A Practical Technique for Asynchronous Transaction Processing

Wenwey Hseush

Department of Computer Science
Columbia University
New York, NY 10027

Abstract

Asynchronous Transaction Processing extends traditional
on-line transaction processing (TP) to improve performance
of distributed systems by alleviating the serializability (SR)
bottleneck. For example, epsilon serializability (ESR) uses
divergence control algorithms to allow more concurrency
by permitiing limited non-SR interleavings. In a distributed
environment, ESR relaxes commit and abort dependencies
among transactions, allowing transactions to commit asyn-
chronously. A second example, chopping up transactions al-
lows more concurrency by dividing transactionsinto smaller
pieces and thus reduces resource holding time. Chopping
transactions enforces no commit protocols among pieces
from one original transaction, allowing each piece to com-
mit asynchronously. We combine the benefits of ESR and
chopping transactions by designing three new methods that
chop transactions and run them under ESR. The practical
applicability of our technique is enhanced by two factors:
(1) chopping transactions does not require changes in ex-
isting TP systems, and (2) ESR support has already been
protoryped on a commercial TP system.

1 Introduction and Background

On-line transaction processing (OLTP) [2, 5] has been con-
sidered as an important technique for reliable computing in
distributed systems. OLTP defines a transaction to be an
atomic computation unit in the presence of possible sys-
tem failures and concurrent executions. Serializability (SR)
is the standard correctness criterion for atomic transaction
behavior. However, guaranteeing global serializability for
distributed transactions does not come free. Transaction
executions must be synchronized for failure recovery and
isolation with respect to concurrent access. For failure re-
covery, a commit protocol guarantees that either all sub-
transactions of a distributed transaction commit or none of
them commit. For isolation, since the union of Iocally se-
rializable sub-transactions do not always make a globally
serializable distributed transaction, a global validation pro-
cess must ensure that all sites have the same serialization
order. As a result, the synchronous nature of transaction
processing limits distributed system performance as well as
availability.

We use dara contention as a general term to refer to the
problems imposed by serializability. Asynchronous trans-
action processing addresses the data contention problems
in distributed systems. Two distinct areas of work are un-

1063-6927/95 $4.00 © 1995 IEEE

Calton Pu

Department of Computer Science and Engineering

110

Oregon Graduate Institute
Portland, OR 97291-1000

der development. The first one is to design practical opti-
mization techniques while preserving serializability as the
correctness criterion. A good example is chopping up se-
rializable transactions into shorter transactions by Shasha
et al [11]. The second way to decrease data contention is
to relax the restrictions of serializability. A good exam-
ple is epsilon serializability (ESR) [10, 12], which allows a
limited amount of inconsistency to be introduced to a trans-
action. These two areas have been perceived as alternatives,
perhaps because many of the SR-relaxing techniques could
not preserve compatibility with SR. Consequently, despite
the wealth of proposals in both areas, little is known about
the interaction between promising techniques from distinct
areas when implemented in the same system.

Our main contribution is a concrete demonstration that
carefully chosen asynchronous transaction processing tech-
niques, ¢.g., ESR and transaction chopping, even though
from apparently alternative areas of research, can be com-
bined to further improve transaction processing system per-
formance. This observation is important since it introduces
a new dimension in the evaluation of asynchronous transac-
tion processing techniques: how well the new method can
be combined with other asynchronous transaction process-
ing techniques. Our second contribution is in the technical
solution of two problems: (1) adapting Shasha’s chopping
algorithm (referred to as SR-chopping in this paper) to work
with a new chopping strategy under ESR (referred to as
ESR-chopping), and (2) distribution of potential inconsis-
tency, both actual and bound specifications, in distributed
systems. Our third contribution is the design of three meth-
ods to combine ESR and transaction chopping, giving the ap-
plication designer a good number of choices. We emphasize
that our methods have practical importance for two reasons.
First, chopping is an off-line method that can be used with-
out changing the existing TP system (or DBMS systems).
Second, ESR support has been prototyped on a production
TP monitor, namely, Transarc Encina. The rest of this pa-
per is organized as follows. Section 1.1 and Section 1.2
compare the main results of this paper to related work. Sec-
tion 2 describes three new methods. It describes how to run
SR-Chopping under divergence control (method 1) and the
enhancement of chopping algorithms under ESR. It explains
how the ESR-chopped transactions run under concurrency
control (method 2) and divergence control (method 3). Sec-
tion 4 describes how the three methods can be applied to
distributed transaction processing. Section 5 discusses the
costs and benefits of the three methods.

1.1 Epsilon Serializability

Epsilon Serializability (ESR) is a generalization of classic
serializability (SR). ESR is defined for database state spaces
that have a distance measure (e.g., integers and real num-
bers — metric spaces in general). This assumption is less
stringent than it appears at first sight. For many database
attributes that lack an obvious distance function, e.g., text
strings, there are candidate distance functions that work for
many applications. In the strings example, we can reduce
the strings to sets and use the usual set comparison function
(i.e., the distance between two sets is defined by the number
of differing members in those sets).

