
Autonomous Transaction Processing
Using Data Dependency in Mobile Environments�

IlYoung Chung,��Bharat Bhargava,� Malika Mahoui,� and Leszek Lilien�

� Department of Computer Sciences

and Center for Education and Research in Information Assurance and Security (CERIAS)

Purdue University, West Lafayette, IN 47907, USA

iy.chung@samsung.com, �bb, llilien�@cs.purdue.edu
� Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104, USA

mmahoui@cis.upenn.edu

Abstract

Transaction processing in mobile database systems faces
new challenges to accommodate the limitations of mo-
bile environments, such as frequent disconnections and low
bandwidth. We propose a transaction processing protocol
that increases the autonomy of clients, based on the depen-
dency relation among updated data items. Lists of depen-
dents, sent by the server to the mobile clients along with re-
quested data items, are used by each client to build partial
serialization graphs. Utilizing the graphs, mobile clients
can autonomously verify serializability of locally executed
read-only transactions. This information can also help mo-
bile clients in early detection of the necessity to abort up-
date transactions. Simulations for various data access pat-
terns initiated by mobile clients provide insights on perfor-
mance of the proposed protocol. Performance is heavily
dependent on the depth of the dependency information for
each data item.

1. Introduction

Transaction processing has faced new challenges to ac-
commodate the limitations of a mobile computing environ-
ment, including low bandwidth and more message losses.
To meet them, mobile hosts should be more autonomous in
the management of mobile transactions [12]. Fortunately,
more powerful mobile devices with moderate storage ca-
pacities allow for caching of frequently accessed data on a

�This research is supported by CERIAS and NSF grants CCR-9901712
and CCR-0001788.

�Currently with Samsung, Seoul, South Korea.

mobile client and managing data locally [6, 7]. A caching
strategy combined with an invalidation strategy ensures that
locally stored data are consistent with data stored at the
server.

We propose a new transaction processing protocol that
provides more local autonomy to mobile clients. Specifi-
cally, it allows mobile clients to locally commit read-only
transactions (relieving the server from the burden of com-
mitting all transactions), and to earlier abort transactions
that can not be committed (which reduces the number of
transaction aborts).

Several algorithms have been proposed to support con-
currency control and commitment of transaction process-
ing in mobile environments [1, 2, 8, 9, 10, 11, 14, 15].
Different local commit strategies for read-only transactions
have been proposed in the push-based data dissemination
environments, in which data items are broadcast to mobile
clients without any explicit request [8, 11, 14]. In the push-
based data delivery it is difficult to predict accurately the
needs of mobile clients, which results in sending irrelevant
data. This in turn worsens use of channel bandwidth and
delays delivery of needed data data. We rely on pull-based
request-response data delivery with caching.

Due to space limitations, proofs of correctness for our
protocol are available only in [16].

2 System Model

Mobile hosts retain their network connections through
the support of specialized stationary hosts with wireless
communications abilities, which are called mobility support
stations (MSS). At any given instance, a mobile host may di-
rectly communicate only with the MSS responsible for the

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

cell in which it moves.

Mobile Client Caching Shared data are stored and con-
trolled by a number of database servers executing on sta-
tionary hosts. Mobile clients have a limited storage capac-
ity for cached data [12]. Caching frequently accessed data
at mobile clients is, despite their limited storage capacity,
an effective approach for reducing contention on the narrow
bandwidths of wireless channels [6, 7, 12, 13].

Caching does not transfer ownership of data to mobile
clients. Servers are the owners ultimately responsible for
ensuring the correctness of transaction executions. As a
result, some client autonomy is sacrificed. Increasing this
autonomy is an objective for our protocol.

Mobile Transaction Processing Each MSS has a co-
ordinator which retrieves transaction operations from mo-
bile clients and monitors their execution in database servers
within the fixed networks. Transaction operations are sub-
mitted by a mobile client to the coordinator in its MSS,
which in turn sends them to the distributed database servers
within the fixed network for execution.

