
Future Generation Computer Systems 24 (2008) 17–29
www.elsevier.com/locate/fgcs
MiPeG: A middleware infrastructure for pervasive grids

Antonio Coronatoa, Giuseppe De Pietrob,∗

a SASIT-CNR, Via P. Castellino 111, 80131 Napoli, Italy
b ICAR-CNR, Via P. Castellino 111, 80131 Napoli, Italy

Received 16 January 2007; received in revised form 3 April 2007; accepted 6 April 2007
Available online 21 April 2007

Abstract

Grid computing and pervasive computing have affirmed respectively as the paradigm for high performance computing and the paradigm for
user-friendly computing. The conjunction of such paradigms are now generating a new one: the Pervasive Grid Computing. This paper presents a
middleware for pervasive grid applications. It consists of a set of basic services that aim to enhance classic grid environments with mechanisms
for: (i) integrating mobile devices in a pervasive way; (ii) providing context-awareness; (iii) handling mobile users’ sessions; and, (iv) distributing
and executing user tasks on the devices (even mobile) active in the environment.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Grid; Pervasive Computing; Middleware services
1. Introduction

During the last decade, new computing models have
emerged and rapidly established themselves. In particular,
terms like Grid Computing, Pervasive Computing and Utility
Computing have become common usage not only in the
scientific and academic world, but also in business fields.

The Grid Computing model has demonstrated itself to be an
effective way to face very complex problems. The term “The
Grid” was primarily introduced by Foster and Kesselman to
indicate a distributed computing infrastructure for advanced
science and engineering [1]. Successively, it has been extended
to denote the virtualization of distributed computing and data
resources such as processing, network bandwidth and storage
capacity to create a single system image, granting users and
applications seamless access to vast IT capabilities. As a result,
Grids are geographically distributed environments, equipped
with shared heterogeneous services and resources accessible
by users and applications to solve complex computational
problems and to access to big storage spaces.

Differently, the goal for Pervasive Computing is the
development of environments where highly heterogeneous
∗ Corresponding author. Fax: +39 0816139531.
E-mail addresses: coronato.a@na.drr.cnr.it (A. Coronato),

depietro.g@na.icar.cnr.it, giuseppe.depietro@na.icar.cnr.it (G. De Pietro).

0167-739X/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2007.04.007
hardware and software components can seamlessly and
spontaneously interoperate, in order to provide a variety of
services to users independently of the specific characteristics of
the environment and of the client devices [2]. Therefore, mobile
devices should come into the environment in a natural way, as
their owner moves, and transparently, so that the owner will not
have to carry out manual configuration operations to approach
the services and the resources, and the environment has to be
able to self-adapt and self-configure in order to host incoming
mobile devices.

On the other hand, Utility Computing aims at providing users
with computational power in a transparent manner [7], similarly
to the way in which electrical utilities supply power to their
customers. In this scenario, computing services are seen as
“utilities” that users pay to access to, just as is in the case of
electricity, gas, telecommunications and water.

Classic grid applications are neither pervasive, nor able
to implement the Utility Computing vision in a completely
transparent way. As a matter of fact, classic grids do not provide
mobile users with support to access resources and services at all
(i.e. classic grids consists of wired, pre-configured, powerful
stations). Moreover, whenever a user wants to execute her own
application, she typically has to: (i) ask the grid for resources;
(ii) allocate tasks; (iii) launch and control executions; (iv) get
results; and (v) release resources.

http://www.elsevier.com/locate/fgcs
mailto:coronato.a@na.drr.cnr.it
mailto:depietro.g@na.icar.cnr.it
mailto:giuseppe.depietro@na.icar.cnr.it
http://dx.doi.org/10.1016/j.future.2007.04.007


18 A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29
This practice has several limitations:

1. User-environment interactions are very little transparent;
2. Users have direct control of allocated resources. The user

requires (and sometimes locks) resources of the grid;
3. Resources are handled in an insecure and inefficient way. A

malicious user could require a larger amount of resources
with respect the ones really needed or an inexpert user could
underestimate the resources that his application should get
assigned.

It is worth noting that even in the case of brokering systems,
like Condor [24], which directly handle the set of grid resources
and enable users just to submit tasks for execution, several
limitations are present. As a matter of fact, Condor doesn’t
take into mobile resources and mobile users. Such limitations
have partly been faced in works like [6], which aim at making
Condor services available to mobile users. However, these
solutions continue to neglect mobile resources as available
(useful) resources for the grid. Differently, our implementation
not only enable mobile users to get access to services and
resources by means of their mobile devices, but also it integrates
mobile devices as active grid resources. As a result, tasks can be
launched on mobile resources. In particular, we have performed
some experiments in which the entire branches of code have
been executed only on mobile resources without loading classic
grid resources. On the one hand, this is a way to extract
useful computing power from resources that have historically
been neglected by classic grids. On the other hand, this way
the proposed middleware provides support to easily develop
specific applications that require the execution of branches of
code by mobile devices or sensor networks.

In this paper, we present a middleware infrastructure able to
integrate mobile devices in the grid.

Mobile equipments are integrated either as mechanisms for
interfacing the grid or as active resources for the grid itself.

In the case of access mechanisms, every incoming mobile
device is integrated in a completely transparent way; that is,
the mobile user can access the grid and move within the
environment without any manual configuration operation. In
particular, the mobile user gets automatic access to services
as soon as he enters the environment. In addition, whenever
he moves within the environment, his device is automatically
located and his context follows him.