ESR allows a limited amount of inconsistency in transac-
tion processing. An epsilon transaction (ET) is a sequence
of operations that maintains database consistency when ex-
ecuted atomically. However, an ET extends the standard
notion of an atomic transaction in the sense that an ET
includes a specification of the amount of permitted incon-
sistency, or fuzziness, called the €-spec. For example, a
query-only ET is allowed to view inconsistent data due to
non-serializable interleavings of operations with concurrent
update ETs. Consider an update ET that transfers money
from a saving account to a checking account and a query-
only ET that reads the balances of all checking and saving
accounts to calculate the sum of accounts. Under serializ-
ability, it is illegal for the query-only ET to execute all read
operations between the two write operations of the update
ET. Under ESR, this execution may be legal. Assume that
the query-only ET is issued by a bank manager who is re-
sponsible for investment planning and interested in knowing
the amount in ten thousands. He can assign the amount of
permitted inconsistency to be $10,000.00. For the above
non-serializable execution, if the result (the sum of the ac-
count balances) is within $10,000.00 of a serializable resuit,
the execution is legal under ESR. Such non-serializable in-
terleavings can increase transaction processing system per-
formance through added concurrency. With ESR, applica-
tion programmers can specify the amount of inconsistency
allowed for each ET. In this paper, we focus on the environ-
ments where query-only ETs may access inconsistent data
throughnon-serializable interleavings with other update ETs
but update ETs are serializable among themselves.

The bounded inconsistency in ESR is automatically
maintained by divergence control (DC) algorithms similar
to a way in which serializability is enforced by concurrency
control (CC) algorithms in classic transaction processing
systems. The function of divergence control algorithms is
to guarantee that the result of any ET is within €-spec from a
serializable database state. Various divergence control algo-
rithms for both centralized and distributed transaction pro-
cessing systems have been described in [12, 8]. We briefly
describe the two-phase locking divergence control, which is
similar to the two-phase locking concurrency control except
for the way they handle read-write conflicts. For accounting
purposes, an import inconsistency limit is specified for each
query ET and an export inconsistency limit is specified for
each update ET. When a read-write conflict occurs between
an update ET and a query ET, the query ET is said to import
fuzziness and the update ET is said to export fuzziness. The
query ET accumulates imporied fuzziness and is allowed 10
proceed if the accumulated fuzziness is within its import in-
consistency limit. Otherwise, the query ET is blocked as itis
handled in the two-phase locking concurrency control. On

111

the other hand, the update ET accumulates exported fuzzi-
ness and is allowed to proceed if the accumulated fuzziness
is within its export inconsistency limit,

1.2 Chopping Up Transactions

Dennis Shasha et al. proposed an off-line approach [11] to
improve performance in transaction processing by chopping
up serializable transactions into pieces and allowing each of
them to run as an individual transaction. This approach re-
quires no change to the transaction system (i.e., use the same
concurrency control algorithms and commit protocols). It
simply asks database users to restructure transactions (off-
line) according to the guidelines provided by the chopping
technique. The idea is to shorten transactions to reduce con-
current contention imposed by serializability. This approach
takes advantage of two assumptions: (1) Database users (an
administrator or a sophisticated application developer) have
knowledge of all the transactions that will run during some
time interval; (2) Database users have knowledge of all roll-
back statements in every transaction.

Given a set of transactions, T = {t;, 2, ..., t,}, a chop-
ping partitions each transaction ¢; into a set of small trans-
actions (referred to as pieces), {pi, p2, ..., pr}, where the
first piece p; must commit before other pieces can commit.
Other pieces can execute concurrently as long as they obey
the dependency orders imposed by the transaction program
text. A chopping is rollback-safe if either ¢; has no roliback
statements or all rollback statements of ¢; are in p;. That is,
if p; commits, then all other pieces must eventually commit.
When a piece other than p; is aborted due to a lock conflict,
it will be resubmitted repeatedly until it commits. However,
when p; is aborted due to a rollback statement, all other
pieces will not execute. In this paper, we use CHOP(t) to
denote a partition of transaction¢,t € T.

CHOP(t) = {p1, p2, .-, Pk}

We use CHOP(T) to denote a partition of transaction set 7.

CHOP(T) = | J CHOP(t)
teT

A chopping of T' is represented by a chopping graph,
where the vertex set is CHOP(T') and the edge set is a set
of C edges and S edges.

e C edges - C stands for conflict. Two pieces p and
¢ from different transactions (p € CHOP(t;),
g € CHOP(t;) and t; # t;) conflict, if an op-
eration a from p; and an operation b from p; conflict
(i.e., a and b do not commute). A C edge is an edge,
(p, ¢), where p and ¢ conflict.

e S edges - S stands for sibling. Two pieces p and ¢
are siblings if they come from the same transaction ¢
(p € CHOP(t)and ¢ € CHOP(t)). An S edge is
an edge, (p, ¢), where p and q are siblings.

An SC-cycle is a simple cycle that includes at least one S
edge and at least one C edge. A C-cycle is a simple cy-
cle formed by C edges only. A chopping is correct if any
execution of the chopping (i.e., treating each piece in the
chopping as an atomic transaction) is equivalent to a legal

execution of the original transactions. In traditional trans-
action processing systems, legal executions of transactions
are serializable executions. We say that the chopping is an
SR-chopping if it is correct under serializability. One of the
main results in [11] is the following theorem.