In mobile transaction processing (TP) systems, on one
extreme all data can be placed in and managed by the sta-
tionary network [7, 12], and on the other extreme mobile
hosts can store and manage all data locally. We adopt an
approach between these extremes by storing data locally,
but treating them as a cache rather than as a primary copy.
A transaction operation that accesses a data item stored in
the cache can be processed without interaction with the
database server.

In response to a client’s message requesting for certifica-
tion of a transaction at the end of its execution, the server
checks whether the transaction satisfies the correctness cri-
teria. It is a transaction-oriented or an optimistic approach
[2, 8, 11, 14] in contrast to the pessimistic or operation-
oriented approach [9].

Since in the optimistic approach a mobile client exe-
cutes a transaction autonomously until all operations are
completed, this approach reduces the communications over-
head. Most of the existing TP techniques increase local au-
tonomy in this way.

To reduce the burden placed by the certification process
on the server and on the limited upstream communication
bandwidth, some portions of transaction executions can be
transferred to mobile clients .

Asynchronous Broadcasting In the transaction-oriented
certification approach, the server broadcasts the list of up-
dated data items along with the results of the certification
process. Most of such earlier optimistic schemes adopted
periodic broadcasts for the messages [2, 13]. The server
broadcasts the list of data items that should be invalidated
in the caches and the list of transactions that were commit-
ted in the last period.

Server

Mobile
Client

T1: w1(x) w1(y) commit

T2: r2(x) commit T3: r3(y) commit
x y y

Commit notification

Data request and reply

cache

Figure 1. Conflict relation between transac-
tions - an example.

This approach, called synchronous broadcasting, has
significant weaknesses due to its periodic nature [5]: a high
abort rate, degraded throughput (due to transaction block-
ing), and unnecessary periodic communications overhead
when there are few or no updates.

We adopt the asynchronous broadcast approach, in
which the control messages are broadcast by the server
immediately after a commit decision is made by it. The
asynchronous approach can eliminate or mitigate the above
weaknesses [5].

3 Data Dependency Information

We assume that there is a central server that holds and
manages all the data. Each data item in the system is tagged
with a timestamp that uniquely identifies the state of the
data. The timestamp associated with a data item is increased
by the server when a transaction which updates the data item
is committed. All data items updated by a transaction are
given the same timestamp. If a data item � is updated by
��, the timestamp of � is referred as �����, and has the same
value as ������.

Def. 1 Let �� and �� be two transactions. We say that ��

(directly) conflicts with �� or that �� (directly) precedes �� ,
iff there exists a data item � such that either:
1) �� has performed a read/write operation on data item �

with ts(�) = t1, and �� performs a write operation on � with
ts(�) = t2, and t1 � t2, or
2) �� has performed a write operation on data item � with
ts(�) = t1, and �� performs a read operation on � with ts(�)
= t2, and t1 � t2.

If �� directly precedes �� , then �� precedes �� in the
serialization order. This is represented by an edge �� �

�� in the serialization graph. Let’s see a simple example
execution of transactions in Figure 1. In this paper �����
and ����� denote a read and a write operation, respectively,
performed by transaction �� on data item �.

Since transaction �� reads a copy of � that was stored in
the cache, its timestamp is lower than that of the data item
� in the server, which was updated by transaction ��. As

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

a result, �� precedes �� in the serialization order. On the
other hand, �� follows �� because �� has read data item
� with the timestamp equal to that of the server’s original
copy of �, which means that �� read the value of � written
by ��. As a result, �� � �� � ��.

There can also exist indirect conflict relations between
transactions, which can be defined as follows.

Def. 2 �� �-precedes �� if there exist � � � transactions
��, ��,..., ����, such that �� � ��� �� � ... � �����
�� .

By default, �� �-precedes �� simply means that �� di-
rectly precedes �� , which corresponds to the direct serial-
ization order.

The serialization graph can be produced with transac-
tions initiated by multiple mobile clients, and we can attain
serializable execution by ensuring that this graph always re-
mains acyclic [3, 4].