On the other hand, in order to integrate mobile devices as
active resources for the grid (i.e., resources able to execute
tasks as in [3] or to expose services), a light middleware
branch must be installed and launched on them. This is a one
time configuration operation. After that, whenever the mobile
device enters the environment it is automatically recognized
and monitored by the environment, which is then able to
allocate tasks on such a mobile resource or to make the services
carried by it available for the grid.

Finally, the middleware exposes a basic service for the
automatic execution of Java tasks according to the Utility
Computing model. As a matter of fact, every user can submit its
own Java tasks that are automatically replicated and allocated
for execution on available resources, both wired or wireless.
After execution, the environment gathers results and returns
them to the user. An application of such a service has been
adopted to develop tools for performing parallel software
testing. As a matter of fact, when a developer has to test
a branch of code, he has to design test cases (i.e. sets of
data inputs) and execute the code for every test case. By the
way, each execution is independent from every other, and they
can be performed independently. The testing service under
development will enable a programmer to submit the software
element to test and the set of test cases. After that, it will be in
charge of executing the software element with respect to each
test case. Executions can be performed contemporaneously
on different devices. Since testing activities may require the
execution of hundreds of test cases, it is clear that such a service
will drastically reduce the effort for testing software elements.

The rest of the paper is organized as follows. Section 2
discusses some motivations, related work and contributions.
Section 3 describes the high-level architecture of the
middleware infrastructure. Section 4 details basic services. In
Section 5, a running scenario and some experimental results are
presented. Finally, Section 6 concludes the paper.

2. Motivations, related work and contribution

2.1. Motivations and related work

Mobile and wireless devices have not been considered, for a
long time, as useful resources by traditional Grid environments.
However, considering Metcalfe’s law, which claims that
usefulness of a network-based system proportionally grows
with the square of the number of active nodes, and also
considering that mobile devices capabilities have substantially
be improved over the time, it can justifiably be stated that
mobile and wireless devices are now of interest for the Grid
community [4].

In particular, they have to be incorporated into the Grid
either as service/resource consumers or as service/resource
providers [9]. A very interesting example is the “NEESgrid”
[26], which is a grid infrastructure for earthquake forecasts
and simulations that have required the integration of cameras,
sensor networks and mobile devices for measures in the field.

However, integration is not costless [10]. This is mainly
due to the consideration that current Grid middleware
infrastructures don’t support mobile devices–not only because
they have not been devised taking into account pervasive
requirements like spontaneity, transparency, context-awareness,
pro-activity, and so on, but also for three main reasons:
(i) they are still too heavy with respect to mobile and
wearable equipments capabilities; (ii) they assume fixed
TCP/IP connections and do not deal with wireless networks and
other mobile technologies; and, (iii) they typically support only
one interaction paradigm, that is SOAP messaging, whereas the
Pervasive model requires a variety of mechanisms [13].

Over the last years, some valuable efforts have been made
in order to make Grid architectures able to support wireless
technologies and mobile devices. In particular, the paradigm



A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29 19
of Mobile Grid or Wireless Grid has been proposed [4,
8–10]. More recently, this paradigm has evolved in the
Pervasive Grid model [11,12], which again aims at making
Grid environments able to integrate mobile devices, but in a
pervasive way–that is seamlessly and transparently. In addition
to this, the final objective is both to enhance Grid environments
with characteristics like context-awareness and pro-activity,
which are typically found in Pervasive environments, and to
implement the Utility Computing model, which would ease and
make more robust the execution of user tasks.

It is worth noting that the effort of exploring possibilities
of synergy between the Pervasive Computing paradigm and the
Grid Computing one has already been formalized in 2003, when
a Global Grid Forum Research Group, called Ubicomp-RG,
was established.

Some interesting work towards the realization of Pervasive
Grids has been done and is reported here.

In [5], mobile devices are considered as active resources
for the Grid. In particular, the authors developed a software
infrastructure for deploying Grid services on mobile nodes and
making them active actors in the Grid. This solution relies on a
lightweight version of the .NET framework, namely the .NET
Compact Framework, which enables deployment on mobile
devices simple Grid Services that require limited amount of
resources. It is important to note that such a solution applies
only to mobile devices equipped with the Microsoft Pocket PC
operating system, and requires several manual operations for
installation and configuration.

In [13], the authors argue that the SOAP messaging,
which is the current interaction paradigm for standard grid
middleware infrastructures, is not adequate to face the needs
of pervasive grids. They developed several plug-ins and
a handling component for enlarging the set of available
interaction mechanisms in order to make grids able to support
heterogeneous software components.

Another middleware infrastructure for pervasive grids has
been presented in [14]. In that instance, the authors have
concentrated their effort on the extension of existing resource
manager components in grid applications for making them able
to register mobile devices.

