
Maintaining Consistency of Data in Mobile

Distributed Environments�

Evaggelia Pitoura and Bharat Bhargava

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

Abstract
To deal with the frequent, foreseeable and variable

disconnections that occur in a mobile environment, we
introduce a exible, two-level consistency model. Se-
mantically related or closely located data are grouped
together to form a cluster. While all data inside a
cluster are mutually consistent, degrees of inconsis-
tency are allowed among data at di�erent clusters. To
take advantage of the predictability of disconnections,
and to accommodate mobility, the cluster con�gura-
tion is dynamic. We allow transactions to exhibit cer-
tain degrees of tolerance for inconsistencies by intro-
ducing strict and weak operations. Weak operations
are operations that can be executed under weaker con-
sistency requirements. We de�ne correctness criteria
for schedules that involve weak operations and compare
them with traditional serializability criteria. Finally,
we argue that our model is appropriate for a variety
of other environments including very large databases
and multidatabases.

1 Introduction
In the recent past, technical advances in the de-

velopment of portable computers and the rapidly ex-
panding cordless technology have provided portable
computers with wireless connections that permit users
to actively participate in distributed computing even
while moving. The resulting distributed environment
is subject to restrictions imposed by the nature of the
wireless medium, and the resulting mobility of users.

A mobile distributed system consists of two types
of hosts: mobile hosts and �xed hosts [12]. Some of
the �xed hosts, called base stations, are augmented
with a wireless interface to communicate with mobile
hosts. The geographical area covered by a base sta-
tion is called a cell. Each mobile host can directly
communicate with one base station, the one covering
its current geographical area.

Mobile users will desire access to private or corpo-
rate databases that will be stored at mobile as well
as static hosts, and queried and updated over the

�in Proceedings of the 15th International Conference on Dis-

tributing Computing Systems, Vancouver, British Columbia,

Canada, May 30 - June 2, 1995

This and related reports are available through www, URL

address: http://www.cs.purdue.edu/people/pitoura

wired and the wireless network. For example, insur-
ance agents may interact through their mobile sta-
tion with a database storing consumer records, while
traveling salespersons may access inventory databases
[12]. These databases, for reasons of reliability, perfor-
mance, and cost will be distributed and replicated over
many sites. The use of replicated databases entails
both a schema for placing and locating copies, and
concurrency and replica control protocols for ensur-
ing correctness. Previous research on replication and
mobility has mainly addressed the �rst issue [3, 10].
In this paper, we propose schemas for maintaining the
consistency of replicated data, in a way that takes into
consideration the restrictions imposed by the nature
of mobile computing.

Motivation. Wireless communications and mobility
introduce a new paradigm of distributed computing
[8, 12, 17]. Today's computer systems often depend
heavily for their operation on the rest of the network.
Mobile computers, however, are very susceptible to
network disconnections. The majority of these dis-
connections are voluntary. Frequently, users will de-
liberately avoid use of the network for cost or power
consumption or because no networking capability is
available at their current location. Thus, many users
will be only occasionally connected to the rest of the
network. Handling disconnections has been discussed
extensively in the context of network partition [7].
Their frequency, however, forces making them part
of normal operation and considering a new mode of
operation called disconnected operation [12, 15]. Fur-
thermore, in network partitions, disconnections are in-
voluntary and mostly unpredictable since they result
from network or host failures.

Wireless networks deliver much lower bandwidth
than wired networks, and have higher error rates [8].
Mobile systems are also characterized by high varia-
tion in network bandwidth, that can shift one to four
orders of magnitude, depending on whether the host
is plugged in or using wireless access and on the type
of connection at its current cell [8, 12]. Finally, while
in static designs the location of users is �xed, in mo-
bile environments it varies, thus the notion of locality
changes as users move into new cells.

As a consequence, concurrency control schemas for
mobile distributed databases should meet novel objec-



tives. In particular, these schemas should:

1. support the autonomous operation of mobile
hosts during disconnections,

2. reect a greater concern for bandwidth consump-
tion and constraints,

3. be able to adapt to varying connectivity condi-
tions, and

4. take into account the changing locality.

Although replica control schemas that address some
of the above concerns have already been studied in
the context of mobile �le systems (for instance, see
[15, 22]), the database community is only starting to
address these issues [4].

Our Approach. Maintaining data consistency over
all distributed sites imposes unbearable overheads on
mobile computing [2, 8, 11, 18]. In this paper, we pro-
pose a more exible model. Semantically related or
closely located data are grouped together to form a
cluster. While full consistency is required for all data
inside a cluster, degrees of consistency are de�ned for
replicated data at di�erent clusters. The degree of
consistency may vary depending on the availability
of network bandwidth among clusters. The cluster
con�guration is dynamic. We augment the database
interface by adding weak operations. Users access lo-
cally (i.e., in a cluster) consistent data by issuing weak
transactions and globally consistent data by issuing
strict transactions. Weak operations support discon-
nected operation since a mobile host can operate dis-
connected as long as applications are satis�ed with
local copies. Furthermore, by allowing applications to
specify their consistency requirements, better band-
width utilization is achieved. Finally, the proposed
schema models operations on imprecise location data.

The organization of the remainder of this paper is
as follows. Section 2 introduces the concepts of clus-
ters and degrees of consistency, and Section 3 intro-
duces weak and strict operations and the transactions
that employ them. In Section 4, we specify correct-
ness criteria and graph-based methods for maintaining
intra-cluster consistency and bounded inconsistency
among clusters. Section 5 presents criteria and graph-
based tests for restoring inter-cluster consistency dur-
ing cluster merging. In Section 6, we compare our
work with related research. In Section 7, we show
how the concepts of clustering and weak transactions
can prove useful in two other contexts, namely in very
large databases and in multidatabases. Finally, in Sec-
tion 8, we o�er conclusions and future work.

2 Consistency Clusters
A database is distributed at �xed and mobile hosts.

Data are stored or cached at a mobile host to support
its autonomous operation during disconnections and
to avoid costly use of the network. We assume a fully
distributed environment where users submit transac-
tions from mobile or static hosts. Transactions may
involve both remote data and data stored locally at

the user's host. We consider the items of a database
to be partitioned into clusters. Clusters are the units
of consistency in that all data items inside a cluster
are required to be fully consistent, while data items
residing at di�erent clusters may exhibit bounded in-
consistencies.