Serialization graph information is delivered (piggy-
backed on data delivery messages) to each mobile client. It
is incrementally updated at mobile clients each time a data
object is received from the server. With this information,
mobile clients can decide either to commit or abort a read-
only transaction autonomously, without submitting it to the
server. For update transactions, a mobile client cannot de-
tect all cycles caused by such transactions without submit-
ting them to the server. However, using conflict information
received from the server, it can detect early the necessity to
abort most conflicting update transactions, thus saving up-
stream bandwidth and energy consumption.

In order to describe serialization graph information de-
livered to mobile clients, we define the notion of order de-
pendency between data items.

Def. 3 Let � and � be two data items. We define the w-
order dependency relation ���� between data items � and
� as follows:
1) for � = 0: � ���� �, iff there exists a transaction ��
which performs write operations on both � and � such that
ts(��)=t
2) for � � 1: ����� �, iff there exist at least two transac-
tions �� and �� , such that:
- �� has performed a write operation on item �,
- �� has performed a write operation on item �,
- �� �-precedes and conflicts with �� , and
- ts(��)=�

Lemma 1 Suppose that read-only transaction �� at a mo-
bile client accesses data item �, which was updated by a
committed transaction �� with the timestamp ts(��)� �. ��
is involved in a cycle with �� only if �� accesses any data
item � such that ����� � and ����� � �.

Now we define the list of dependents for a data item.

Def. 4 Let � be a data item and let � be the timestamp of a
transaction that updates �. We define the list of dependents
of � with timestamp t for window size �, as follows:
��	�
��
������� =
�� � ������ ��, where � is the lowest value within [0,�] �
(� is the window size for the i-order dependencies used to
define ��	�
��
�������).

The dependency list ��	�
��
������� includes all data
items that were updated by transactions that at most �-
preceded the transaction which updated �. In other words,
��	�
��
������� ignores all i-order dependencies for �

�.

In our protocol, to detect any cycle related to a read-
only transaction being executed in a mobile client, the de-
pendency list ��	�
��
������� is piggybacked on the data
item �, transferred in response to the request from the mo-
bile client. ��	�
��
������� includes every data item �

which satisfies ����� � complete with its timestamp �����.
Hence, by Lemma 1, a mobile client can detect if any cycle
is produced by a read-only transaction.

4 The Proposed Protocol

The protocol is given below. One note: Upon receiving
data item � with control information (��	�
��
�������),
the client checks whether the transaction � accessing � gen-
erates a cycle in ��� , the serialization graph composed of
�� and � , in which �� is the serialization graph for already
committed update transactions.

Information maintained at the server This information
includes:
1. �
���������
 ����: It includes the list of all data
items updated by a transaction, and is attached to the
������
����������
 message broadcast by the server
when the transaction is committed.
2. ��	�
��
�������: �� � ������ ��, where � is the high-
est value within [0,�] �

Information created/maintained at mobile clients This
information includes:
1. �����: A cache of a client includes data items which
have already been used by the client for execution of a local
transaction. Each data item � in the cache, �������, has its
timestamp, ����������, which was delivered with � from
the server. We use ����������� to denote the timestamp of
a data item � in the server.
2. ���� ���: This is the list of data items that are read by
a transaction with their timestamps. The timestamp of an
item � in ���� ��� is referred to as ���� ��������.
3. ����� ���: This is the list of data items which are written
by a transaction with their timestamps. The timestamp of an
item � in ����� ��� is referred to as ����� ��������.

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

4. ������ �����	�: A mobile client sends this message to
the server when an update transaction
� is completed. This
message includes the id of
�, its ���� 	�� and
���� 	��.

Algorithm at mobile clients We now present our algo-
rithm for mobile clients.

MA. Transaction execution state
1. Initially each transaction is marked as read-only.
2. When a read-only transaction requests its first write op-
eration, its state is changed to update transaction.

