
The QoS-MO Ontology for Semantic QoS Modeling
Gustavo Fortes Tondello

Federal University of Santa Catarina
Informatics and Statistics Department
Florianópolis, SC – Brazil – 88040-900

fortes@inf.ufsc.br

Frank Siqueira
Federal University of Santa Catarina
Informatics and Statistics Department
Florianópolis, SC – Brazil – 88040-900

frank@inf.ufsc.br

ABSTRACT

This paper presents the QoS-MO ontology. This ontology enables

the specification of QoS requirements for Semantic Web Services

and can easily be combined with OWL-S in order to fully

describe Web Services. The QoS specifications created using the

QoS-MO ontology may be employed on the design and

development of Web Services and on the publication and

discovery of Web Services on the Semantic Web.

Categories and Subject Descriptors

D.2.12 [Software Engineering]: Interoperability – Interface

definition languages.

General Terms

Documentation, Design, Standardization.

Keywords

Semantic Web Services, QoS, Quality of Services, OWL-S.

1. INTRODUCTION
The Semantic Web is defined by Berners-Lee, Hendler and

Lassila as “an extension of the current one, in which information

is given well-defined meaning, better enabling computers and

people to work in cooperation” [1].

One of the core technologies of the Semantic Web is Semantic

Web Services. The well-defined semantics of these services

makes them suitable for automatic publication, discovery,

composition and execution.

In this paper we present the Quality of Service Modeling

Ontology (QoS-MO). Its main goal is to allow semantic

specification of QoS constraints of Semantic Web Services.

Several existing QoS specification models were studied by the

authors with the purpose of bringing the best characteristics

presented by each one to the semantic web scenario and for

addressing the flaws that exist in similar proposals.

Quality of Service (QoS) is the quality delivered by one service,

expressed by means of non-functional characteristics with

quantifiable parameters [6]. A QoS-MO specification may be

used along the whole life cycle of the Web Service, from its

design until its utilization. On the design phase, a QoS-MO

specification may be converted to/from a UML specification that

follows the OMG UML Profile. On the publication and execution

phase, a QoS-MO specification may be integrated with the

existing OWL-S description of the functional characteristics of

the Web Service, extending the OWL-S standard [7] with well-

defined QoS semantics.

The remainder of this paper is structured as follows. Section 2

presents related works that were taken as reference for the

definition of QoS-MO. Section 3 presents the structure and

specification of QoS-MO. Section 4 describes a Semantic Web

Service search tool that uses the QoS information expressed with

QoS-MO to find the Web Services. Section 5 presents the

conclusions and suggestions for future works.

2. RELATED WORKS
This section presents the existing QoS models that were studied

by the authors in order to design the QoS-MO ontology.

2.1 OMG QoS Metamodel
The OMG QoS framework [6] metamodel defines the abstract

language for a modeling language that supports modeling general

QoS concepts. It was designed as a metamodel to the definition

of the QoS UML Profile. This metamodel is widely accepted in

its area of research due to its adequacy for modeling QoS

concepts, and is also adopted as the basic reference for the

definition of the QoS-MO ontology. This approach has two main

advantages: the first one is that a well studied standard that

addresses all the requisites to a proper QoS profile specification

is being adopted. The second advantage is that QoS-MO will

have a tight correspondence with the OMG UML profile, thus

facilitating the task of automatic conversion of a QoS-MO based

QoS description to/from one based on the UML profile.

The OMG QoS metamodel defines three packages. The QoS

Characteristics package contains the model elements for the

description of QoS Characteristics, QoS Dimensions (different

ways to quantify a characteristic) and QoS Contexts (quality

constraints that combine several QoS Characteristics). The QoS

Constraints package includes the modeling elements for the

description of QoS contracts and constraints. The QoS Levels

package includes the modeling elements for the specification of

QoS modes and transitions.