Theorem 1 A chopping is SR-correct if it is rollback-safe
and its chopping graph contains no SC-cycle.

Please distinguish C edges from runtime conflicts (de-
noted by Csr). “t1Csnrty” means that ¢; serializability. A
C edge is a conflict edge shown in the chopping graph (off-
line) and “Csr” is a conflict at runtime. In this paper, we
use conflict cycles to indicate the cycles (“tCsr *t”) formed
at runtime, rather than a cycle of C edges.

Other examples of asynchronous transaction processing
work include unilateral commit paradigm [6], optimistic
two-phase commit protocol with compensating transac-
tions [7] and split transactions [9]. Many of these proposals
depend on specific assumptions about application semantics
or operational environments. Whether they can be combined
with techniques such as ESR and transaction chopping is a
topic of future research.

2 Combining ESR and Chopping
Transactions Techniques

In this section, we first study the relationship between ESR
and chopping transactions and design algorithms to com-
bine them. We combine the benefits of ESR and chopping
transactions in three ways:

Method 1 : using divergence control for SR-choppings
(original choppings based on SR correctness criterion);

Method 2: using concurrency control for ESR-choppings
(fuzzy choppings based on ESR correctness criterion
which allow bounded inconsistency); and

Method 3: using divergence control for ESR-choppings.
The methods are shown to obtain the best of both
worlds.

Chopping transactions is an off-line tuning mechanism.
In addition to the original chopping straiegy (i.e., SR-
chopping), we design a new chopping strategy (referred
to as ESR-chopping) under ESR. On the other hand, two
on-line mechanisms, concurrency control for serializability
and divergence control for ESR, are studied in conjunction
with two different chopping strategies. The combination of
two lines of techniques is analogous to the product of two
orthogonal dimensions. Table 1 shows the combinations of
the two off-line approaches and the two on-line approaches,
where CC is concurrency control and DC is divergence con-
trol. Three entries, ESR!, ESR? and ESR?, indicate ep-
silon serializable executions, and SR indicates serializable
executions. ESR! is achieved by method 1, which runs SR-
chopped transactions under divergence control algorithms.
ESR? is achieved by method 2, which enhances Shasha’s
algorithm to chop transactions under ESR, but run them
under concurrency control. ESR? is achieved by method
3, which runs ESR-chopped transactions under divergence
control. This combination shows that ESR and chopping

112

On-Line
Off-Line cC DC
SR-Chopping SR ESR'
ESR-Chopping | ESR® | ESR®

Table 1: Off-line v.s. On-line Approaches

fransactions technique can complement each other, rather
than being alternatives to each other.

2.1 Applying Divergence Control to SR-
Chopping — Method 1

When an SR-chopping operates under a concurrency-control
method (consider the two-phase locking), no conflict cycles
are formed among pieces as well as among the original
transactions at runtime. There is no conflict cycle among
pieces because the concurrency control prevents conflict cy-
cles from being formed. There is no conflict cycle among
the original transactions because there is no SC-cycle. In
this section, we apply divergence control to an SR-chopping,
allowing limited conflict cycles among pieces to be formed.
We must carefully distribute €-spec among pieces such that
the execution of the pieces is epsilon-serializable with re-
spect to the original transactions.

An execution of CHOP(T) is said to be serializable with
respect to the original transaction set 7' if it is equivalent to
a serializable execution of 7. In a similar way, an execution
of CHOP(T) is said to be epsilon-serializable with respect
to the original transaction set 7" if it is equivalent to an ESR
execution of 7. We say that an execution of CHOP(T) is
correct under serializability if it is serializable with respect
to 7. We say that an execution of CHOP(T) is correct
under ESR if it is epsilon-serializable with respect to 7',

Given an SR-chopping CHOP(T), each ET t € T
is assigned an €-spec, denoted by Limit;, A piece
p € CHOP(t) is an update piece if ¢ is an update ET,
regardless of the types of its operations (e.g., p may only
have read operations). Our job is to figure out a correct and
efficient assignment of €-spec, Limit,, for each piece p. Di-
vergence control guarantees that the fuzziness of each piece
is less than or equal to its permitted inconsistency limit, as
expressed in Condition 1 (referred to as Safe(p)).

Zp < Limit, (1)
Z , (the fuzziness of p) is the amount of inconsistency ac-
cumulated at runtime. An assignment of Limit,, is correct if
the following condition holds (Condition 2).

if Zp < Limit,,Vp € CHOP(t), then Z, < Limit,

2
Zy (t € T)is the fuzziness of ¢, which is the amount(O%
inconsistency introduced to ¢ in an execution of CHOP(T).
That is, if the fuzziness of every piece p € CHOP(?) is
bounded by Limir, then the fuzziness of the original transac-
tion ¢ is bounded by Limit;. Anexecution of an SR-chopping
is correct under ESR, the following condition must hold (the
safe condition in ESR definition).

Zy < Limity VYULET

Since t is chopped into smaller ETs, there is no direct mech-
anism to accumulate fuzziness for £; divergence control only
accumulates fuzziness for each piece. Z,; can only be de-
rived from Z,, p € CHOP(2).

Lemmal Given an execution of an SR-chopping,
CHOP(T), for every original transaction, t € T, the
fuzziness of t is the sum of the fuzziness of all pieces in
CHOP(t). The condition is expressed as follows.