MB. Cache update
1. Whenever the mobile client receives a
������ ������������ message, it removes the
cached copies of data items that are identified by the
������������ ��	�.
2. When a transaction
� requests data item �, it receives
its value, its timestamp, and the list ���������������. For
each data item � in the cache, � is removed from the cache
if its timestamp ���������	 satisfies one of the following
conditions:
- � � ��������������� and ���������	 �

�������������������	, or
- � �� ��������������� and ���������	 � � ���, where
� ��� =
�����������������������	 � � � ��������������� �

MC. Read-only transaction processing
1. If � is in the cache, read it and return.
2. If � is not in the cache, request � from the server.
3. Let A = ���� 	�� � ��������������� and B =
���� 	��–���������������.
4. For each � � A, if ���� 	������	 �
�������������������	, go to 5; else abort and restart
the transaction.
5. If for each � � B, ���� 	������	 � � ���, read data
item; else abort and restart the transaction.
6. When a read-only transaction reaches the end of the
execution, commit it locally.

MD. Update transaction processing
1. If � is in the cache, perform write on � and return.
2. If � is not in the cache, request � from the server.
3. Let A = ���� 	�� � ��������������� and C =

���� 	�� ����������������.
4. For each � � A, if ���� 	������	 �
�������������������	, go to 5; else abort and restart
the transaction.
5. For each � � C, if
���� 	������	 �
�������������������	, perform operation on data
item; else abort and restart the transaction.
6. When an update transaction reaches the end of its
execution, send a commit request to the server including
the id of the transaction, its read set and write set.
7. When a mobile client receives commit notification

(abort notification) for a transaction, it commits (aborts)
the transaction.

Algorithm at the server The server performs the follow-
ing algorithm when it receives commit request from a mo-
bile client.
1. For each data item � � read set, if
���� 	������	=	���������	, go to 2; else send
abort notification to the mobile client.
2. For each data item � � write set, if

���� 	������	=	���������	, go to 3; else send
abort notification to the mobile client.
3. Insert the identification of the transaction into the
commit notification message.
4. Install the values of data items included in the write set
in the server database and increment the timestamp.
5. Build the invalidation list by inserting into it each data
item from the write set along with its newly computed
timestamp. Add this list to the commit notification mes-
sage.
6. Broadcast the commit notification message.

Protocol correctness Proof of correctness of the server
algorithm is trivial. To prove the correctness of the mobile
client protocol, we needed only to prove [16]:

Theorem 1 A read-only transaction committed by a mo-
bile client does not introduce any cycles in the serialization
graph.

5 Performance Study

We very briefly present the simulation model and then
present the results of the experiments evaluating perfor-
mance of our protocol.

Simulation Model Our simulation model consists of the
database model, which captures the characteristics of the
database, the transaction model, which captures the data ob-
ject reference behavior, and the system model, which cap-
tures the characteristics of the system’s hardware and soft-
ware. The system model consists of one component model-
ing the database server, multiple components modeling the
mobile clients (their number is a parameter for the model),
and a wireless network component. Due to space limita-
tions, full details of the simulation model are given in [16].

In the experiments we assumed a database with 400 ob-
jects, cache capacity of 40 objects, and mobile client dis-
connection probability equal 0.2. We simulated three dif-
ferent types of workloads. Workload W1 has a per-client
private “hot” region and a shared “cold” region. This work-
load models an environment where users access and update
their own private data, while retrieving some of the shared
data items. Workload W2 has a relatively high degree of
locality per mobile client and a moderate amount of sharing

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

0 5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

80

90

100
nu

mb
er

of
ab

ort
s

window size

 Workload1
 Workload2
 Workload3

Figure 2. Number of aborts vs. window size.

2 4 6 8 10 12 14 16

5

10

15

20

25

30

35

40

45

50

55

60

nu
mb

er
of

ab
ort

s

number of mobile clients

 Workload1
 Workload2
 Workload3

Figure 3. Number of aborts vs. number of
mobile clients.

and data contention. Workload W3 is a low-locality and
moderate-write-probability workload (models cases when
exploiting dependency information is not expected to pay
off significantly).