2.2. Contribution

Our contribution consists of a set of basic services
that realize a middleware infrastructure, namely MiPeG
(Middleware for Pervasive Grids), for the realization of
Pervasive Grids. In particular, MiPeG extends existing Grid
environments with the following characteristics:

a. Spontaneous and transparent integration of mobile devices
as active clients. This characteristic makes the grid able to
integrate mobile devices in a pervasive way; that is, without
any manual configuration operation. The realized services
grant access to mobile devices, which can then be used as
an interfacing mechanism for the grid. In addition to this,
the environment reliably handles implicit disconnections of
mobile devices. Indeed, mobile users can leave the physical
environment without concerning themselves about pending
services. In such a case, specific services detect disconnections
and handle pending computations. Some basic mechanisms
for accessing the grid via mobile devices have been presented
in [16].

b. Reliable management of mobile users’ sessions. As users
physically move in the environment, their running applications
and their virtual environments are updated and made available
for them in the new locations. This is performed by services
that handle mobile sessions.

c. Transparent integration of mobile devices as active
resources. When a mobile device enters the environment,
it is automatically registered as an active resource for the
grid and monitored by the environment. Consequently, the
environment can allocate and execute tasks on it, as well as
making services carried by the device available to grid users,
in a completely transparent way for its owner. This feature,
however, requires the installation of a lightweight software
plug-in, which consists in an agent container, onboard the
mobile device.

d. Context-awareness. Some mechanisms for context-awareness
and location-awareness are provided. In particular, we devel-
oped services for: (i) locating mobile users and devices in a
physical area; (ii) tracking their activities within the environ-
ment; and, (iii) personalizing their access based on rights, de-
vice capabilities, location, and so on.

e. Direct and reliable execution of user code. In classic grids
users require resources; after that, they are fully in charge of
launching the application, controlling it, picking up results and
releasing resources. On the contrary, the Utility Computing
model is based on the idea of making all execution aspects
completely transparent to users; they have just to submit code
and “pay” for getting results. With respect to this vision, a
service for executing source Java code has been developed. In
detail, users can directly submit their tasks without concerning
themselves about requiring specific resources, monitoring
execution, picking up results and releasing resources. All these
activities are automatically performed by the service.

3. Architecture of MiPeG

MiPeG consists of a set of basic services, as shown in
Fig. 1. Such services are exposed as Grid Services; i.e., they
are compliant with the OGSA specifications.

It integrates with the Globus Toolkit [15], which is the de
facto standard platform for Grid applications, in order to extend
its functionalities and to provide mechanisms for augmenting
classic grid environments with pervasive characteristics. It also
partly relies on the JADE framework [22] to implement some
mobile agent based components.

It is important to note that MiPeG, in addition to the classic
SOAP messaging mechanism that presents several performance
limitations as shown in [5], also supports an additional
interaction paradigm, the publish–subscribe one, for more
generic, inter-components, asynchronous communications.

MiPeG consists of the following basic services:



20 A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29
Fig. 1. Architecture of MiPeG.
• AsynchronousCommunicationBroker. This component is
in charge of dispatching asynchronous messages in the
pervasive grid. It implements the WS-BrokeredNotification
specification [23]. Moreover, it extends such a specification
by classifying events and handling hierarchies of classes of
events. This extension provides a more flexible and efficient
mechanism for subscriptions and communications.
• Access&LocationService. This service provides network
access to mobile devices and locates them in the environment.
Current implementation grants access and locates 802.11
WiFi enabled devices. It also locates RFID tagged objects.
Definitively, this service is in charge of communicating to the
environment (i) incoming mobile objects, (ii) location changes
for active objects, and (iii) leaving objects.
• ResourceService. This service extends standard grid
mechanisms for registering and monitoring resources, like
MDS and Ganglia, in order to integrate in the grid mobile and
wireless resources like laptops, PDAs and sensor networks.
• PeopleService. This component provides basic authentication
mechanisms and handles the list of mobile users active in the
environment.
• ContextService. The Context Service, which relies on
Semantic Web technologies, handles the concept of context for
a pervasive grid. Our current implementation of context consists
of information related to: (i) the state of resources (both fixed
and mobile) and services; (ii) the location of mobile users;
and (iii) users’ profiles. It is also possible to get more context
information from networks of sensors that can conveniently be
integrated in the environment in order to get details on ambient
conditions like temperature, humidity, human presence, and so
on. The service relies on ontologies and rules that enable it both
to classify several typologies of entities involved in Pervasive
Grids, and to infer higher-level context information from low-
level information.
• SessionManagerService. This service handles sessions for
mobile users. It consists of mobile agents that maintain the list
of services activated by mobile users. A mobile agent is created
when a new device comes into the environment, required to
move accordingly with device movements, and destroyed when
the mobile device leaves the environment.
• UtilityService. This service provides an implementation
of the Utility Computing model. As a matter of fact, it
enables users to submit source code tasks for execution. In
this way, the user is freed of activities like requiring and
reserving resources, launching executions, picking up results
and releasing resources. It is worth noting that executions are
performed directly by the environment in a transparent and
reliable way.

All software elements are full open-source Java components.
Moreover, most of them have a WSDL interface, consist in
a GAR file generated with the Ant tool, and are deployed as
Grid Services over the Globus Toolkit 4.0 platform. In addition,
some services present Web interfaces, realized with the Java
JSP and Java Servlet technologies, and interact with MySQL
databases.

4. Details on MiPeG’s services

4.1. Asynchronous Communication Broker

The AsynchronousCommunicationBroker provides an in-
teraction mechanism based on the event publish–subscribe
paradigm.

It implements the WSBrokeredNotification specifications.
It also extends such specifications with the possibility of
publishing and subscribing hierarchies of classes of events.

In particular, a class of events is a collection of events that
are logically related. In such a case, rather than subscribing to
every event of the class, a consumer can make just one operation
of subscription for the entire class and be notified for every
event.