>

p e CHOP (1)

Z; = Z,

Theorem 2 Given an SR-chopping, CHOP(T), divergence
control guarantees ESR executions with respect to the orig-
inal transaction set T'.

Proof: This can be simply proved by using the conditions
1,2and Lemma 1. O

2.2 Efficient Inconsistency Limit Distribution

While ¢ € T is chopped into pieces, Limit, is also dis-
tributed into CHOP(t). How to distribute Limit; is an
important component for efficient transaction executions.
Instead of taking the naive approach of evenly distributing
Limit, among CHOP(t), we propose an efficient distri-
bution approach by exploiting the knowledge of chopping
graphs. This approach may lead to a situation where the
sum of the fuzziness limits of all pieces is greater than the
fuzziness limit of the transaction.

Since the job stream of 7" is known in advance (the key
assumption of chopping transactions), from the structure
of a given SC-chopping, we are able to tell that a piece
p € CHOP(t) will never be a part of a conflict cycle (i.e.,
p Csr™ p), if p is not associated with a C-cycle. Thus,
p will never cause any inconsistency. Given a chopping
CHOP(t), each piece p € CHOP(t) is marked either re-
siricted or unrestricted,

o Restricted pieces CHOP g(t): a restricted piece is a
piece associated with C-cycles.

e Unrestricted pieces CHOPy(t): an unrestricted piece
is not associated with C-cycles.

With such information about pieces, our strategy is to dis-
tribute Limir; among the restricted pieces, CHOP g(t), but
not among the unrestricted pieces, CHOPy(t). Accord-
ing to Condition 2 and Lemma 1, we derive the following

condition.

pe CHOP r(1)

Limity = Limit,, (3)

Each unrestricted piece is assigned an infinite limit instead
of a zero limit so that it can bypass the divergence control.
This is because divergence control estimates fuzziness by
detecting (immediate) conflicts, even no conflict cycle is
possibly formed. An unrestricted piece may conflict with
other pieces, but will never be a part of a conflict cycle. Since
it causes no inconsistency in any circumstance, it should not
be caught by divergence control due to an immediate conflict
with other pieces. We discuss two ways of distributing
Limit, among CHOP g(t), static distribution and dynamic
distribution.

113

C : conflict edge
§ :sibling edge

Figure 1: An Example of SR-Chopping

2.2.1 Static Distribution of Fuzziness Limits

We first consider an off-line approach of distributing Limir;
among CHOP g(t) according to the weights of the restricted
pieces. For simplicity, we assume that all restricted pieces
from ¢ have the equal weights. Thus, each restricted piece
p € CHOP g(t) is assigned a limit Limit, as follows.

ICHOP & ()]

Limit, = p € CHOPR(t)

Each unrestricted piece, ¢ has Limit, = oo.

Limat, p € CHOPy(t)

For example, Figure 1 shows a partial chopping
graph. Transaction ¢ is chopped into five pieces:
CHOP()={pi, p2, p3. pa, ps}. There exist no SC-cycles
in the chopping graph. However, three C-cycles are asso-
ciated with p;, p3 and ps. The C-cycle associated with p
contains py, ¢; and ¢;. The second C-cycle contains four
pieces (ps3, 13, t4 and ts) and the third one contains three
pieces (ps, t and t7). The graph also shows some C edges
that form neither SC-cycles nor C-cycles. This type of C

oo

.edges do not cause inconsistency at runtime, since no con-

flict cycles can be formed by them. Assume Limit; is 51.
Each of the three restricted pieces (p1, p3 and ps) is assigned
a limit of 17 (51/3) and both p, and p4 (unrestricted pieces)
are both assigned a limit of co. In the execution mentioned
above, p; and p; have Z =10 and Z,=5. They both commit,
since their fuzziness does not exceed their limits. Assume
that ps accumulates Z3=20 at a certain point. It exceeds
its limit; a proper action (blocked or rolled back) must be
taken. Assume that the piece rolls back (and reset Z3 to
zero) and retrys until it eventually commits (see Section 4
for details). Both ps and ps will also execute and commit.
With an infinite limit (co) assigned to an unrestricted piece
(p2 or pg), divergence control may accumulate an unlimited
amount of import or export fuzziness for the unrestricted
piece. The fuzziness accumulated by divergence control is
over-estimated. For example, the two-phase locking diver-
gence control detects immediate lock conflicts rather than
conflict cycles. Actually, the unrestricted piece has no in-
consistency at all, because it is not associated with either
C-cycles or SC-cycles and thus it is impossible to form a
conflict cycle at runtime.

2.2.2 Dynamic Distribution of Fuzziness Limits

In the previous example, we see the total fuzziness (totally
35) of ¢ does not exceed its total limit (Limit;=51) at the time
when p; exceeds its local limit and rolls back. The problem
arises due to an inefficient distribution among the restricted
pieces; some pieces exceed their limits while the other still
have “unused” quota. This problem can be alleviated by
dynamically distributing Limit; among the restricted pieces
of ¢{. By dynamic distribution, the divergence control is
able to utilize the total fuzziness limit of ¢{. The system
performance is increased since these unnecessary rollback
situations are eliminated.