Clustering may be based on the physical location
of data. Under this de�nition, data located at the
same, neighbor, or strongly connected hosts are con-
sidered to belong to the same cluster, while data re-
siding at disconnected or remote hosts are regarded
as belonging to separate clusters. The cluster con-
�guration is dynamic. By taking advantage of the
predictable nature of disconnections, clusters of data
may be explicitly created or merged upon a forecoming
disconnection or connection of the associated mobile
host. Furthermore, to accommodate migrating local-
ity, a mobile host can move to a di�erent cluster when
it enters a new cell.

Other de�nitions of clusters are also feasible. First,
clusters may be de�ned based on the semantics of data
with the most characteristic such case being location
data. Location data, which represent the address of
a mobile host, are fast changing data replicated over
many sites. These data are often imprecise, since up-
dating all their copies imposes unbearable overheads
[13]. Second, the de�nition of clusters may be explic-
itly provided by users based on the requirements of
their data or applications. Finally, information stored
into a user's pro�le may be utilized to determine clus-
ters. For example, data that are most often accessed
by some user or data that are in a great extent pri-
vate to a user can be considered to belong to the same
cluster independent of their location or semantics.

Formally, a mobile database MD is a �nite set of
data items. An MD is partitioned into a �nite set of
clusters Cli, i � N, where Cli is a set of data items.
We say that an item x � MD i� x � Cli for some i �
N. A database (or a cluster) state is de�ned as a map-
ping of every data item to a value of its domain. Data
items are related by a number of restrictions called
integrity constraints that express relationships of data
items that a database state must satisfy. Integrity con-
straints among data items inside the same cluster are
called intra-cluster constraints and constraints among
data items at di�erent clusters are called inter-cluster
constraints.

De�nition 1 (m-consistency) A cluster state is
consistent i� all intra-cluster integrity constraints
hold. A mobile database state is m-consistent i� all
cluster states are consistent and all inter-cluster in-
tegrity constraints are m-degree consistent.

The de�nition of m-degree consistency for an in-
tegrity constraint depends on the type of the inter-
cluster constraint. In this paper, we focus on the spe-
cial case of replication constraints.

Degrees of Consistency for Replicated Data.
A replication constraint R over a set of data items
fxi1, xi2 , : : :, xikg is de�ned as: R(xi1 , xi2, : : :, xik)
= (for any j, l 2 [1 : : :k] and (xij 2 Clm, xil 2



Cln)) (m = n ) xij = xil) and (m 6= n ) m-

degree(xij ; xil) ). That is, copies are data items that
have the same data value while in the same cluster,
and while in di�erent clusters, their values are asso-
ciated by an appropriately de�ned m-degree relation.
In the following, we call the set fxi1 , xi2, : : :, xikg a
data item and denote it by x. We call the elements
xi1 , xi2 , : : :, xik of the set, which are the physical en-
tities stored in the database, (data) copies of x. For
clarity, in the following, we collectively denote by xi a
representative of all copies of x located at cluster Cli.

For cached data, the m-degree relation may express
the divergence of a cached (secondary) copy from the
value of the primary copy (as in quasi copies [1]). In
this case, the allowable degree of deviation may be
bounded by (a) setting a maximum value on the al-
lowable deviation, (b) setting a limit on the number of
transactions that can operate on inconsistent copies,
or (c) limiting the number of allowable versions. There
are many alternative ways of de�ning degrees [20]. For
instance, the m-degree relation may be de�ned by lim-
iting the number of (d) data items or (e) data copies
that can diverge. In Section 4.2.1, we show how to
maintain degrees for each of the above cases.

The degree may vary based on the availability
of network bandwidth by allowing little deviation in
cases of higher bandwidth availability and higher de-
viation in cases of low bandwidth availability. This is
an important property of bounded inconsistency since
it provides applications with the capability to adapt to
the currently available bandwidth, providing the user
with data of variable level of detail or quality. For
example, in the instance of a cooperative editing en-
vironment where multiple users are coediting a book,
the application can display only one chapter or old ver-
sions of chapters under weak network connections and
up-to-date copies of all chapters under strong network
connections.

3 Weak and Strict Transactions
In an m-consistent MD, some data items do not

satisfy inter-cluster constraints in the strict sense.
However, during disconnections or when the connec-
tion is weak or costly, this may be the only data that a
user can a�ord to access. To maximize local process-
ing and reduce network access, we allow the user to in-
teract with locally (in a cluster) available m-consistent
data by introducing two new kinds of operations, weak
reads and weak writes. These operations allow users to
operate on m-consistent data when the lack of strict
consistency can be tolerated by the semantics of their
applications. We call the standard read and write op-
erations strict read and strict write operations to dif-
ferentiate them from weak operations. We distinguish
two basic types of transaction units regarding consis-
tency: (a) transactions that consist only of weak read
and weak write operations and are called weak trans-
actions; and (b) transactions that consist only of strict
read and strict write operations and are called strict
transactions. Weak transactions access data copies
that belong to the same cluster, and can be consid-
ered local at that cluster. Each submitted transaction

is decomposed to a number of weak and strict sub-
transactions according to the degree of consistency re-
quired by the application.

Of particular interest are a special kind of weak or
strict transactions called query or read-only transac-
tions, which are transactions that consist only of read
operations and therefore do not interfere with any in-
tegrity constraints. Weak and strict read-only trans-
actions are discussed further in Section 6.

3.1 Notation and formalism
We support two types of data operations, weak

and strict. A weak read operation on a data item
x (W Read[x]) reads a locally available copy of x,
that is the value written by the last weak or strict
write operation at that cluster. A weak write opera-
tion (W Write[x]) writes a local copy and is not per-
manent unless it is committed in the merged network.
A strict read operation (S Read[x]) reads the value of
x written by the last strict write operation. Finally, a
strict write operation (S Write[x]) writes one or more
copies of x. We use the subscript j to denote that a
database operation is issued by a transaction Tj. Aj

and Cj are the abort and commit operations of trans-
action Tj .