Moreover, it handles hierarchies of classes. The concept
of hierarchy has been derived from the Object Oriented
inheritance technique. Since classes can be related in
hierarchies, when a consumer subscribes to one class, it
automatically subscribes to every upper class of the hierarchy.
An example is shown in Fig. 2. In the figure, Consumer1
and Consumer2 respectively subscribe to classes C1 and
C6. Because of the inheritance property of the hierarchy,
Consumer1 is notified only for events appertaining to class C1.
Differently, Consumer2 is notified for events of every class



A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29 21
Fig. 2. A possible hierarchy of classes of events.

except C5. This is due to the fact that class C6 inherits from
classes C2, C3, and C4, which in turn inherit from class C1.
The figure shows the case of a producer that notifies an event
of class C1. This event is dispatched both to Cosumer1 and to
Consumer2.

This model represents an extension of the WSBrokeredNoti-
fication specifications. As a matter of fact, the WSBrokeredNo-
tification specifications neither support hierarchies of classes,
nor simple classes, but require that a consumer subscribe to ev-
ery specific event for which it is willing of being notified.

In Fig. 3, the WSDL interface of the AsynchronousCommu-
nicationBroker is shown. The Broker exposes functions for sub-
scribing and unsubscribing classes of events, notifying events,
creating and handling hierarchies. In addition, two hierarchies,
which will be used in the running scenario, are detailed. In par-
ticular, hierarchy 1 consists of three classes. Class MOBILITY
contains the event NEW LOCATION. Class PRESENCE con-
tains the events NEW DEVICE and DEVICE HAS LEFT. Fi-
nally, class LOCALIZATION groups all events. Hierarchy 2
consists of a single class, namely USER PRESENCE, which
contains events for logging in and out a user.

4.2. People Service

This service provides basic authentication mechanisms and
handles active users in the environment. As shown in Fig. 4,
it exposes a Web interface for authenticating connected users
and for handling authorized users. An authorized user can log
in by means of a JSP application form, and log out either
explicitly or implicitly by closing the web page. Moreover,
some administrative functions are available. The environment
can interact with the service via the WSDL interface in order to
get the list of active users or the rights of a specific user.

The service also notifies to the environment events of the
class USER PRESENCE whenever a user logs in or out.
4.3. Access&Location Service

This service is able to locate active mobile objects like
WiFi enabled devices and RFID tagged entities [17]. It offers
both locating and location functions; that is, the function
Locate Object returns the position of a specific object, whereas
the function Get Objects returns the list of objects that are
active at a specific location (see Fig. 5).

It notifies to the environment events of the class
LOCALIZATION.

In addition to location and locating functions, this service
provides basic network facilities for connecting incoming
mobile devices and detects leaving mobile objects.

The service architecture consists of two layers and the
following components:
• WiFiLocatingComponent. This component is in charge
of locating WiFi enabled mobile devices. In particular,
a WiFi location is identified by the area covered by a
specific wireless Access Point (AP). In the environment,
one WiFiLocatingComponent is deployed per every wireless
AP. Our current implementation uses 3Com Office Connect
Wireless 11g Access Points. Whenever a mobile device
connects with the AP, the AP writes an event in its log file. The
WiFiLocatingComponent periodically interrogates such a log
file and communicates them to the LocationComponent when
a new device has connected. The WiFiLocatingComponent
maintains information on devices locally connected to its AP.
• RFIDLocatingComponent. This component is in charge of lo-
cating RFID tagged objects. An RFID location is identified by
the area covered by a specific RFID reader. Current implemen-
tation uses the passive, short-range (30 cm), Feig Electronic
RFID, model ISC.MR 100/101. When a tagged object enters
the area covered by an antenna, the RFID reader generates an
event that is caught by the RFIDLocatingComponent. Then, the
RFIDLocatingComponent communicates to the LocationCom-
ponent such an event.
• DHCPComponent. This component implements a DHCP
service. It provides network connectivity to incoming IP
enabled devices as a standard DHCP, but it has also additional
functionalities. In particular, it is able to release an IP address
on demand. In this way, if a device has left the environment, the
LocationComponent requires that the DHCPComponent free
the IP address of that device.
Fig. 3. Interfaces and architecture of the ACB.



22 A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29
Fig. 4. Interfaces and architecture of the PeopleService.

Fig. 5. Interfaces and architecture of the Access&LocationService.
• EcoComponent. This component sends ping messages
towards mobile IP devices in order to detect leaving objects.
When an implicit disconnection is detected, the component
communicates such an event to the LocationComponent that
notifies the DEVICE HAS LEFT event.
• LocationComponent. This component is in charge of
handling global location states obtained by combining
information coming from Locating components. When a
mobile object changes its position, a NEW LOCATION event
is dispatched. Moreover, when a mobile object is detected
for the first time, the LocatingComponent notifies such an
event (NEW DEVICE) to the ResourceService that updates its
registers.

4.4. Context Service

The ContextService exploits Semantic Web technologies to
support the explicit representation of context and reasoning in
the Pervasive Grid [18].

In this scenario, context groups’ information related to
concepts like people, devices, resources, services, locations,
physical environment conditions, etc.