Results and Discussion We have used as our performance
metrics the number of aborts, the average waiting time, and
system throughput.

Number of aborts - results and discussion Figures 2 and
3 show the average number of aborts that occur before the
protocol is able to commit a total of fifty transactions. Fig-
ure 2 displays results of varying the dependency window
size. When it is small, most of the transactions must restart
several times before they are finally committed. For small
window sizes, most read operations on cached copies can-
not be locally verified by mobile clients. As a result, there is
a possibility that a transaction that accessed consistent data
and that does not produce a cycle is aborted.

As the window size grows, most of the accesses to
cached copies can be verified using the dependency infor-
mation, so the number of aborts is reduced. When the
window is larger, aborts of transactions are due mainly to
conflicts between transactions or inconsistencies in cached
data caused by lost messages. Under Workload 1, in which
most of transactions at mobile clients access their own pri-
vate data, the protocol shows better performance as the

window grows. Under this workload, the probability that
��������������� contains dependency information for al-
ready read data items is very high. As a result, the mobile
client can determine whether an active transaction might
produce a cycle in the serialization graph or not. On
the other hand, under Workload 3, more transactions are
aborted compared with Workload 1. All mobile clients
show a uniform access pattern to data items under this work-
load. As a result, ��������������� for a requested data
item � has dependency information for many data items
from the entire database. This makes the actual length cov-
ered by the list smaller.

In case of Workload 1, the number of aborted trans-
actions is not reduced rapidly when the window size gets
larger than approximately 30. This is because the number
of hot-bound data items for each mobile client is limited.
When the window size exceeds a certain threshold value,
��������������� may include dependency information for
most hot-bound data items for each mobile client. However,
under Workload 3, since ��������������� can not con-
tain timestamps of all data items that show conflicts with
�, some transactions can not be verified using this informa-
tion. In the experiments, the protocol shows intermediate
performance under Workload 2, since each mobile client
has its hot-bound data items which are shared with some
other mobile clients.

We also examined aborts for the cases when the num-
ber of mobile clients gradually increases from 3 to 15. As
shown in Figure 3, the number of aborts increases slightly
under Workload 1, due to the increased rate of conflicts on
cold-bound data items. Accesses to hot-bound data items do
not cause conflicts among transactions, since each mobile
client has its own private hot-bound data set. Thus, under
Workload 1, the number of aborts is less dependent upon
the population of mobile clients in a cell. Under Workload
3, the number of aborts also increases slowly as the number
of mobile clients gets larger. In this workload, each mo-
bile client shows uniform access pattern for all data items
in the database. Hence, most of data items are requested
from the server, not from the cache. As a result, the in-
creased population of mobile clients does not significantly
change the probability that a transaction can be commit-
ted. However, under Workload 2, as the number of clients
increases, more cold-bound data items are updated, which
can invalidate more cached copies of hot-bound data items.
This increases the probability that the timestamp of an ac-
cessed data item � in the cache (���	�
�
��) is lower than
���������������
�
��. Thus, for Workload 2 more trans-
actions are aborted with the increasing number of mobile
clients.

Average waiting time - results and discussion In terms of
waiting time, we measured the delay for a transaction until
it can decide to either commit or abort. As shown in Fig-

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

0 5 10 15 20 25 30 35 40

200

300

400

500

600

700

800

av
era

ge
 w

ait
ing

 tim
e (

ms
)

window size

 Workload1
 Workload2
 Workload3

Figure 4. Average waiting time vs. window
size.