Weak transactions have two commit points, a lo-
cal commit in the associated cluster and an implicit
global commit after cluster merging. The local com-
mit point is expressed by an explicit commit opera-
tion. We use the notation Cj [i] to indicate that trans-
action Tj is locally committed in cluster Cli. Updates
made by locally committed weak transactions are only
revealed to other weak transactions in the same clus-
ter. These changes are revealed to strict transactions
only after merging, that is when local transactions be-
come globally committed. Thus, the updates of a weak
transaction are considered permanent only after global
commitment, since before global commitment a weak
transaction may be undone even after being locally
committed. Formally,

De�nition 2 (weak and strict transactions)
A transaction (T ) is a partial order (OP , <), where
OP is the set of weak or strict read, weak or strict
write, abort and local commit operations executed by
the transaction, and < represents their execution or-
der. The partial order must specify the order of con-
icting data operations and contains exactly one abort
or commit operation which is the last in the order.
Two weak (strict) data operations conict if they ac-
cess the same copy of a data item and at least one of
them is a weak (strict) write operation. Two types of
transactions are supported, weak and strict. A weak
transaction (WT ) is a transaction where OP does not
include any strict operations. A strict transaction
(ST ) is a transaction where OP does not include any
weak operations.

To implement the above mentioned semantics it suf-
�ces for each local transaction manager in cluster Clk
to maintain two versions, xsk and x

w
k , of each data copy

xk. The version xsk is updated by strict transactions
and is called strict version, whereas xwk is updated by
both strict and weak transactions and is called weak



(a )kiW_Read

(a )kiS_Read

(a )kW_Write i

(a )kiS_Write

jW_Read (a )k j (a )kS_Read j (a )kW_Write j (a )kS_Write

x

x

x

x

x

x

xx

x

x

Table 1: Conict relation, a \x" entry indicates that
the operations for the given row and column conict.
Row entries correspond to operations of transaction
Ti and column entries to operations of transaction Tj

version. Strict transactions read xsk while weak trans-
actions read xwk . Although in most cases, one version
is su�cient to implement the above schema, for gener-
ality and understandability, we will use both versions
in the following discussion.

To process operations of a transaction, a DBMS
translates operations on data items into operations on
the replicated copies of those data items. We formal-
ize this translation by a translation function h. An
W Read(x) operation in a cluster Clk is translated
into a read of the locally available copy Read(xwk ) and
an W Write operation to a write of the locally avail-
able copy Write(xwk ). Note, that this update can-
not be seen by other strict transactions until cluster
merging, when weak transactions are globally commit-
ted. Abort and commit operations of a weak trans-
action are mapped to local abort and commit op-
erations in the associated cluster. For strict opera-
tions in a cluster Clk, h maps each S Read[x] into
Read[xsi ], where x

s
i is a copy of x, and each S Write[x]

into Write[xsj1], ..., Write[xsjk ], and Write[xwj1], ...,

Write[xwjk ] for some copies xj1 , ..., xjk , of x. Abort

and commit operations are mapped to (global) abort
and commit operations.

Which data copies are actually read or written
when a database operation is issued on a data item de-
pends on the coherency algorithm used. For example,
h may be de�ned so that each strict write operation
updates only one copy of each data item. In this case,
the copy updated corresponds to a primary copy for
that data item and one version of each data copy is
su�cient for implementing the schema.

In the following, Write and Read operations are
pre�xed with W or S to indicate whether they have
originated from weak or strict transactions respec-
tively. To simplify the notation we omit the super-
scripts in data copies. Thus, a read operation on a
data copy of x in cluster Clk that originated from
a weak transaction is denoted W Read(xk). Table 1
summarizes conicts between weak and strict data op-
erations of two transactions. Two operations conict
if they access the same version of a data copy and one
of them is a write operation.

Integrity Constraints and the Translation
Function. In the case of integrity constraints other

than replication constraints between data items, the
translation function h can produce transactions that
are inconsistent, in particular transactions that vio-
late integrity constraints between weak versions in the
same cluster. The following example is illustrative.

Example 1 For simplicity consider only one cluster.
Assume two data items b and c, related by the integrity
constraint b > 0 ) c > 0, and a consistent database
state bs = �1, bw = �1, cs = 2 and cw = �4. Con-
sider the transaction program:

b = 10

if c < 0

then c = 10

If the above program is executed as a strict transac-
tion S Write(b) S Read(c), we get the database state
bs = 10, bw = 10, cs = 2 and cw = �4, where the in-
tegrity constraint between the weak versions of b and c
is violated. 2

The problem is that weak versions are updated to
the current value of the strict version without taking
into consideration integrity constraints among weak
versions. Similar problems are faced when refresh-
ing individual copies of a cache [1]. Some possible
solutions include: (1) Each time a weak version is
updated as a result of a strict write, the weak ver-
sions of all data related to it by some integrity con-
straint are also updated either after or prior to the
execution of the transaction. This update is done fol-
lowing a reconciliation procedure for merging weak
and strict versions (as in Section 5). In the above
example, the versions of b and c should have been
reconciled prior to the execution of the transaction,
producing for instance the database state bs = �1,
bw = �1 cs = 2 and cw = 2. Then, the execution
of the transaction would result in the database state
bs = 10, bw = 10, cs = 2 and cw = 2, which is consis-
tent. (2) Each transaction program that writes a data
item at a cluster is also translated to a weak transac-
tion. The above example would result in transactions
S Write(b) S Read(c) and W Write(b) W Read(c)
W Write(c) and a database state bs = 10, bw = 10,
cs = 2 and cw = 10 which is consistent. (3) Updating
weak versions is postponed by deferring any updates of
weak copies that result from writes of the correspond-
ing strict copies. A log of weak writes resulting from
strict writes is kept. In this scenario, the execution of
the transaction results in the database state bs = 10,
bw = �1, cs = 2 and cw = �4, which is consistent.