It is also important to note that the ContextService handles
several semantic aspects. As an example, consider the problem
of determining the position of mobile devices, as well as
the position of RFID tagged objects, within the environment.
Positioning systems return information like “The mobile device
Alpha is connected to the Access Point X” or “The tag Beta
has been detected by the RFID reader Y”; whereas, high level
application services need responses to questions like “Which
devices are active in the multimedia laboratory?” or “Is the
mobile user John in the meeting room?”. From this point of
view, the necessity of having a service able to relate information
on physical locations appears clear(especially Access Point
X, RFID Reader Y, etc.) to semantic locations (Multimedia
Laboratory, Meeting Room, etc.).

On the other hand, the ContextService integrates different
positioning systems and infers higher level semantic informa-
tion from events generated by positioning systems. For exam-
ple, when an RFID-tagged user approaches an RFID reader car-
rying with him his mobile device, the ContextService is able to
determine, by performing some reasoning, that also the mobile
device is located in a more restricted area (the one covered by
the RFID reader) instead of a larger location (the one covered
by an Access Point). As a result, a better resolution for the lo-
calization of the mobile device is obtained.

Fig. 6 shows the ontology that defines the context and some
of the rules that the ContextService applies to infer higher
semantic information.

The main component of the ContextService is the Context-
ReasoningEngine, which is in charge of (i) handling the con-
text, (ii) gathering information coming from SensingCompo-
nents and other services; and (iii) making inferences based on
context information.

The architecture of the ContexService is described in Fig. 7.
It consists of a two layers of components and a ContextModel.
The ContextModel is defined by the ontology and the rules
reported in the previous figure. The SensingComponents are



A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29 23
(a) Ontology for physical areas. (b) Ontology for entities.

(c) Ontology for semantic locations. (d) Some semantic rules.

Fig. 6. Ontologies and semantic rules.
Fig. 7. Interfaces and Architecture of the ContextService.

the ones in charge of driving the sensor networks. by contrast,
the ContextReasoningEngine is the component that applies
reasoning mechanisms on the model.

To summarize, the key features of the ContextService are:

• Semantic integration of different sensors and positioning
systems;

• Definition of a context model;
• Logic reasoning on context information to get higher-level

semantics.

4.5. Resource Service

The ResourceService extends standard grid mechanisms
– specifically the MDS-register service [15] and the glue
schema [21] – for registering and monitoring the grid’s
resources. In particular, extensions enable the grid to handle
a large set of mobile devices, which can vary from laptops to
PDAs and sensor networks.

As a matter of fact, mobile devices and sensor networks have
specific features, which distinguish them from classic fixed
grid resources, not taken into account by classic tools. As an
example, in order to monitor the state of a mobile device, it is
essential to know the type of alimentation: battery or fixed; in
the former case, the level of the battery; the type of network
connection (a lot of new kinds of wireless connections like
WiFi, Bluetooth, GPRS, UMTS, etc.); the type of operating
system (new operating systems like Symbian, Pal OS, MS
Pocket PC, Pocket Linux, etc.).

New elements are reported in Fig. 8, which shows the
information model obtained by extending the standard glue
schema with new classes.

Our service architecture consists of the following compo-
nents (see Fig. 9):

• ResourceComponent. This component handles the extended
version of the glue schema and the list of available
resources, which are registered in the GT4 MDS-Index Service.
In addition, the ResourceComponent receives operating
information by information providers and updates the
resources’ states.

• LaptopInfoProvider. This component is in charge of
monitoring the state of mobile laptops. It is a specialization
of the Ganglia tool [20] and handles parameters like type of
alimentation, battery level, location, operating system, network
interface, etc.



24 A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29
Fig. 8. Information model.

Fig. 9. Interfaces and architecture of the ResourceService.
• PDAInfoProvider. This software element is also an extension
of the Ganglia tool that monitors the state of mobile PDA.
• SensorNetworkInformationProvider. This component is in
charge of monitoring the state of mobile laptops. Again it has
been developed as an extension of the Ganglia tool that handles
the parameters obtained by a sensor network like the number of
nodes, temperature, humidity, etc.

It is important to note that, in accordance with the pervasive
model, an incoming mobile device is transparently registered as



A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29 25
Fig. 10. Interfaces and architecture of the SessionManagerService.
an available resource as soon as it enters the environment and
is detected by the Access&LocationService.

4.6. Session Manager Service

The SessionManagerService has two major functions. It
handles both the list of services available at every location of
the environment (in a pervasive scenario some services could
not be available everywhere, but only at specific locations) and
the list of services activated by every user.

As shown in Fig. 10, it consists of the following components:
• LocationAgent. This is an agent deployed at a specific
location. There’s a LocationAgent at every location. It handles
the list of application services and resources available at its
location. Service availability may depend not only on the
physical location but also on user’s rights and profile. In
particular, several levels of access are defined.
• PersonalAgent. This is a mobile agent created when
a new device appears in the environment. In particular,
the SessionManagerComponent, which is notified for the
NEW DEVICE event, creates the PersonalAgent at the location
where the mobile device has been detected. After its creation,
the PersonalAgent subscribes to the class USER PRESENCE
and interacts with the local LocationAgent to have the list of
available services. From this moment on, the PersonalAgent
catches a user’s requests and maintains the list of services
activated by him. In the case the user authenticates himself,
the PersonalAgent is notified by the LOGGED IN event, then
interacts once again with the LocationAgent to produce the
new list of available services. When a device moves to a
new location, the SessionManagerComponent, which receives
the NEW LOCATION event, requires that the PersonalAgent
migrate and update the list of services available at the
new location. Finally, in case the user logs out or his
device disconnects, the PersonalAgent handles any pending
computations.
• SessionManagerComponent. This component is an agent
container. It creates both Personal and Location Agents. It also
drives Personal Agents to move in tune with their owners’
movements. In particular, it creates a new PersonalAgent
when it receives a NEW DEVICE event; it requires that
the PersonalAgent move to a new location when it catches
a NEW LOCATION event; finally, it requires that the
PersonalAgent destroy itself when the DEVICE HAS LEFT
event is notified.