Based on the knowledge of the job stream of CHOP (T'),
let the dependency order imposed by the transaction pro-
gram text be represented by DG(CHOP(t)), where nodes
are CHOP(t) and edges are dependencies determined by
the program text. For example, a transaction that trans-
fers money from one account to another account is chopped
into two pieces, p; that subtracts the amount from an ac-
count and p, that adds the amount to another account. We
know that p, depends p; and there is an edge from p; to
p2. DG(CHOP(1)) maintains static (off-line) dependency
information about pieces, but not the runtime dependen-
cies due to operations conflicts. For simplicity, we assume
DG(CHOP(t)) is a tree and the root of the tree is the first
piece of t.

The algorithm in Figure 2 starts with procedure
DynamicExecution, which schedules the first piece p
to run and assigns the entire limit (Limit;) to the piece.
Schedule (S, Limits) is a procedure which evenly dis-
tributes Limits among all pieces in S. If p is a restricted
piece, it executes with the assigned limit (i.e., L—g—“—’i). If
p is an unrestricted piece, it executes with an infinite limit
so that it is guaranteed to commit without the possibility
of rollback. All pieces in S are scheduled to run in par-
allel. ExecuteTransaction (p,Limit) is a procedure
that executes p as an individual transaction with a fuzziness
limit, Limit. The procedure returns the “leftover” limit for
p (denoted LO,),

LO, = Limit — Z,

The “leftover” limit is the unused limit quota. If p is a
restricted piece, it passes LO, to the dependent pieces (Sp)
(the dependent pieces of p), which are determined through
the edge set of the dependency graph of CHOP(t). Sp is
then scheduled to run (by Schedule) with the leftover
limit of p. If p is an unrestricted piece, it does not consume
its limit quota at all (since it causes no fuzziness). When
it completes, it schedules all its dependent pieces with the
limit that it was originally assigned.

3 ESR-Chopping — Method 2 and 3

In this section, we discuss the chopping strategy that allows
limited SC-cycles in chopping graphs. We refer to this type
of chopping as ESR-chopping. In addition to the knowledge
of a chopping graph for a set of transactions T, we also
assume the knowledge of the potential fuzziness that can
be caused by a conflict corresponding to each C-edge in the
chopping graph. Wecall the potential fuzziness the weight of

114

DynamicExecution(CHOP(t), Limit,)

begin
S={p}
Schedule(S, Limit,);
end
Schedule(S, Limits)
begin
Limit = Lgts;
forall (p € S) in parallel
begin

if (p € CHOPR(®))
LO, = ExecuteTransaction(p, Limit);
elseif (p € CHOPy(t)

begin
ExecuteTransaction(p, oo);
LO, = Limat

end

Sp = {q|(p, 9) an edge of DG(CHOP()) }
Schedule(Sy, LOp)
end
end

Figure 2: Dynamic Fuzziness Limit Distribution

a C-edge (W¢). For example, a bank customer is allowed to
withdraw at most $500.00 per day. The maximum fuzziness
for the conflict between a piece that withdraws money and a
piece that calculates the sum of all accounts is $500.00. In
case that the potential fuzziness of a C-edge is not possible
to predict, the weight of the C-edge is simply considered o
be co. This off-line information is crucial to ESR-chopping.

Someone may argue that the weights of C-edges are
difficult to know in some applications. This is true. In
those applications, the ESR-chopping strategy reduces to
SR-chopping simply by assigning oo to the weight of every
C-edge. This corresponds to the upward-compatibility of
ESR. However, it is shown in many applications that the po-
tential fuzziness of conflicts are often bounded. Besides the
banking example, airline reservation systems often require a
limit for each reservation. Also, a payroll system may limit
the salary raise for each employee per year. Many database
applications limit the updated amounts for security reason.
For these applications, once the job stream is known in the
first place, the weights of C-edges can be predicted (infinity
for the worst case).

_ In general, we consider two types of fuzziness in a chop-
ping.

o Inter-sibling fuzziness (Z**): inconsistency between
two pieces of an original transaction.

o Inter-transaction fuzziness (Z*%): inconsistency be-
tween two pieces from two different original transac-
tions.

Chopping ¢ into smaller pieces may introduce fuzziness
into t, since it allows conflicting pieces (from a transac-
tion other than t) to execute interleavingly with pieces in
CHOP(t). Such fuzziness is the inter-sibling fuzziness.
When pieces in CHOP(T) are executed serializably, there

is no inter-transaction fuzziness among pieces, but there
may be non-zero inter-sibling fuzziness between two sibling
pieces. The job of divergence control is to control and bound
inter-transaction fuzziness at runtime. Import fuzziness and
export fuzziness are inter-transaction fuzziness. It is obvious
to see that an SR-chopping has no inter-sibling fuzziness.
ESR-choppings have non-zero inter-sibling fuzziness, since
limited numbers of SC-cycles are allowed. In this section,
we discuss inter-sibling fuzziness, which is considered as
off-line information between two sibling pieces.