The QoS UML Profile is the implementation of the QoS

framework metamodel that extends UML 2.0 with QoS

specification capabilities. The meta-classes of the metamodel are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

2336

defined as UML stereotypes. Using the OMG UML Profile, QoS

Characteristics are UML Classes with the appropriate

stereotypes and the relationships between UML elements may

have QoS Contracts (annotations with the appropriate

stereotype).

2.2 Existing QoS Specification Languages
Several existing QoS Specification languages have been

analyzed, trying to take the best characteristics of each one and

adapt them to be employed in the proposed ontology model.

The analyzed specification languages were: Quality of Service

Modeling Language (QML) [3], Web Service Level Agreement

(WSLA) Language [5], QoS Specification Language (QSL) [8]

and QoS Description Language (QDL) [13]. Despite providing

mechanisms for QoS specification, these languages lack the

flexibility provided by an ontology for dealing with the semantic

meaning of QoS constraints.

2.3 Existing QoS Modeling Ontologies
The QoSOnt ontology [2] defines a model for the specification of

QoS for Semantic Web Services. It allows the association of a

QoS specification with an OWL-S service profile. However, it

does not provide any means to specify a QoS profile from a set of

QoS characteristics, nor to reuse or extend a previous

specification. QoSOnt has a mechanism that allows the

conversion of different units of QoS metrics, but it has no

specific mechanism to map different QoS parameters.

The DAML-QoS ontology [12] defines a model for the

specification of QoS parameters and profiles. DAML-QoS allows

the specification of a QoS profile as a set of QoS characteristics.

Nevertheless, there is no possibility to extend an existing profile

or create a new profile as a composition of others. It also allows

the definition of complex metrics with a function that makes

possible to calculate their values from the values of other

metrics. The main flaw of DAML-QoS is that it uses the

cardinality restrictions between a QoS profile and its QoS

metrics to set the values of QoS characteristics, thus limiting

their values to non-negative integer numbers.

The OWL-Q ontology [4] is an upper level ontology which

extends OWL-S to describe the possible parts of QoS metrics and

constraints. Using OWL-Q it is possible to define complete QoS

specifications, and it also provides means to specify unit

conversion and composite metrics. In addition, semantic

matchmaking and selection algorithms that use the OWL-Q

ontology have been developed by the authors.

2.4 QoS-enabled Semantic Web Services

search engines
In [10] the authors describe a QoS-enabled Semantic Web

Service discovery framework. Although they have briefly

discussed a semantic description model for QoS of Web Services,

the main focus of this work is on the discovery and ranking

mechanisms of Web Services and on the description of a solution

for dynamic assessment and management of QoS values based on

user feedback. In section 4 we will also describe the design of a

Semantic Web Services search tool in order to validate our

proposal, but our main contribution is the QoS modeling

ontology, not the search tool itself.

3. THE QoS-MO ONTOLOGY
The Quality of Service Modeling Ontology (QoS-MO) is an

upper level ontology that contains elements for the description of

QoS Characteristics and Constraints of Web Services described

in OWL-S. To instantiate a QoS description of a particular Web

Service, one must create a new ontology that will import the

QoS-MO ontology, extend its classes as needed and create the

required individuals. The functional and non-functional (QoS)

specifications of a Web Service may be described on a single

ontology or on two separated ones. Figure 1 depicts the hierarchy

of ontologies used for QoS definition of a Web Service.

Figure 1. Ontologies for QoS description of a Web Service.

The Protégé Ontology Editor and Knowledge Acquisition System

[9] was employed to build the QoS-MO ontology. In the future

we intend to provide the developer with a tool to facilitate the

creation of a new ontology to model Web Services using QoS-

MO without modifying the QoS-MO ontology itself.

3.1 QoS Characteristics
The class QoSCharacteristic is the main class in the QoS-MO

ontology for the definition of quantifiable characteristics of

services. Characteristics may be general like latency, throughput,

availability, reliability, security and accuracy, or domain specific

ones. QoS characteristics may be grouped in categories using the

class QoSCategory. Both classes can take advantage of

extension/specialization: QoSCharacteristics may be reused and

extended, while QoSCategories may form a hierarchical

classification system. New characteristics and categories are

created as subclasses of these ones.