3.2 Discussion
The above hybrid schema allows two types of trans-

actions, weak and strict, to coexist. Weak transactions
allow users to process local data without the overhead
of long network accesses. Strict transactions need ac-
cess to the network to guarantee consistency of their
updates.

Weak reads give users the choice of reading an ap-
proximately accurate value of a data even under dis-
connections or weak connections. This value is su�-
cient for a variety of applications which do not require



exact values. Such applications include gathering in-
formation for statistical purposes or making high-level
decisions and reasoning in expert systems which can
tolerate bounded uncertainty in input data. For in-
stance, a customer may check the available credit be-
fore buying an item, and a traveling salesperson can
check the available stock of an item before a sale. Fi-
nally, in another context, getting the approximate lo-
cation of a mobile user may be su�cient for determin-
ing what type of location-based services, e.g., tra�c
information, is applicable to her/him.

Weak writes allow users to update local data with-
out con�rming those updates immediately. The vali-
dation of the updates is delayed till clusters are con-
nected. Delayed updates can be performed during pe-
riods of low network activity to reduce demand on the
peaks. Furthermore, transmitting many weak writes
together as a block rather than one at a time can im-
prove bandwidth usage. For example, a salesperson
can locally update many data items, till these updates
are �nally con�rmed, when the machine is plugged
back to the network at the end of the day. However,
since weak writes may not be �nally accepted they
must be used only when compensating transactions
are available, or when the likelihood of conicts is very
low. For example, users can use weak transactions to
update mostly private data and strict transactions to
update highly used common data.

4 Maintaining Consistency in a Clus-

ter Con�guration
In this section we de�ne correctness criteria and

graph-based characterizations for the correct concur-
rent execution of weak and strict transactions in a
given cluster con�guration.

4.1 Schedules
Intuitively, a (complete) intra-cluster schedule,

IAS, is an observation of an interleaved execution of
transactions in a given cluster con�guration, that in-
cludes locally committed weak transactions and (glob-
ally) committed strict transactions. Formally,

De�nition 3 (intra-cluster schedule) A (com-
plete) intra-cluster schedule, IAS, over T = fT0; T1;
:::; Tng is a pair (OP, <) where < is a partial ordering
relation where

1. OP = h(
Sn

i=0 Ti) for some translation function
h.

2. For each Ti and all operations opk, opl in Ti, if
opk < opl, then every operation in h(opk) is re-
lated by < to every operation in h(opl).

3. All pairs of conicting operations are related by
< (where conicts are de�ned in Table 1).

4. For all read operations S Readj[xi] there is
at least one S Writek[xi] operation, such that
S Writek[xi] < S Readj[xi] and for each
W Readj[xi] there is at least one write opera-
tion Writek[xi], either weak or strict, such that
Writek[xi] < W Readj[xi].

5. If S Writej [x] < S Readj[x] and
h(S Readj[x]) = S Readj [xi], then S Writej [xi]
� h(S Writej [x]).

6. If S Writej [xi] � h(S Writej [x]) for some strict
transaction Tj then S Writej [yi]�h(S Writej [y])
for all y written by Tj for which there is a yi �
Cli.

Condition (1) states that the transaction managers
translate each operation submitted by a transaction
into appropriate operations on data copies. Condition
(2) states that the intra-cluster schedule preserves the
ordering stipulated by each transaction. Condition (3)
states that the schedule records the execution order
of conicting operations. Condition (4) states that a
transaction cannot read a copy unless it has been pre-
viously initialized. Condition (5) states that if a trans-
action writes a data item x before it reads x, then it
must write to the same copy of x that it subsequently
reads. Finally, condition (6) indicates that for a strict
transaction, if a write is translated to a write on a
data copy at a cluster Cli then all other writes of this
transaction must also write the corresponding copies
at cluster Cli. This condition is necessary for ensuring
that weak transactions do not see partial results of a
strict transaction.

Thus, in an intra-cluster schedule a weak read oper-
ation reads-xi-from the transaction that has last weak
or strict written xi. A strict read operation reads-xi-
from the transaction that has last strict written xi. A
(weak or strict) transaction reads-x-from a transaction
if for some copy xi it reads-xi-from that transaction.
Note, that if we want the weak operations at a cluster
to read only values written by weak transactions, we
can de�ne h such that no strict transaction writes at
that cluster.

Given a schedule S, the projection of S on strict
transactions is the schedule obtained from S by delet-
ing all weak operations, and the projection of S on a
clusterClk is the schedule obtained from S by deleting
all operations of S that do not access Clk.

4.2 Correctness criterion
A correct concurrent execution of weak and strict

transactions must maintain m-consistency among
clusters and strict consistency inside each cluster.

4.2.1 Maintaining bounded inconsistency

In our schema the degree for each data item at a clus-
ter expresses the divergence of each local (weak) ver-
sion from the value of the strict version. This dif-
ference may result either from globally uncommitted
weak writes or from updates of strict versions that
have not yet been reported at the cluster. As a conse-
quence, the degree may be bounded either by limiting
the number of weak writes pending commitment or by
controlling the h function.

Speci�cally: (a) If the value of a data item is arith-
metic and the degree is expressed as a range m of
acceptable values that each copy of a data item can
take, then only weak writes that are in the allowable



bounds are accepted. (b) If the degree is expressed as
the number of transactions that are allowed to read
inconsistent data then we bound the number of weak
transactions that are allowed at each cluster. (c) If
the degree m is bounded by limiting the number of
versions, that is if a weak transaction at a cluster Cli
must read only m-version old data, we de�ne h such
that a strict write modi�es the data at a cluster at
least every m updates. (d) If the degree m is de�ned
as the number of data items that are allowed to di-
verge, we bound the number of weak versions that are
allowed to diverge from the strict versions at all clus-
ters tom. This is accomplished by allowingweak reads
and writes only on m data items. (e) Finally, if the
degree m is de�ned as the number of data copies that
are allowed to diverge, we bound the number of weak
versions that are allowed to diverge at each cluster so
that the total number of weak versions that di�er from
strict versions in all clusters is m. This is achieved by
bounding appropriately the number of weak writes at
each cluster.