2 4 6 8 10 12 14 16

200

300

400

500

600

700

800

av
era

ge
 w

ati
ng

 tim
e (

ms
)

number of mobile clients

 Workload1
 Workload2
 Workload3

Figure 5. Average waiting time vs. number of
mobile clients.

ure 4, the protocol shows different patterns of waiting time
under each workload. For Workload 1, transactions have to
wait almost uniformly, approximately for 200 ms. This rel-
atively low waiting time occurs for two reasons. First, most
of the transactions are read-only. As a result, mobile clients
can verify them autonomously, thus avoiding exchange of
messages with the server, which saves time. Second, trans-
actions access most data items from caches, which is very
fast compared with requesting data from the server. On
the other hand, for Workload 2, it takes much longer to
decide whether to commit or abort a transaction, because
the ratio of update transactions is relatively high when com-
pared to the other two workloads. The waiting time gets
longer with the increasing window size. This can be ex-
plained using Figure 2. When the window size is small,
most of the transactions are autonomously aborted earlier,
using ���������������. As the window gets larger, fewer
such aborts occur. Hence, most of the update transactions
complete execution, and are sent to the server to be verified.
In case of Workload 3, the delays are longer when compared
to delays for Workload 1, since most of data items accessed
by transactions must be acquired from the server. The slight
increase of the waiting time for this workload is mainly due
to the reduced number of earlier aborts.

Figure 5 illustrates the impact of client population on

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

18

thr
ou

gh
pu

t (c
om

mi
t/s

ec
on

d)

window size

 Workload1
 Workload2
 Workload3

Figure 6. Throughput vs. window size.

2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

18

thr
ou

gh
pu

t (c
om

mi
t/s

ec
on

d)

number of mobile clients

 Workload1
 Workload2
 Workload3

Figure 7. Throughput vs. number of mobile
clients.

the average waiting time. The waiting time for a transac-
tion is relatively short under Workload 1, since we can ex-
pect that most of the hot-bound data items are maintained
in each client’s cache. In case of Workload 2, as the num-
ber of mobile clients gets larger, conflicts between trans-
actions increase. Some of these aborts of update transac-
tions can be detected by mobile clients without sending the
commit request message and waiting for the decision of the
server. As a result, the average waiting time decreases with
the increasing number of mobile clients. For the same rea-
son, the waiting time for Workload 3 decreases slowly.

Throughput - results and discussion Figure 6 presents the
total system throughput for each workload as the window
size is gradually increased from 5 to 40. In this experiment,
the protocol provides the best performance under Workload
1. The protocol has a lower throughput for Workload 2,
and the poorest performance for Workload 3. Due to no
per-client locality in Workload 3, there is a relatively high
possibility of data conflicts, thus in this case caching is less
beneficial than for the other two workloads. When the win-
dow size � for ��������������� is very small, we can-
not expect a satisfying performance for any workload, since
most of the transactions have to be aborted when a mobile
client receives ��������������� attached to the requested
data item �.

Figure 7 shows the throughput of the protocol for the

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

population of mobile clients varying from 3 to 15. The high
degree of per-client locality and low conflict ratios between
accessed data items let the protocol commit more trans-
action for Workload 1 when compared with the other two
workloads. For read-only transactions, the mobile clients
can verify more transactions, since the dependency infor-
mation delivered from the server may contain information
for data items that are likely to be maintained in their own
caches. For update transactions, more transaction can be
committed since there might be fewer conflicts between
them. The throughput of the protocol does not degrade for
Workload 1, because the increased number of mobile clients
does not cause more conflicts between transactions. How-
ever, for Workloads 2 and 3, throughput of the protocol de-
grades when the number of mobile clients exceeds approx-
imately the value 10. This is due to the increased number
of conflicts between transactions. For Workload 2, the in-
creased number of write accesses to cold data items is the
main factor which invalidates the cached data copies, caus-
ing more aborts. For Workload 3, since all mobile clients
show the same access patterns over the entire database, the
degree of conflicts is directly affected by the number of mo-
bile clients.

6 Conclusions

We proposed a protocol that increases the autonomy of
clients in mobile database systems. We defined the depen-
dency relation among updated data items. Lists of depen-
dents send by the server to the mobile clients along with
requested data items are used to build partial serialization
graphs for each client. By receiving this dependency in-
formation, mobile clients can autonomously verify serializ-
ability of locally executed read-only transactions. This in-
formation can be used by mobile clients to detect early the
necessity to abort update transactions.