All components for the SessionManagerService have been
developed over the JADE framework, which is fully compliant
with the FIPA specifications [19].

Finally, it is worth noting that the latency (time between
the moment when the location service detects the mobile
user/device in the new location and the moment when the
PersonalAgent is presented to the user) is less then 2 s both for
the case of RFID localization and the case of WiFi localization.

4.7. Utility Service

The UtilityService is an application service able to
dynamically distribute and execute a user’s tasks on a grid
of both fixed and mobile resources. In line with the Utility
Computing model, users willing of executing their applications
directly submit their code without caring of choosing and
allocating resources of the grid.

It is worth noting that the UtilityService is not a workflow
system like Pegasus [19] or K-WF Grid [25], which enable one
to compose Grid services by specifying a workflow. Differently,
the UtilityService provides mechanisms for submitting source
code without the need/possibility of specifying workflows. This
is due to the fact that it has been devised to support users and
other services that require the execution of source code; for
example, the case of a software testing service (described in
the experimental scenario), which provides a web interface for
submitting the source code to test and the set of test cases.

After having been submitted, tasks are completely handled
by the environment, which gathers the results and sends them
back to the user.

To achieve this objective, user tasks are encapsulated in
mobile agents and then allocated in a distributed platform that
controls execution.

As shown in Fig. 11, the UtilityService consists of the
following components:



26 A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29
Fig. 11. Interfaces and Architecture of the UtilityService.

Fig. 12. Real environment.
• Platform. This is the set of hardware nodes equipped with a
Container and able to execute tasks;
• TaskHandler. This is the hardware element that hosts the
coordinating components. It is also the user’s entry point to the
service;
• Subordinate. This is a hardware node that hosts mobile agents
for execution. It can be either a fixed or a mobile resource;
• Initiator. This is the hardware element used by the user to
submit source code for execution;
• Container. This is the run-time software environment
that provides the basic functionalities for executing and
coordinating mobile agents;
• TaskAllocation. This is the Container that handles the mobile
agents hosting user tasks;
• TaskRecovery. This is the Container that stores cloned mobile
agents. It is required that clones be activated in case of any
failure of the cloned agent;
• Worker. This agent encapsulates the user task for execution
and sends execution results to the Collector. More Workers can
be hosted by the same Subordinate;
• DeviceManager. This agent interacts with the ContexService
to receive the list and the state of available resources in the
grid. In addition to this, it receives checkpoints from every
Subordinate.
• Telltale. This is a software element that monitors some
of Subordinate’s parameters and communicates them to the
DeviceManager;
• WorkerManager. This agent coordinates Workers allocation
and migration within the environment in accordance with a
scheduling algorithm;
• Collector. This agent receives the results from every active
Worker and collects them in the Results archive;
• Results. This is the archive that stores execution results until
they are sent back to the user.



A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29 27
Whenever a user wants execute a task, she contacts the
Initiator and submits her code. After that, the Initiator embeds
such a code in a mobile agent, namely a Worker, into
the TaskAllocation container ready to be executed. Before
distribution and execution, the task is forced to clone itself
and the clone is inserted in the TaskRecovery container. This is
performed in order to confer a certain degree of dependability
to the service. Next, the task is allocated in one or more
Subordinates, which will execute them and produce results.
Allocation is driven by the DeviceManager depending on the
current state of active resources of the grid. From now on,
two main possibilities are in order. The Worker completes
its execution by sending results to the Collector which, in
turn, stores them in the Results archive; or, the Worker fails.
In the latter case, failure is detected by the DeviceManager
that doesn’t receive checkpoints from the Telltale anymore.
As a consequence, the DeviceManager activates the clone and
requires its execution on a new Subordinate.

5. Experimental scenario

The experimental scenario consists of a physical site located
in a three-floor building. The virtual environment uses two
floors of the building (see Fig. 12).

Floor zero has a computing laboratory in which a cluster
of 24 Linux PCs, a 12-processor Silicon Graphics workstation,
and a motion capture system are deployed. These resources are
collected in a wired grid built on top of the Globus Toolkit 4.0
platform.

On floor two, wireless access to the grid is available. As a
matter of fact, two 3Com Office Connect Wireless 11g Access
Points identify two distinct locations. L1 is a student laboratory
where our students develop their activities and periodically
perform E-Tests. L2 is a multimedia room equipped with a
projector, an interactive monitor, and other multimedia devices.