4.2.2 Maintaining intra-cluster consistency

If each transaction maintains m-consistency when ex-
ecuted alone, and if the projections of the schedule at
each cluster are conict-serializable [5], then serializ-
ability of each of the projections su�ces to ensure that
each weak transaction gets a consistent view, that is
the integrity constraints among the data it reads hold.
This is true because if a strict transaction maintains
m-consistency, then its projection on any cluster also
maintains m-consistency, as a consequence of condi-
tion (6) of the de�nition of an IAS schedule. In ad-
dition, for hiding replication from strict transactions,
we must require that strict transactions operate as if
there is only one copy of each data item in the system.
Thus, strict transactions must be one-copy serializable
(1SR), that is (view) equivalent to an 1C (one-copy)
schedule [5].

De�nition 4 (IAS Weak Correctness) An intra-
cluster schedule S is correct if its projection on strict
transactions is 1SR and each of its projections on a
cluster is conict-equivalent to a serial schedule.

Weak correctness guarantees that both weak and
strict transactions get a consistent view of the
database, i.e., one that is equivalent to the result of
a serial execution of a number of consistent transac-
tions. For strict transactions this is guaranteed from
the one-copy serializability of the schedule of strict
transactions, since strict transactions do not read val-
ues written by weak transactions. For weak transac-
tions in each cluster this is guaranteed from the se-
rializability of the projection of the schedule on this
cluster.

Note, that inter-cluster constraints other than repli-
cation constraints among weak versions of data items
at di�erent sites may be violated. Weak transactions
however are una�ected of such violations, since they
read only local data. Although, the above correctness
criterion su�ces to ensure that each weak transaction

gets a consistent view, however it does not su�ce to
ensure that weak transactions at di�erent clusters get
the same view, even in the absence of inter-cluster
constraints. The following example is illustrative.

Example 2 Assume two clusters Cl1 = fx1; y1g
and Cl2 = fw2; z2; l2g and the following two strict
transactions (after the application of h) ST1 =
S Write1(x1) S Write1(w2)C1 and ST2 = S Write2
(y1)S Write2(z2)S Read2(x1)C2. In addition, at
cluster Cl1 we have the weak transaction WT3 =
W Read3(x1) W Read3(y1) C3[1], and at cluster
Cl2 the weak transactions WT4 = W Read4(z2)
W Write4(l2) C4[2], and WT5 = W Read5(w2)
W Read5(l2) C5[2]. (For simplicity, we do not show
the transaction that initially writes all data copies.)

Their execution results in the weakly correct schedule
S = W Read5(w2)S Write1(x1)W Read3(x1)
S Write1(w2)C1S Write2(y1)S Write2(z2)
S Read2(x1)C2W Read3(y1)C3[1]W Read4(z2)
W Write4(l2)C4[2]W Read5(l2)C5[2]

The projection of S on strict transactions is:
S Write1(x1)S Write1(w2)C1S Write2(y1)
S Write2(z2)C2 which is equivalent to the 1SR
schedule: S Write1(x)S Write1(w) C1 S Write2(y)
S Write2(z) C2

The projection of S on Cl1: S Write1(x1)
W Read3(x1)C1S Write2(y1)S Read2(x1)
W Read3(y1)C3[1] is serializable as ST1 ! ST2 !
WT3

The projection on Cl2: W Read5(w2)S Write1(w2)
C1S Write2(z2)C2W Read4(z2)W Write4(l2)C4[2]
W Read5(l2)C5[2] is serializable as ST2 ! WT4 !
WT5 ! ST1 2

Thus, weak correctness does not guarantee that
there is a serial schedule equivalent to the intra-cluster
schedule as a whole, that is including both weak and
strict transactions. The following is a stronger cor-
rectness criterion that ensures that weak transactions
get the same consistent view. Obviously, strong cor-
rectness implies weak correctness.

De�nition 5 (IAS Strong Correctness)
An intra-cluster schedule S is correct if its projection
on strict transactions is equivalent to an 1C schedule
S1C and S is conict-equivalent to a serial schedule SS
such that the order of transactions in SS is consistent
with the order of transactions in S1C .

Since weak transactions do not directly conict
with weak transactions at other clusters, the follow-
ing is an equivalent statement of the above de�nition,

De�nition 6 IAS Strong Correctness (alterna-
tive de�nition)An intra-cluster schedule S is correct
if its projection on strict transactions is equivalent to
an 1C schedule S1C, and each of its projections on
a cluster Cli is conict-equivalent to a serial sched-
ule SSi such that the order of transactions in SSi is
consistent with the order of transactions in S1C .



If we employ weak IAS correctness as our correct-
ness criterion, then the transaction managers at each
cluster must only synchronize projections on that clus-
ter. Global control is needed only for synchronizing
strict transactions. Therefore, no control messages
are needed between transaction managers at di�erent
clusters for synchronizing weak transactions.

The proposed schema is very exible. Any co-
herency control method that guarantees one-copy se-
rializability (e.g., quorum consensus, primary copy)
can be used for synchronizing strict versions. The
schema reduces to one-copy serializability when only
strict transactions are used.

4.3 Graph characterization
To determine whether an IAS schedule is correct

we use a modi�ed serialization graph, that we call the
intra-cluster serialization graph (IASG) of the IAS
schedule. To represent conicts between strict trans-
actions, we construct a replicated data Serialization
Graph (SG). An SG [5] is a serialization graph aug-
mented with additional edges to take into account the
fact that operations on di�erent copies of the same
data item may also cause conicts. Acyclicity of the
SG implies one-copy serializability of the correspond-
ing schedule. Then, we augment SG with additional
edges to represent conicts between weak transactions
in the same cluster and conicts between weak and
strict transactions. In general, there are three types
of edges in the resulting IASG [7]:

a. dependency edges, that represent the fact that a
transaction reads a value produced by another
transaction;

b. precedence edges, that represent the fact that a
transaction reads a value that was later changed
by another transaction;

c. interference edges, that indicate that a transaction
reads an item written by a transaction in another
cluster.

Property 1 below characterizes the type of edges that
exist between weak transactions, and Property 2 the
type of edges between weak and strict transactions.