Since we focus only on environments where database
consistency cannot be compromised, we do not allow a
chopping to have an SC-cycle that consists of two update
pieces connected by a C edge (A piece p € CHOP(t) is
an update piece if ¢ is an update ET). A chopping with an”
SC-cycle consisting of two update pieces connected by a
C edge may cause permanent, inconsistent database states.
We show this point in an example. Given two transactions,
the first one #; is to transfer 100 from account X to account
Y, and the second one %, is to compute the new amounts of
X and Y by adding 10% interest to X and Y. Assume both
X and Y are 1000 initially. Assume a chopping that divides
t) into pj, which subtracts d from X, and p}, which adds
d to Y. Since both ETs are update ETs and there exists an
SC-cycle consisting of both ETs, one possible serializable
execution is p}, ¢, and p? in sequence, which causes X=990
and Y=1000 in the database. Consider two original transac-
tions, this execution produces permanent inconsistent data
in the database.

We show an example of inter-sibling fuzziness. Given
a set of transactions T ti, t»}, transac-
tion ¢, transfers D dollars from account X to account
Y, and transaction ¢, reads both X and Y and dis-
plays the sum of two account balances. Consider a
chopping, CHOP(T)=CHOP(1) |J CHOP(t;), where
CHOP(t) = {p}, p2}, and CHOP(t) = {t,}. The first
piece p} subtracts amount D from account X and the second
piece pf adds D to account Y. The chopping is a rollback-
safe chopping, but not an SR-chopping (since there is an
SR-cycle). CHOP(t1) has a potential inter-sibling fuzzi-
ness of D. That is, in the worst case (consider the execution,
pl — t — p}), p} and p? can introduce fuzziness D
to ¢,. In the next section, we study how to calculate the
inter-sibling fuzziness.

3.1 Finding ESR-Chopping

A chopping is ESR-correct if any serializable execution of
the chopping is equivalent to an ESR execution of the origi-
nal transactions. To define an ESR-chopping, we first define
the weight for each SC-edge, assuming that we are given a
chopping CHOP(T') and the weights of all C-edges. The
weight of an S edge (denoted W) is calculated as follows.
Assume s is an S edge in the chopping graph of CHOP(T).
First, we define the C-edge set associated with s (denoted
CE(s)). Let pieces p and ¢ be the two sibling pieces con-
nected by s. CE(s) contains every C edge connected to
either p or ¢ and in an SC-cycle.

The weight of s is the sum of W (c), for all cin CE(s)

(Equation 4).
> Wele)
c € CE(s)

Ws(s) = 4)

115

t1

t3
Rly] W[Y] RIZ) W[Z]

t4
R[Z} R[Q]

p24¢
R{Q} wW[Q]

Figure 3: An Example of Inter-Sibling Fuzziness
For each transaction ¢, where CHOP()={p1, p2, - . ., Pr},

the inter-sibling fuzziness of ¢ (Z**;) is defined to be the
sum of the weights of all S edges in CHOP(¥).

>

s in CHOP(3)

zis,

Ws(s)

For example, given four transactions, ¢, ¢5, {3 and t4. Trans-
actions ¢; and ¢; are update ETs and ¢, and ¢4 are query ETs.
A chopping partitions ¢; into two pieces, p; and p,. There
is an SC-cycle (see Figure 3), formed by one S edge (s)
and four C edges (c1=(pi1, t2), cr=(t2, t3), c3=(t3, t4), and
c4=(t4, p2)). Assume ch =2, W, 1, W,, = 4, and
W., = 8. The weight of the S edge is 10 (= 2 + 8).
Definition 1 A chopping CHOP(T) is an ESR-chopping,iff
(1) itis rollback-safe, (2) there exist no SC-cycles consisting
of two update pieces connected by a C edge, and (3) the
inter-sibling fuzziness is less than or equal to the fuzziness
of the ET (Condition 5).

VYt € T, Z*, < Limit, (5)

The first condition ensures that either all pieces in
CHOP(t) commit or none of them commit. The second
condition ensures no permanent inconsistency stored in the
database system. The third condition ensures the safe con-
dition of an ESR execution.

3.2 Applying Concurrency Control to ESR-
chopping
We discuss the case where no inter-transaction fuzziness is

allowed (Z%, = 0, Vp € CHOP(T)) in an execution of
a chopping.

Theorem 3 Given

an ESR-chopping, CHOP(T), concurrency-control meth-
ods guarantee ESR executions with respect to the original
transaction set T.

3.3 Applying Divergence Control to ESR-
chopping
We discuss the case where both inter-transaction

fuzziness and inter-sibling fuzziness are allowed
(Z*, < 0,VYp € CHOP(T)and Z*; < 0, ¥t € T)in

an execution of a chopping, CHOP(T). In general, a diver-
gence control (DC) method controls Z**and ESR-chopping
controls Z**. The € -spec, (denoted by Limity), assigned to a
transaction ¢ is not considereded entirely as the import limit
or export limit used by the divergence control for accounting
purpose, since Z**; is considered as part of the fuzziness of
t. Let LimitP € be the limit actually used by the divergence
control method, shown as follows (Equation 6):

LimitP?® = Limit, — 7%, (6)
The limit equal to Z%*; must be reserved for tolerating the
fuzziness caused by conflicts from SC-cycles. Given achop-
ping, CHOP(t), and the limit (Limit, derived from Equa-
tion 6), the same static or dynamic distribution algorithm in

Figure 2 is used to bound fuzziness for the execution of an
ESR-chopping.