Some application services are available:
• MotionCaptureService. This service relies on the motion
capture system. An actor (equipped with optical markers)
moves around in the multimedia laboratory. Several cameras
capture his movements, which are reproduced on a graphic
station. The graphic station shows a skeleton, which moves in
step with the actor, and records data movements in a file;
• RenderingService. This service enables users to submit row
motion data and to build 3D graphic applications. This service
is exposed as a Grid Service and is available at every location
(L1, L2);
• PresentationService. This service enables a user to project
her presentation in the multimedia room. The service receives a
pdf/ppt file via a dialog form and then enables speaker to control
the presentation flow. This is an interactive service, which
requires the speaker to be in the room for the presentation.
As a consequence, the service must be available only in the
multimedia room (L2);
• ETestingService. This service performs on-line evaluation
tests for courseware activities. When a session test starts,
students must be in the student laboratory. Evaluation tests are
synchronized and students have a predefined period of time for
completing each test section. Students can interrupt their test
by explicitly closing the service or by leaving the multimedia
room. This service is exposed as a Grid Service, but it must be
available only in the student laboratory (L1);
• SoftwareTestingService. This service, which relies on the
UtilityService, performs source code software testing. In
particular, it offers a web interface for submitting source code
and test cases. After having received the source code and
test cases from the SoftwareTestingService, the UtilityService
generates a task for every test case. Tasks are then embedded
within Worker Agents and deployed on a device for execution.
In this way, the SoftwareTestingService enables software
developers to conduct parallel software tests of the same branch
of code, even for hundreds test cases.

The environment was formerly created with classic Grid
infrastructure deployed over the Globus Tolkit platform.
Successively, it has been enhanced with characteristics
coming from the pervasive computing paradigms, and with
new services that support mobile technologies. In the
current implementation of the environment, service availability
depends on a user’s location, rights, and context. As a matter of
fact, we can report some example scenarios:

1. The PresentationService is available only to users
that are located in L2. In particular, a mobile user, who
moves in location L2, is followed by his PersonalAgent. The
PersonalAgent interacts with the LocationAgent and updates the
list of available services. From now on, the mobile user can get
access to the PresentationService.

2. The ETestingService is available for every authenticated
mobile user within the student laboratory. In particular, while
a test session is active, a student has two possibilities in
order to get access to the service: she has an RFID tag
and approaches a wired station (all wired stations in the
lab have an RFID reader), so that she is identified and
located by the RFIDLocationComponents; or, the student
enters the lab with her own mobile device, then she is
located by the WiFiLocatingComponent and gets access after
having authenticated herself. On the other hand, if the student
leaves her wired station (in the case of RFID tagged users)
or the location L1 (in the case of mobile students with
their own device), the ETestingService, which is notified by
the Access&LocationService, automatically disconnects the
leaving user and denies any further attempts at reconnection.

3. The RenderingService is available for authorized users
at every location. However, the QoS is improved by context-
awareness. Indeed, in the case a mobile user launches such a
service while in location L1, the rendered data are reproduced
on his mobile device. After that, if the user moves in the
multimedia room (L2), any rendered data are automatically
switched on the interactive monitor (if idle).

We have monitored the access to application services for
three weeks. As reported in Fig. 13, we have registered 155 total
accesses and 49 accesses through mobile devices (32%). Fig. 13
reports our results. It is worth noting that access through mobile
devices is granted because the application services are equipped
with multi-channel interfaces and because MiPeG enables both
mobile devices to connect in a transparent and spontaneous



28 A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29
Fig. 13. Number of accesses to grid services.
way, and the environment to efficiently handle and locate them.
Therefore, a classic grid infrastructure wouldn’t be able to offer
services to mobile devices.

In the previous examples, we have shown some results on
the accessibility of grid services by mobile users.

With more recent experiments, we have concentrated on the
reliability aspects. In this case, preliminary results have shown
that the percentage of mobile sessions lost with respect to the
changes of location for the mobile users is less then 14%.

Finally, some functional verifications for the SoftwareTest-
ingService have been performed by soliciting the service with
software elements and hundreds of test cases. For these ex-
periments, the SoftwareTestingService has been configured to
use only mobile devices in order to obtain useful computing
power from resources typically neglected by classic grids. Ex-
periments have shown that the service is able to achieve its ob-
jective and return results with a good response time. However, a
deeper experimental analysis must be conducted in order to get
performance measures for a wider number of tasks submitted.

6. Conclusions

This paper has described a middleware for pervasive grids.
The middleware provides a set of basic services for: (i)
integrating mobile devices in the grid; (ii) for extending the
grid with context and location-awareness; and, (iii) providing
an implementation of the Utility Paradigm.

Integration of mobile devices has taken place both for
enabling mobile users to get access to grid services in a
pervasive way, and for extending the set of available grid
resources to mobile equipments and sensor networks.

References

[1] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, 1999.

[2] D. Saha, A. Murkrjee, Pervasive computing: A paradigm for the 21st
century, IEEE Computer (March) (2003).

[3] A. Litke, D. Skoutas, K. Tserpes, T. Varvarigou, Efficient task replication
and management for adaptive fault tolerance in mobile grid environments,
Future Generation Computing Systems 23 (2) (2007) 163–178.

[4] L.W. McKnight, J. Howinson, S. Bradner, Wireless grids, IEEE Internet
Computing (July–August) (2004).

[5] S. Oh, G.C. Fox, Optimizing Web Service messaging performance in
mobile computing, Future Generation Computing Systems 23 (4) (2007)
623–632.

[6] F.J. González-Castaño, J. Vales-Alonso, M. Livny, E. Costa-Montenegro,
L. Anido-Rifón, Condor grid computing from mobile handheld devices,
ACM SIGMOBILE Mobile Computing and Communications Review
Archive 7 (1) (2003).