Property 1 Between weak transactions in the same
cluster, there may exist dependency and precedence
edges. Between weak transactions at di�erent clusters,
no edge exist.

Proof: Straightforward since weak transactions at
di�erent clusters read di�erent versions of a data item.
2

Property 2 Let WTi represent a weak transaction at
cluster Cli and ST a strict transaction, then the IASG
graph induced by an IAS may include only the follow-
ing edges between them:

� a dependency edge from ST to WTi

� a precedence edge from WTi to ST

Proof: Straightforward from the conict relation,
since the only conicts between weak and strict trans-
actions are due to strict writes and weak reads of the
same copy of a data item. 2

Now we prove,

Theorem 1 Let SIAS be an intra-cluster schedule. If
SIAS has an acyclic IASG then S is strongly correct.

Proof (brief): When a graph is acyclic then each of
its subgraphs is acyclic thus SG is acyclic. Acyclicity
of the SG implies one-copy serializability of the strict
transactions since strict transactions read only values
written by strict transactions. Let T1, T2, ... , Tn be
all transactions in SIAS . Thus T1, T2, ... , Tn are the
nodes of the IASG. Since IASG is acyclic it can be
topologically sorted. Let Ti1 , Ti2 , ... , Tin be a topo-
logical sort of the edges in IASG, then by a straight-
forward application of the serializability theorem [5]
SIAS is conict equivalent to the serial schedule SS
= Ti1 , Ti2 , ... , Tin . This order is consistent with
the partial order induced by a topological sorting of
the SG, let S1C be the corresponding serial schedule.
Thus the order of transactions in SS is consistent with
the order of transactions in S1C . 2

5 Restoring Consistency upon Cluster

Merging
When clusters are merged we must enforce full con-

sistency, that is reconcile values of di�erent copies of
the same data item located at di�erent clusters.

5.1 Schedules
A (complete) inter-cluster schedule, IES, models ex-

ecution after merging, where all �nal local write oper-
ations are taken into consideration.

De�nition 7 (inter-cluster schedule) An
inter-cluster schedule (IES) SIES based on an intra-

cluster schedule SIAS = (OP , <) is a pair (OP
0

, <
0

)
where

1. OP
0

= OP ,

2. for any opi and opj � OP
0

, if opi < opj in SIAS

then opi <
0

opj in SIES , and

3. in addition, for each W Writei[xk] and

S Readj[xk] either W Writei[xk] <
0

S Readj[xk] or S Readj[xk] <
0

W Writei[xk].

5.2 Correctness criterion
There are di�erent approaches to the problem of

reconciliation varying from purely syntactic to purely
semantic [7]. In this paper, we adopt a purely syn-
tactic application-independent approach. We accept
as many weak writes as possible without violating the
one-copy serializability of strict transactions.

De�nition 8 (IES Correctness) An inter-cluster
schedule is correct if it is based on a correct IAS sched-
ule SIAS and all strict transactions have the same
read-from relation as in the SIAS .



To resolve conicts in inter-cluster schedules we
roll back transactions whose weak writes conict with
strict transactions. Undoing a transaction normally
results in cascading aborts, that is, in aborting trans-
actions which have read the values written by that
transaction. In our case, since weak transactions write
only weak versions in a cluster, and since only weak
transactions in the same cluster can read these weak
versions we get the following lemma:

Lemma 1 Only weak transactions in the same clus-
ter read values written by weak transactions in that
cluster.

The above lemma ensures that only weak transac-
tions in the same cluster may need to be aborted when
a weak transaction is aborted to resolve conicts in
an inter-cluster schedule. However, for most applica-
tions, aborting a weak transaction does not change the
semantics of other committed weak transactions that
have read the values produced by it. This is because
weak transactions are only interested on approximate
values of data items, thus even if the value they read
was produced by a transaction that was later aborted,
this value was in an acceptable range and this fact
su�ces to guarantee their correctness.

5.3 Graph characterization
To determine correct IES schedules we de�ne a

modi�ed serialization graph that we call the inter-
cluster serialization graph (IESG). To construct the
IESG, we �rst augment the serialization graph IASG
of the underlying intra-cluster schedule to take into
consideration conicts betweenW Write and S Read.
Speci�cally:

Property 3 LetWTi be a weak transaction at cluster
Cli and ST a strict transaction, then the serialization
graph IESG induced by an IES may include in addition
to the edges of the IASG the following edges:

� a dependency edge from WTi to ST and

� a precedence edge from ST to WTi

Proof: If W Write[xi] > S Read[xi] then we add a
dependency edges from WTi to ST . If S Read[xi] >
W Write[xi] then we add a precedence edge from ST
andWTi. Note, that interference edges between trans-
actions at di�erent clusters are not reported. 2

In the original IASG graph, transactions that ac-
cess di�erent versions of the same item do not con-
ict. Thus serializability of the above graph does not
su�ce. To force such conicts, we further expand the
IESG graph by inducing:

1. �rst, a write order as follows, if Ti and Tk (weak
or strict) write any version of a copy of an item x
then either Ti ! Tk or Tk ! Ti ; and

2. then, a strict read order as follows, if a strict
transaction STj reads-x-from STi at SIAS and a
weak transaction WT follows STi then we add an
edge STj !WT .

Theorem 2 Let SIES be an IES schedule based on
an IAS schedule SIAS . If SIES has an acyclic IESG
then SIES is correct.

Proof: Clearly, if the IESG graph is acyclic, the corre-
sponding graph for the IAS is acyclic (since to get the
IESG we only add edges to the IASG). We will show
that if the graph is acyclic then the read-from rela-
tion for strict transactions in the inter-cluster sched-
ule SIES is the same as in the underlying intra-cluster
schedule SIAS . Assume that STj reads-x-from STi in
SIAS . Then STi ! STj . Assume for the purposes of
contradiction, that STj reads-x-from a weak transac-
tion WT . Then WT writes x in SIES and since STi
also writes x either (a) STi !WT or (b) WT ! STi.
In case (a), from the de�nition of the IESG, we get
STj !WT , which is a contradiction since STj reads-
x-from WT . In case (b) WT ! STi, that is WT
precedes STi which precedes STj , which again con-
tradicts the assumption that STj reads-x-from WT .
2

6 Relation to other Criteria
Strict consistency requires that all copies of a data

item are synchronized. One-copy serializability [5]
hides from the user the fact that there can be multi-
ple copies of a data item and ensures strict consistency.
Whereas one-copy serializability may be an acceptable
criterion for strict transactions, it is too restrictive for
applications that could tolerate m-consistent locally
available copies.