Theorem 4 Given an ESR-chopping, CHOP(T), diver-
gence control methods guarantee ESR executions with re-
spect to the original transaction set T'.

4 Chopping Up Epsilon Transactions
in Distributed Environments

The traditional approach to distributed transaction process-
ing [4, 1] requires the use of a commit protocol to ensure
failure atomicity of distributed transactions; either all sub-
transactions of a distributed transaction commit or none of
them commits. Secondly, a global validation process is
needed to ensure concurrency atomicity (i.e., serializable ex-
ecutions of transactions); all sites have the same serialization
order. In some distributed transaction processing systems,
the commit protocol also carry out the global validation pro-
cess. Unfortunately, the traditional commit protocols such
as the two-phase commit protocol have several potential
problems. First, they are expensive in general. Usually,
several rounds of message passing among sub-transactions
are needed in order to commit a distributed transaction. Sec-
ond, they may be blocked for an indefinite period due to a
node failure or a link fajlure. Such a blocking condition for
a transaction can further cause other dependent transactions
to be blocked. In these cases, performance and availability
are severely degraded.

In contrast to the synchronous nature of serializable trans-
action processing systems, ESR and chopping transactions
are two asynchronous transaction processing approaches.
ESR relaxes commit and abort dependencies among trans-
actions by allowing them to commit with a limited amount
of inconsistencies. On the other hand, chopping transac-
tions enforces no commit protocol among the pieces from
an original transaction and allows individual piece to com-
mit asynchronously.

4.1 Chopping Technique Complementing
Distributed Divergence Control
Two categories of distributed divergence control algorithms

have been proposed in [8]. The first category of algorithms
require that the local orderings of all the sub-transactions

116

of a distributed transaction are the same. In such an envi-
ronment, the fuzziness of a distributed transaction is simply
the sum of its sub-transactions’ local fuzziness. For the
second category of algorithms, the local orderings of all the
sub-transactions of a distributed transaction may not be the
same and an additional amount of global inconsistency is in-
troduced into the distributed transaction. In terms of conflict
cycles, the first category of algorithms only allow (limited)
conflict cycles to be formed locally and the second category
of algorithms further allow (limited) conflict cycles to be
formed among multiple sites. Both cases require a commit
protocol to ensure failure atomicity as well as a bounded
degree of concurrency atomicity, and thus have the potential
problems discussed above.

Chopping transactions technique can be used to comple-
ment these divergence control algorithms by reducing the
need of commit protocols. At run time, each chopped piece
is an individual transaction and they can commit indepen-
dently. For a banking example, given three transactions (;,
t, and t3), 1 is to transfer money from checking account z to
saving account y, ¢, is to get the account balance from z and
t3 s to get the account balance from y. We also assume that
z and y are located at two different sites. Transaction ¢ can
be chopped into two pieces, p; and p;. Piece p; subtracts
the amount from z and p, adds the amount to y. No commit
protocol is needed between p; and p;, as long as we can
guarantee the p, will eventually commit once p; commits.

To guarantee that the subsequent pieces of a distributed
transaction will eventually commit once the first piece com-
mits, we adopt the mechanism of persistent transmission [6]
or recoverable queues [3], which are offered in commercial
fransaction monitors. A recoverable queue is an inter-site
communication channel, through which data are guaranteed
to survive site failures as well as link failures. Unlike other
types of inter-site communication channels, both the sender
and the receiver for a recoverable queue must be iransac-
tions instead of arbitrary programs. Messages sent through
arecoverable queue are parts of transaction effects; either all
messages become deliverable when the sending transaction
commits or none of them is delivered when the transaction
aborts. Once a message becomes deliverable, it must be
consumed by a transaction that eventually commits. When
the receiving transaction aborts, all messages read by the
transaction are put back to the recoverable queue and re-
main deliverable.

For simplicity, we assume that each piece of a distributed
transaction resides at only one site (i.e., no piece across
multiple sites). Instead of using the regular communication
channel, each piece uses recoverable queues to communi-
cate with its sibling pieces. Once the first piece commits,
all other pieces can commit asynchronously as long as they
are guaranteed to commit eventually. The eventual commit-
ment of a piece can be guaranteed since (1) itis rollback-safe
(see the rule of SR-chopping), and (2) for the cases of roli-
back due to a lock conflict or deadiock, a process handler
can be used to resubmit the piece until it commits. Using
recoverable queues is a key component that allows a piece
to re-run.

In this approach, we use recoverable queues but we elim-
inate the use of a commit protocol for a distributed transac-
tion. Let us examine the performance tradeoff. In order to
implement the transaction property of recoverable queues, it
is necessary for arecoverable queue to log all sending and re-

ceiving messages with timestamps. We assume a simple ap-
proach where messages are received only after the sender’s
transaction commits. Such an implementation of recover-
able queue does not cost an additional (control) message
than any other reliable communication channel does. On
the other hand, a commit protocol (consider the two-phase
commit) requires at least two rounds of message passing.
In the distributed environments where communication time
is long and less predictable, we increase transaction perfor-
mance by reducing two rounds of messages. Certainly, we
increase the system availability, since no commit protocol
is needed.