We have conducted simulations for various access pat-
terns initiated by mobile clients in order to examine the per-
formance of the proposed protocol. The performance of the
protocol is heavily dependent on the depth of the depen-
dency information (window size) for each data item. We
found that the protocol exploits data access locality. In
such cases dependency information may include more re-
lated data items that mobile clients need to autonomously
verify read-only transactions.

References

[1] S. Acharya, R. Alonso, M.J. Franklin and S.B. Zdonik,
“Broadcast Disks: Data Management for Asymmetric Com-
munications Environments,” in Proc. ACM SIGMOD Inter-
national Conf. on Management of Data, pp.199–210, 1995.

[2] D. Barbara, “Certification Reports: Supporting Transactions
in Wireless Systems,” in Proc. IEEE International Conf. on

Distributed Computing Systems, pp.466–473, 1997.

[3] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency Control and Recovery in Database Systems, Addison-
Wesley, Massachusetts, 1987.

[4] B. Bhargava, “Concurrency Control in Database Systems,”
IEEE Trans. on Knowledge and Data Engineering, vol.11,
no.1, pp.3–16, 1999.

[5] I. Chung, J. Ryu and C.-S. Hwang, “Efficient Cache Manage-
ment Protocol Based on Data Locality in Mobile DBMSs,”
in Current Issues in Databases and Information Systems,
Proc. Conf. on Advances in Databases and Information Sys-
tems, Lecture Note in Computer Science, vol.1884, pp.51–
64, Springer, 2000.

[6] J. Jing, A. Elmagarmid, A. Helal and A. Alonso, “Bit Se-
quences: An Adaptive Cache Invalidation Method in Mobile
Client/Server Environments,” Mobile Networks and Applica-
tions, vol.2, no.2, pp.115–127, 1997.

[7] A. Kahol, S. Khurana, S.K. Gupta and P.K. Srimani, “An Effi-
cient Cache Maintenance Scheme for Mobile Environment,”
in Proc. International Conf. on Distributed Computing Sys-
tems, pp.530–537, 2000.

[8] V.C.S. Lee and K.-W. Lam, “Optimistic Concurrency Control
in Broadcast Environments: Looking Forward at the Server
and Backward at the Clients,” in Proc. International Conf.
on Mobile Data Access, Lecture Note in Computer Science,
vol.1748, pp.97–106, Springer, 1999.

[9] S.K. Madria and B. Bhargava, “A Transaction Model to Im-
prove Data Availability in Mobile Computing,” Distributed
and Parallel Databases, vol.10, no.2. pp.127–160, 2001.

[10] E. Pitoura and B. Bhargava, “Data Consistency in Inter-
mittently Connected Distributed Systems,” IEEE Trans. on
Knowledge and Data Engineering, vol.11, no.6, pp.896–915,
1999.

[11] E. Pitoura and P.K. Chrysanthis, “Exploiting Versions for
Handling Updates in Broadcast Disks,” in Proc. Interna-
tional Conf. on Very Large Databases pp.114–125, 1999.

[12] E. Pitoura and G. Samaras, Data Management for Mobile
Computing, Kluwer, Boston, 1998.

[13] M. Satyanarayanan, “Mobile Information Access,” IEEE
Personal Communications, vol.3, no.1, pp.26–33, 1996.

[14] J. Shanmugasundaram, A. Nithrakashyap and R.
Sivasankaran, “Efficient Concurrency Control for Broadcast
Environments,” in Proc. ACM SIGMOD International Conf.
on Management of Data, pp.85–96, 1999.

[15] K. Stathatos, N. Roussopoulos and J.S. Baras, “Adaptive
Data Broadcast in Hybrid Networks,” in Proc. International
Conf. on Very Large Data Bases, pp.326–335, 1997.

[16] I. Chung, B. Bhargava, M. Mahoui, and L. Lilien, “Au-
tonomous Transaction Processing Using Data Dependency
in Mobile Environments,” Technical Report, Department of
Computer Sciences, Purdue University, West Lafayette, IN,
March 2003.

Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS’03)

0-7695-1910-5/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