Network Partitioning. The partitioning of a
database into clusters resembles the network partition
problem [7], where site or link failures fragment a net-
work of database sites into isolated subnetworks called
partitions. Clustering is conceptually di�erent than
partitioning in that it is electively done to increase per-
formance. Furthermore, whereas all partitions are iso-
lated, clusters may be partly connected. Strategies for
network partition face similar competing goals of avail-
ability and correctness. These strategies range from
optimistic, where any transaction is allowed to be ex-
ecuted in any partition, to pessimistic, where transac-
tions in a partition are restricted by making worst-case
assumptions about what transactions at other parti-
tions are doing. Our model o�ers a hybrid approach.
Strict transactions may be performed only if 1SR is
ensured (in a pessimistic manner). Weak transactions
may be performed locally (in an optimistic manner).
To merge updates performed by weak transactions we
adopt a purely syntactic approach.

Read-only Transactions. Read-only transactions
do not modify the database state, thus their execution
cannot lead to inconsistent database states. In our
framework read-only transactions with weaker consis-
tency requirements are considered a special case of
weak transactions.

In [9] two requirements for read-only transactions
were introduced: consistency and currency require-
ments. Consistency requirements specify the degree
of consistency needed by a read-only transaction. In
this framework, a read-only transaction may have: (a)



no consistency requirements; (b) weak consistency re-
quirements if it requires a consistent view (that is, if
all consistency constraints that can be fully evaluated
with the data read by the transaction must be true); or
(c) strong consistency requirements if the schedule of
all update transactions together with all other strong
consistency queries must be consistent. While in our
model strict read-only transactions always have strong
consistency requirements, weak read-only transactions
can be tailored to have any of the above degrees based
on the criterion used for IAS correctness. Weak read-
only transactions may have no consistency require-
ment if they are ignored from the IAS schedule, weak
consistency if they are part of a weakly correct IAS
schedule, and strong consistency if they are part of a
strongly correct schedule. The currency requirements
specify what update transactions should be reected
by the data read. In terms of currency requirements,
strict read-only transactions read the most-up-to-date
data item available (i.e. committed). Weak read-only
transactions may read older versions of data, depend-
ing on the de�nition of the m-degree.

Epsilon-serializability (ESR) [19] allows temporary
and bounded inconsistencies in copies to be seen by
queries during the period among the asynchronous up-
dates of the various copies of a data item. Read-only
transactions in this framework are similar to weak
read-only transactions with no consistency require-
ments. ESR bounds inconsistency directly by bound-
ing the number of updates. In [23] a generalization
of ESR was proposed for high-level type speci�c op-
erations on abstract data types. In contrast, our ap-
proach deals with low-level read and write operations.

Mobile Database Systems. The e�ect of mobility
on replication schemas is discussed in [4]. The need
for the management of cached copies to be tuned ac-
cording to the available bandwidth and the currency
requirements of the applications is stressed. In this
respect, m-degree consistency and weak transactions
realize both of the above requirements. The restric-
tive nature of one-copy serializability for mobile appli-
cations is also pointed out in [16] and a more relaxed
criterion is proposed. This criterion although su�-
cient for a speci�c kind of data typical of sales appli-
cations is not appropriate for general application and
distinguishable data. Furthermore, the criterion does
not support any form of adaptability to the current
network conditions.

Mobile File Systems. Coda [15] treats disconnec-
tions as network partitions and follows an optimistic
strategy. An elaborate reconciliation algorithm is used
for merging �le updates after the sites are connected
to the �xed network. No degrees of consistency are de-
�ned and no transaction support is provided. The idea
of using di�erent kinds of operations to access data is
also adopted in [22], where a weak read operation was
added to a �le service interface. The semantics of op-
erations are di�erent in that no weak write is provided
and since there is no transaction support, the correct-
ness criterion is not based on one-copy serializability.

7 Other Applications of Clustering
Clustering is also appropriate for very large

databases. As distributed databases grow in size and
cover large geographical areas, new challenging prob-
lems regarding the availability and consistency of data
are raised. Communication delays and packet losses
are a major concern in environments where commu-
nication is achieved through wide area networks [24].
Clustering data which reside in sites located in the
same geographical area seems to be a reasonable ap-
proach. Then, communication inside a cluster will be
relatively inexpensive and reliable. Clustering is as
well appropriate for databases that scale in the num-
ber of sites (as oppose to scale in geographical distri-
bution). In that case, maintaining consistency of data
residing in numerous sites is unrealistic. Clustering
semantically related data seems an appropriate way
to overcome this problem.

The idea of degrees of consistency and weak oper-
ation may also prove useful in multidatabase systems,
which are confederations of autonomous pre-existing
database systems. In this environment, transaction
management is performed at two levels: at a local level
by the pre-existing transaction managers of the local
databases (LTMs), and at a global level by the global
transaction manager (GTM) [6]. Local transaction
managers are responsible for the correct execution of
transactions executed at their local sites. The global
transaction manager retains no control over global
transactions after their submission to the LTMs and
can make no assumptions about their execution. Lo-
cal sites may be viewed as clusters, local transactions
as weak transactions, and global transactions as strict
transactions. Replication constraints express the fact
that data items representing the same real-word entity
may exist in more than one local database. We can
consider two versions of data, weak versions that corre-
spond to pre-existing local data and may be indepen-
dently updated and strict versions that correspond to
global data that are created during integration. Weak
correctness of intra-cluster schedules respects the au-
tonomy of local sites, since serializability of the projec-
tions at each cluster is guaranteed by the LTMs and
one-copy serializability of strict transactions can be
ensured by the GTM. Global transactions can read
both weak and strict versions and thus can ensure
bounded inconsistencies between them. To reconcile
weak and strict versions, polytransactions [21] can be
used. This schema can be augmented to support lo-
cal transactions with strict semantics using protocols
along the lines of [14].