[7] Utility computing, IBM Systems Journal 43 (1) (2004).

[8] D.C. Chu, M. Humphrey, Mobile OGSI.NET: Grid computing on mobile
devices, in: International Workshop on Grid Computing, GRID, 2004.

[9] B. Clarke, M. Humphrey, Beyond the ‘device as portal’: Meeting the
requirements of wireless and mobile devices in the legion of grid
computing system, in: International Parallel and Distributed Processing
Symposium, IPDPS, 2002.

[10] T. Phan, L. Huang, C. Dulan, Challenge: Integrating mobile devices
into the computational grid, in: International Conference on Mobile
Computing and Networking, MobiCom, 2002.

[11] N. Daves, A. Friday, O. Storz, Exploring the grid’s potential for ubiquitous
computing, IEEE Pervasive Computing (April–June) (2004).

[12] V. Hingne, A. Joshi, T. Finin, H. Kargupta, E. Houstis, Towards a
pervasive grid, in: International Parallel and Distributed Processing
Symposium, IPDPS, 2003.

[13] G. Coulson, P. Grace, G. Blair, D. Duce, C. Cooper, M. Sagar, A
middleware approach for pervasive grid environments, in: Workshop
on Ubiquitous Computing and e-Research National eScience Centre,
Edinburgh, UK, 18–19 May, 2005.

[14] C.F.R. Geyer, et al., GRADEp: Towards pervasive grid executions, in: III
Workshop on Computational Grids and Applications, WCGA, 2005.

[15] I. Foster, Globus toolkit version 4: Software for service-oriented systems,
in: IFIP International Conference on Network and Parallel Computing,
in: LNCS, vol. 3779, Springer-Verlag, 2005, pp. 2–13. Also available on-
line at: www.globus.org.

[16] A. Coronato, G. De Pietro, M. Ciampi, Middleware services for pervasive
grids, in: Proc. of the 4th International Symposium on Parallel and
Distributed Processing and Applications, ISPA06, in: Lecture Note in
Computer Science, LNCS, vol. 4330, Springer Verlag.

[17] A. Coronato, G. Della Vecchia, G. De Pietro, An RFID-based
Access&Location Service for pervasive grids, in: Proc. of the 1st
International Workshop on Thrustworthiness, Reliability and Services in
Ubiquitous and Sensor neTworks, TRUST 2006, in: Lecture Notes in
Computer Science, LNCS, vol. 4097, Springer Verlag.

[18] A. Coronato, G. De Pietro, M. Esposito, A semantic context service
for pervasive grids, in: Proc. of the International Conference on Hybrid
Information Technology, ICHIT 2006, IEEE CS.

[19] G. Singh, et al., The pegasus portal: Web based grid computing, in: Proc.
of the 2005 ACM symposium on Applied computing, SAC2005, ACM.

[20] http://ganglia.sourceforge.net/.

[21] http://glueschema.forge.cnaf.infn.it/.

[22] F. Bellifemmine, A. Poggi, G. Rimassa, Jade programmers guide. http://
sharon.cselt.it/projects/jade.

[23] http://www.oasis-open.org/committees/download.php/13485/
wsn-ws-brokered notification-1.3-spec-pr-01.pdf.

[24] http://www.cs.wisc.edu/condor/.

[25] http://www.kwfgrid.net/.

[26] I. Foster, C. Kesselman, The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publisher.

www.globus.org
www.globus.org
www.globus.org
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://glueschema.forge.cnaf.infn.it/
http://glueschema.forge.cnaf.infn.it/
http://glueschema.forge.cnaf.infn.it/
http://glueschema.forge.cnaf.infn.it/
http://glueschema.forge.cnaf.infn.it/
http://glueschema.forge.cnaf.infn.it/
http://sharon.cselt.it/projects/jade
http://sharon.cselt.it/projects/jade
http://sharon.cselt.it/projects/jade
http://sharon.cselt.it/projects/jade
http://sharon.cselt.it/projects/jade
http://sharon.cselt.it/projects/jade
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.oasis-open.org/committees/download.php/13485/wsn-ws-brokered_notification-1.3-spec-pr-01.pdf
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.kwfgrid.net/
http://www.kwfgrid.net/
http://www.kwfgrid.net/
http://www.kwfgrid.net/


A. Coronato, G. De Pietro / Future Generation Computer Systems 24 (2008) 17–29 29
Antonio Coronato is Researcher at the Institute
for the Development and Application of Territorial
Information Systems (SASIT) of the National Research
Council (CNR). He is a contract professor of Software
Engineering at the University of Naples “Federico II”.
His main fields of interest are related to pervasive
computing and component based architectures. He is
member of the ACM.
Giuseppe De Pietro is a Senior Researcher at the Insti-
tute of High Performance Computing and Networking
(ICAR) of the National Research Council (CNR). He is
a contract professor of Information Systems at the Sec-
ond University of Naples. His research interests cover
pervasive computing, multimodal and virtual reality en-
vironments. He is member of the IEEE.


	MiPeG: A middleware infrastructure for pervasive grids
	Introduction
	Motivations, related work and contribution
	Motivations and related work
	Contribution

	Architecture of MiPeG
	Details on MiPeG's services
	Asynchronous Communication Broker
	People Service
	Access&Location Service
	Context Service
	Resource Service
	Session Manager Service
	Utility Service

	Experimental scenario
	Conclusions
	References