For example, assume that a distributed transaction u
transfers money from one bank branch in New York and
another bank branch in Los Angeles, while another dis-
tributed transaction ¢ is calculating the sum of all accounts
in both branches. The transaction ¢ has an import incon-
sistency limit $10,000 and the transaction u has an export
inconsistency limit $10,000. We chop u into two pieces, u;
and uy, each of which is assigned an export inconsistency
limit of $5,000 (i.e., $10,000/2). The first piece u; subtracts
the amount from the account in New York branch, sends a
message to the second piece in Los Angeles branch through
a recoverable queue and then commits. The second piece
uy reads the amount from the recoverable queue and adds it
into the account in Los Angeles branch. We also chop g into
two pieces, q; and g2, each of which is assigned an import
Iimit $5,000. The first piece ¢; calculates the sum of the ac-
counts in the New York branch, sends the result to ¢, through
a recoverable queue and then commits, The second piece
> calculates the sum of the accounts in the Los Angeles
branch, reads the amount from the recoverable queue, and
then commits. A conflict cycle is possible, since both pieces
in the same branch access one common account. How-
ever, as long as the amount of being transferred is less than
$5,000, the iocal divergence control allows both pieces to
proceed. Without using the chopping transaction technique,
both distributed transactions must perform a global valida-
tion process at commit time to ensure that both sites have the
same serialization order. Remember that if two sites have
different serialization orders, there may be global fuzziness
(due to the cross-site conflict cycles). By knowing the chop-
ping graph, all pieces can commit without going through the
global validation. A round trip of message passing can takes
from a few hundreds milliseconds to a few seconds. As a
result, this approach takes a few hundreds milliseconds or a
few seconds less than the traditional approach does.

5 Evaluation

In this paper, we have designed three methods to combine
ESR and transaction chopping:

1. SR-chopping under ESR divergence control.
2. ESR-chopping under SR concurrency control.
3. ESR-chopping under ESR divergence control.

Method 1 is conceptually the simplest of the three, since
it combines an existing SR-chopping algorithm with an
existing ESR divergence control algorithm. Although we
needed to solve the problem of disiributing €-spec in dis-
tributed systems, the practical implemented of Method 1
is straightforward. Method 2 is somewhat more complex,
since ESR-chopping must take into account the fuzziness

117

propagation between chopped transaction pieces. On the
practical side, it runs on existing TP and DBMS systems
without requiring any database support for ESR. From the
performance point of view, Method 2 gives finer-grain chop-
ping than Method 1. However, since the concurrency con-
trol algorithms are more restrictive than divergence control
algorithms during run-time, there are scenarios where SR-
chopping on divergence control wins and others in which
ESR-chopping on concurrency control wins. Method 3 is
the most sophisticated of the three techniques we devised, It
achieves the finest static chopping of the algorithms among
the three methods, as well as the original SR-chopping run-
ning under concurrency control. Similarly, Method 3 also
achieves the best concurrency at run-time, since divergence
control methods allow more concurrency than classic con-
currency control. On the negative side, this possibility asks
for the most investment on the project.

References
1]

P.A. Bemstein and N. Goodman. Concurrency control in distributed database
systems. ACM Computing Surveys, 13(2):185-222, June 1981.

[2] PA. Bemstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley Publishing Company, first
edition, 1987,

[3] PA. Bemstein, M. Hsu, and B. Mann. Implementing recoverable requests
using queues. In Proceedings of 1990 SIGMOD International Conference on
Management of Data, pages 112122, May 1990.

=

Jeffrey L. Eppinger, Lily B. Mummeri, and Alfred Z. Spector, editors, Camelor
and Avalon: A Distributed Transaction Facility. Morgan Kaufmann, 1991.

(s

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1993,

6

M. Hsu and A. Silberschatz. Unilateral commit: A new paradigm for reliable
distributed transaction processing. In Proceedings of the Seventh International
Conference on Data Engineering, Kobe, Japan, February 1990,

3

E. Levy, H. Korth, and A. Silberschatz. An optimistic commit protocol for
distributed transaction management. In Proceedingsof the 1991 ACM SIGMOD
International Conference on Management of Data, Denver, Colorado, May
1991.

[8] C.Pu, WW. Hscush, G.E. Kaiser, P. S. Yu, and K.L. Wu. Distributed divergence
control algorithms for epsilon serializability. In Proceedings of the Thirteenth
International Conference on Distributed Computing Systems, Pittsburgh, May
1993.

9

—

Calton Pu, Gail E. Kaiser, and Norman Hutchinson. Split-transactions for open-
ended activities. In Francois Bancilhon and David J. Dewitt, editors, 14th
International Conference onVery Large Data Bases, pages 26-37,Los Angeles
CA, August 1988.

[10] K.Ramamrithanand C. Pu. A formal characterization of epsilon serializability.
IEEE Transactions on Knowledge and Data Engineering, to appear 1994.

[11] D. Shasha, E. Simon, and P. Valduriez. Simple rational guidance for chopping
up transactions. In Proceedings of 1992 SIGMOD International Conference on
Management of Data, pages 298-307, May 1992.

[12] K.L. Wu, P. S. Yu, and C. Pu. Divergence control for epsilon-serializability. In
Proceedings of Eighth International Conference on Data Engineering, pages
506-515, Phoenix, February 1992. IEEE/Computer Society.