8 Conclusions and Future Work
In this paper, we have studied consistency issues

for distributed databases in mobile environments. Our
main contributions are as follows. First, we have for-
malized the notion of locality by introducing the idea
of data clustering. Clusters are not the inevitable re-
sult of a network partition but can be explicitly de-
�ned to express physical locality, semantic proximity,
or similarity of consistency requirements. To take ad-
vantage of the predictability of disconnections and to
accommodate the changing locality, the cluster con-



�guration is dynamic. While all data inside a clus-
ter are mutually consistent, degrees of inconsistency
are allowed among data at di�erent clusters. Degrees
may depend on the availability of bandwidth. Sec-
ond, we have de�ned two kinds of operations (weak
and strict) to allow applications to specify the type of
consistency that is appropriate for their correct exe-
cution. We have shown how weak transactions can be
part of a concurrency controller and developed criteria
and graph-based tests for the correctness of schedules
that employ them. By allowing applications to spec-
ify their consistency requirements, better bandwidth
utilization is achieved. Finally, the proposed schema
models operations on imprecise location data.

In this paper, we have focussed on a special type
of dependencies between clusters, namely data repli-
cation. In future studies, we plan to investigate how
the semantics of weak operations can be generalized
to operate on di�erent types of dependencies, such as
vertical and horizontal partitions or constraint depen-
dencies [20].

References
[1] R. Alonso, D. Barbara, and H. Garcia-Molina. Data

Caching Issues in an Information Retrieval System.
ACM Transactions on Database Systems, 15(3):359{
384, September 1990.

[2] R. Alonso and H. F. Korth. Database System Issues
in Nomadic Computing. In Proceedings of the 1993

SIGMOD Conference, Washington, D.C., May 1993.

[3] B. R. Badrinath and T. Imielinski. Replication and
Mobility. In Proceedings of the 2nd IEEE Workshop

on Management of Replicated Data, 1992.

[4] D. Barbar�a and H. GarciaMolina. Replicated Data
Management in Mobile Environments: Anything New
Under the Sun? In Proceedings of the IFIP Confer-

ence on Applications in Parallel and Distributed Com-

puting, April 1994.

[5] P. A. Bernstein, V. Hadjilacos, and N. Goodman.
Concurrency Control and Recovery in Database Sys-

tems. Addisson-Wesley, 1987.

[6] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.
Overview of Multidatabase Transaction Management.
VLDB Journal, 1(2):181{239, 1992.

[7] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Con-
sistency in Partitioned Networks. ACM Computing

Surveys, 17(3):341{370, September 1985.

[8] G. H. Forman and J. Zahorjan. The Challenges of Mo-
bile Computing. IEEE Computer, 27(6), April 1994.

[9] H. Garcia-Molina and G. Wiederhold. Read-Only
Transactions in a Distributed Database. ACM Trans-

actions on Database Systems, 7(2):209{234, 1982.

[10] Y. Huang, P. Sistla, and O. Wolfson. Data Replication
for Mobile Computers. In Proceedings of the 1994

SIGMOD Conference, pages 13{24, May 1994.

[11] T. Imielinksi and B. R. Badrinath. Data Management
for Mobile Computing. SIGMOD Record, 22(1):34{
39, March 1993.

[12] T. Imielinksi and B. R. Badrinath. Wireless Mobile
Computing: Challenges in Data Management. Com-
munications of the ACM, 37(10), October 1994.

[13] T. Imielinski and B. R. Badrinath. Querying in Highly
Mobile Distributed Environments. In Proceedings of

18th VLDB, pages 41{52, August 1992.

[14] J. Jing, W. Du, A. Elmagarmid, and O. Bukhres.
Maintaining Consistency of Replicated Data in Multi-
database Systems. In Proceedings of the 14th Interna-
tional Conference on Distributed Computing Systems,
Poznan, Polland, June 1994.

[15] J. J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. ACM Transac-

tions on Computer Systems, 10(1):3{25, 1992.

[16] N. Krishnakumar and R. Jain. Protocols for Main-
taining Inventory Databases and User Pro�les in Mo-
bile Sales Applications. In Proceedings of the Mo-

bidata Workshop, October 1994.

[17] E. Pitoura and B. Bhargava. Revising Transaction
Concepts for Mobile Environments. In Proceedings of

the 1st IEEE Workshop on Mobile Computing Sys-

tems and Applications, pages 164-168, 1994.

[18] E. Pitoura and B. Bhargava. Building Information
Systems for Mobile Environments. In Proceedings of

the 3rd International Conference on Information and

Knowledge Management, pages 371{378, 1994.

[19] C. Pu and A. Le�. Replica Control in Distributed
Systems: An Asynchronous Approach. In Proceedings
of the ACM SIGMOD, pages 377{386, 1991.

[20] A. Sheth and M. Rusinkiewicz. Management of Inter-
dependent Data: Specifying Dependency and Consis-
tency Requirements. In Proceedings of the Workshop

on the Management of Replicated Data, 1990.

[21] A. P. Sheth, M. Rusinkiewics, and G. Karabatis. Us-
ing Polytransactions to Manage Interdependent Data.
In Ahmed K. Elmagarmid, editor, Database Trans-

action Models for Advanced Applications, pages 555{
576. Morgan Kaufmann, 1992.

[22] C. D. Tait and D. Duchamp. Service Interface and
Replica Management Algorithm for Mobile File Sys-
tem Clients. In Proceedings of the 1st International

Conference on Parallel and Distributed Information

Systems, pages 190{197, 1991.

[23] M.H. Wong and D. Agrawal. Tolerating Bounded In-
consistency for Increasing Concurrency in Database
Systems. In Proceedings of the 11th ACM PODS,
pages 236{245, 1992.

[24] Y. Zhang and B. Bhargava. Wance: A Wide Area
Network Communication Emulation System. In Pro-

ceedings of IEEE Workshop on Advances in Parallel

and Distributed Systems, pages 40{45, 1993.