The dimensions for the quantification of characteristics are

modeled using class QoSDimension. One QoS Characteristic

may have more than one way of measuring it, or it may require

more than one dimension for its quantification. Examples of

dimensions for latency are (from [6]): minimum latency,

maximum latency and jitter. The property direction of the

QoSDimension class specifies whether the values of an ordered

dimension are increasing or decreasing. The property unit allows

the specification of the measurement unit, and property

statisticalQualifier identifies the type of the statistical qualifier

(i.e., average, standard deviation, etc.) when the dimension

represents a statistical value.

The class QoSContext allows the definition of quality

expressions that combine multiple QoS Characteristics. A QoS

Characteristic defines a QoS Context that references only itself;

hence QoSCharacteristic is a subclass of QoSContext. A QoS

Context can be composed of other contexts or characteristics.

2337

Class QoSCharacteristic does not have a direct relationship with

class QoSDimension. Instead, dimensions are created as

subclasses of QoSDimension and a subclass of QoSCharacteristic

will have new object properties which range will be a subclass of

QoSDimension. This allows the definition of dimensions as

properties of the characteristic class. This strategy is the same

used on the QoS UML Profile. A QoSDimension may also be

defined as a reference to a QoSCharacteristic, making possible

the composition of characteristics within another one.

Figure 2 shows the modeling elements for QoS Characteristics.

Figure 2. Modeling elements for QoS Characteristics.

Figure 3 shows an example of a QoS profile for the OWL-S

example BravoAir Web Service [7]. The service has a QoS

Context represented by the class BravoAirQoS, with two

characteristics represented by classes ResponseTime and

Availability. Each characteristic has some dimensions.

Figure 3. Example of a QoS profile definition.

3.2 Dimension Mapping
Mapping scripts between dimensions may be defined using class

QoSDimensionMapping. This class has two properties,

sourceDimension and targetDimension, to identify dimensions

involved on the mapping. This allows search mechanisms or

automatic QoS negotiation middleware to identify a dimension

even if its value is not given for a particular characteristic,

provided that there is a mapping script between it and any other

dimensions of the same characteristic or even of other

characteristics.

Class QoSDimensionMapping has a property expression that

defines the mapping script. Mapping scripts are defined using

logical and arithmetic operations and if/else conditional

expressions. All the operations are written on the same syntax

accepted by C, C++ and Java.

For example, there could be a QoSDimensionMapping individual

with the targetDimension defined as the AverageResponseTime

dimension, the sourceDimension defined as the set of

AverageRequestTime, AverageExecutionTime and

AverageReplyTime dimensions, and the expression defined as:

AverageResponseTime = AverageRequestTime +

AverageExecutionTime + AverageReplyTime;

3.3 Context Instantiation
A QoS Context and the other involved elements have to be

instantiated to create a QoS definition for a particular Web

Service, i.e., ontological individuals of each one of the classes

must be created.

There could be a value property on the dimension classes to

allow the setting of dimension values when instance individuals

are created. However, it is better to define dimension values

separated from the definition of the dimension itself. To

accomplish this, there is another simple class named QoSValue.

This class has only one property named value. An individual of

class QoSDimension that must have a value must also be an

individual of class QoSValue.

3.4 QoS Constraints
There are three types of QoS Constraints: QoS Offered, QoS

Required and QoS Contract.

When a provider service defines a QoS Offered, it defines the

quality of the service that it will be providing for its clients.

When a client service defines a QoS Offered, it defines the

constraints it will guarantee when invoking the provider service.

When a provider service defines a QoS Required, it defines the

constraints that the client must achieve to get the expected

quality. When a client service defines a QoS Required, it defines

that the provider service must achieve some quality constraints.

A QoS Required definition may also be created by a search

mechanism to express the QoS constraints defined by the user

and compare it with the QoS Offered definitions of the services

being searched.

