26 B33 B40 B47 B54 B61

G
O
P

P06 P13 P20 P27 P34 P41 P48 P55 PPP666 222

Fi Type ‘F’ frame, seq. no. ‘i’, received
Fi Type ‘F’ frame, seq. no. ‘i’, received and rendered
FFFiii Type ‘F’ frame, seq. no. ‘i’, lost or delayed

Figure 3. Packet Buffer

For simplicity, we assume that a single video frame
is multicast by the video source in a datagram. The
protocol header specifies the sequence number of this
frame, and the frame type – I, P or B – of this and the
last N-1 frames, where N is the size of the GOP.
Therefore, it is possible to know what kind of frame is
missing when there is a gap in the sequence number of
received frames.

A frame is marked as expired in the corresponding
position of the buffer if the application tries to read it
and it has not been received (i.e., it was either lost or
delayed by the network) or another frame that is
necessary to render it is missing. After this moment, it
is useless to try to recover this frame, since it missed
the time to be exhibited.

The loss rates associated to P and B frames can be
adjusted so that the user can identify the values that
provide the best video quality in a particular
application scenario.

5. Application Scenario

In order to evaluate the proposed protocol, we have
simulated its behavior using the Simmcast [1] network
simulator.

In the performed tests, the proposed protocol, a
plain multicast protocol, a multicast protocol with
retransmission and a reliable multicast protocol were
compared in terms of error correction, recovery time,
receiver overload and video quality factor [5].

The network topology employed during these tests
was carefully chosen in order to evaluate the adequacy
of these protocols for multicast delivery in a large-
scale network. The chosen topology allowed the
evaluation of very similar conditions to those existing
on the Internet, with the distance from the source to
the receiver ranging from 1 to 15 hops.

Figure 4. Discarded Packets

5.1. Performance Measurements

Experiments were made in order to establish
boundaries for the loss rate parameters for different
frame types. The performance of the protocol was
evaluated in terms of error correction, delay and a
mathematical relation between recovered frames and
their importance for the quality of the rendered media.
The chosen experimental values were 83% of loss for
P-frames and 50% for B-frames.

Simulations were performed using the same
conditions for all four protocols. In terms of lost
packets recovery, the proposed protocol has presented
an average of 81.7 % of recovery against 2% of
multicast with NACK (simple retransmission) and
89% of the reliable multicast protocol. The best
performance from the proposed protocol and the
reliable multicast can be credited to the receiver-based
retransmission (about 90% of the recovered packets
came from other receivers instead of the source). The
reliable multicast has achieved a better rate due to its
attempts to recover every lost packet, no matter the
temporal relevance of the packet for the application.

The reliable multicast protocol recovers more
frames than the proposed protocol, but great part of
recovered data is discarded – 74% of recovered I-
frames against an average of 66% in the proposed
protocol, as shown by Figure 4. It means that the
proposed protocol is more efficient, once the recovered
packets are more often useful for the application by the
time they arrive.

An important result obtained with the proposed
protocol was the NACK suppression: an average of
31,5%. The results show that the rate increases when
the receiver is more distant from the source (the
average is 55% for the most distant ones), since
receivers close to the source detect losses and send
NACKs more quickly than the more distant receivers.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Figure 5. Video Quality Factor

Comparing the recovering times, the proposed
protocol was more efficient: its average was 214 ms
against 299 ms of the multicast with retransmission
and 368 ms of the reliable multicast.

Another parameter used in the evaluation was the
Video Quality Factor (q), defined in [5]. This
parameter consists in a metric based on the GOP
structure to evaluate video quality. The formula takes
into account direct losses (the ones caused by losing
the frame itself) and indirect losses (caused by the loss
of another frame). It is important to highlight that this
metric claims to evaluate transport information
regarding the video flow, and not the video quality
perceived by the user.

As shown in Figure 5, the proposed protocol has
presented a better performance compared to all the
other tested protocols, despite not recovering as many
frames as the reliable multicast protocol. This result
was obtained due to the selective discard of packets
containing less relevant frames.

6. Conclusions

This paper presented a semi-reliable multicast
protocol which is able to improve the quality of the
media delivery to a group through the network. Based
on the MPEG standard and on the multicast
technology, this protocol provides semi-reliable
delivery of video frames, improving the quality of
media multicast through the Internet.

An alternative approach, based on a different
technique, was proposed in the literature. Yavatkar
and Manoj have proposed a quasi-reliable multicast
transport protocol for transmitting multimedia
information in large scale [14]. The authors state that,
due to the nature of multimedia communication, the
protocol must use forward error correction to avoid

delays inherent to flow-based and error control
techniques. Our approach is able to deliver media with
quality close to optimal without imposing the
overhead caused by forward error correction
techniques.

The proposed semi-reliable multicast protocol is
still under development. In the near future we intend
to improve the protocol by adding congestion and flow
control mechanisms. We also intend to integrate
adaptation mechanisms to the protocol, which will
allow the automatic adjustment of the parameters
considered by the algorithm based on current network
conditions.

7. References

[1] M. Barcellos et al., “Simmcast: a Simulation Tool for
Multicast Protocol Evaluation”. XI Simpósio Brasileiro de
Redes de Computadores, Florianópolis, 2001.
[2] L. Chiariglione, “Short MPEG-2 Description”, April
2000. http://mpeg.telecomitalialab.com/standards/mpeg-2/
mpeg-2.htm.
[3] S. Floyd et al., “A reliable multicast framework for light-
weight sessions and application level framing”. Proc. of the
ACM SIGCOMM 95, Aug. 1995, pp. 345-356.
[4] P. Mane, “WAIT: Selective Loss Recovery for
Multimedia Multicast”. M.Sc. Thesis, Computer Science
Department, WPI, 2000.
[5] R.F. Martins, C.A. Leite, J.-M. Farines, “Toward
Quality Evaluation and Improvement of a MPEG Vídeo
Stream. Proc. of the 3th IEEE Latin American Network
Operations and Management Symposium – LANOMS’03,
Foz do Iguaçu, Brazil, 2003.
[6] J. Pereira et al., “Semantically Reliable Multicast
Definition, Implementation and Performance Evaluation”.
IEEE Transactions on Computers, vol. 52 no.2, 2003, pp.
150-165.
[7] M. Piecuch et al., “A Selective Retransmission Protocol
for Multimedia on the Internet”. Proceedings of SPIE
International Symposium on Multimedia Systems and
Applications. Nov. 2000.
[8] S. Schneyer et al., “PRTP: A Partially Reliable Transport
Protocol for Multimedia Applications”. Proceedings of
ISIMADE, Baden-Baden, Germany, Aug. 1999.
[9] X. Xu et al., “Resilient Multicast Support for
Continuous-Media Applications”. Proceedings of the
NOSSDAV’97, 1997.
[10] R. Yavatkar, L. Manoj, “Optimistic Strategies for
Large-Scale Dissemination of Multimedia Information”,
First ACM Int. Conf. on Multimedia, 1993.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