A QoS Contract constraint represents the final quality agreed

between two services on an assembly. A QoS Contract may be

statically calculated when all QoS characteristics involved have

static values. But sometimes the contract depends on the

resources available or characteristics defined dynamically. Even

at this case, it is possible to statically identify the characteristics

involved and some limit values based on offered and required

QoS constraints of the services involved.

A QoS Constraint must reference the QoS Context or Contexts

that provide the reference expressions and values associated to

the constraint.

It is also possible to specify a QoSCompoundConstraint to

define a global constraint decomposed into a set of

subconstraints.

Figure 4 shows the modeling elements for QoS Constraints.

2338

Figure 4. Modeling elements for QoS Constraints.

3.5 QoS Levels
QoS Levels represent the different modes of QoS that a service

can support. The QoS Constraints associated with a QoS Level

represent the constraints that the service must satisfy to operate

on such level. It is also possible to represent a

QoSCompoundLevel as a set of different QoS Levels.

When a service is no longer capable of operating at a given level,

for example, when it is receiving more requests and its max

response time constraint will have to change, a QoS Transition

occurs. When this happens, probably the services involved will

have to renegotiate their execution parameters and QoS

Contracts. A QoS Transition definition may specify all the

adaptation actions necessary for the transition.

Figure 5 shows the modeling elements for QoS Levels.

Figure 5. Modeling elements for QoS Levels.

3.6 OWL-S Extension
The QoS-MO Ontology may be used to extend OWL-S with QoS

related constraints.

The QoS Constraints modeled with QoS-MO may refer to a

Service as a whole or to a specific Process of a Service.

Therefore, a QoS Constraint can have an association with an

instance of either an OWL-S Profile or an OWL-S Process.

QoS Offered and QoS Required constraints will associate with

only one Profile or Process. QoS Contracts will associate with

two different Profiles or with two Processes from different

Services that are involved on the contract.

Figure 6 shows the modeling elements for OWL-S extension.

Figure 7 puts everything together and depicts a complete

example of an extension to the BravoAir Web Service profile [7]

represented by the Profile_BravoAir_ReservationAgent

individual. The QoS Offered constraint BravoAir_Offered is

defined with one QoS Context BravoAirQoS that has one QoS

Characteristic BravoAir_ResponseTime with one dimension.

Figure 6. Modeling elements for OWL-S extension.

Figure 7. An example of extension of the BravoAir Web

Service OWL-S profile with QoS constraints.

4. A QoS ENABLED WEB SERVICES

SEARCH TOOL
As a proof of concept, we have designed a search tool that

searches for Web Services modeled with OWL-S that fulfill some

specific QoS requisites. This tool writes SPARQL [11] queries to

search for QoS models that are within the specified constraints

and return the selected Web Services.

Our first tests showed that it is possible to find and filter QoS

specifications that fulfill certain QoS constraints using a

SPARQL query. The following is the SPARQL query to find a

2339

QoS Offered constraint that has any QoS Context with the

ResponseTime characteristic with a MaxResponseTime

dimension which value is lower than 10 seconds. Table 1

presents the results after execution of the query.

SELECT

 ?constraint ?context ?charact

 ?dimension ?value

WHERE {

 ?constraint rdf:type :QoSOffered.

 ?constraint :Context ?context.

 ?context :BasedOn ?charact.

 ?charact rdf:type :ResponseTime.

 ?charact ?predicate ?dimension.

 ?predicate rdfs:range :MaxResponseTime.

 ?dimension :value ?value.

 FILTER (?value < 10)

}

Table 1. Results after execution of SPARQL query

constraint context charact dimension value

BravoAir

Offered

BravoAir

QoS

BravoAir

Response

Time

BravoAir

MaxResponse

Time

5

The search tool consists on a Web interface where the user enters

the QoS Constraints he/she wants to search; a component that

converts these constraints to a SPARQL query and executes this

query on the ontology that contains the QoS descriptions of the

Web Services; and a component that retrieves all the Web

Services matched by the query and returns them to the user.

The search results can be presented classified according to the

level of quality presented by the Web Services: those with better

quality will be presented first. When the constraint specified by

the user has only one characteristic, it is easy to sort the returned

services according to their quality level. When there is more than

one characteristic on the search query, the user must specify

which characteristic or characteristics he/she finds more

important to be considered for sorting so that the tool will know

how to present the results.

5. CONCLUSION
This paper presented the QoS-MO ontology for the description of

QoS characteristics of Web Services on the Semantic Web.

The construction of the ontology was based on various existing

QoS models, specially the OMG QoS Framework Metamodel.

The QoS-MO ontology allows the extension of OWL-S

specifications of Web Services with well-defined QoS

Constraints. These constraints can be used by search tools for

helping users to find Web Services that guarantee some level of

quality besides providing the required functional aspects, or by

the Web Services execution framework to guide the negotiation

of QoS parameters when one client is going to invoke a service.

QoS specifications built with QoS-MO may also be converted

to/from specifications built with the QoS UML Profile, allowing

the integration of the QoS model in the design phase of the

development life cycle of Web Services.

As a proof of concept, we have designed a search tool that is able

to search within an ontology of Web Services descriptions made

with QoS-MO for Web Services that meet certain quality

constraints, and return the OWL-S and the QoS-MO descriptions

of the matched services.

The use of this search tool will help to test the expressiveness of

the proposed ontology and the performance of a search tool built

upon execution of SPARQL queries over an ontology of Web

Services functional and QoS descriptions.

6. REFERENCES
[1] Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic

Web. Scientific American, May 2001.

[2] Dobson, G., Lock, R. and Sommerville, I. QoSOnt: a QoS

Ontology for Service-Centric Systems. 31st Euromicro

Conference on Software Engineering and Advanced

Applications (Euromicro SEAA „05). Porto, Portugal, 2005.

[3] Frølund, S., Koistinen, J. QML: A Language for Quality of

Service Specification, 1998.

http://www.hpl.hp.com/techreports/98/HPL-98-10.html

[4] Kritikos, K., Plexousakis, D. Semantic QoS Metric

Matching. 4th European Conference on Web Services

(ECOWS „06), December 2006, pp.265-274.

[5] Ludwig, H., Keller, A., Dan, A., King, R.-P., and Franck, R.

Web Service Level Agreement (WSLA) Language

Specification. January 2003.

http://www.research.ibm.com/wsla/WSLASpecV1-

20030128.pdf

[6] Object Management Group. UML Profile for Modeling QoS

and FT Characteristics and Mechanisms Specification,

v1.0. May 2006.

[7] OWL-S Coalition. OWL-S 1.1 Release. November 2004.

http://www.daml.org/services/owl-s/1.1/

[8] Siqueira, F. Especificação de Requisitos de Qualidade de

Serviço em Sistemas Abertos: A Linguagem QSL. 20th

Brazilian Symposium on Computer Networks (SBRC„2002).

Búzios - RJ, Brazil, 2002.

[9] Stanford University. The Protégé Ontology Editor and

Knowledge Acquisition System. 2007.

http://protege.stanford.edu/

[10] Vu, L.-H., Hauswirth, M., Porto, F., and Aberer, K. A

Search Engine for QoS-enabled Discovery of Semantic Web

Services. Special Issue of the International Journal on

Business Process Integration and Management (IJBPIM),

Vol. 1, No. 4, 2006, pp.244–255.

[11] W3C. SPARQL Query Language for RDF. Candidate

Recommendation, June 2007.

http://www.w3.org/TR/rdf-sparql-query/

[12] Zhou, C., Chia, L. and Lee, B. DAML-QoS ontology for

Web services. IEEE International Conference on Web

Services (ICWS„04). San Diego, California, USA, 2004,

pp.472-479.

[13] Zinky, J., Bakken, D. and Schantz, R. Architectural Support

for Quality of Service for CORBA Objects. Theory and

Practice of Object Systems, Vol. 3(1), January 1997.

2340

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

