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High performance cDNA sequence analysis using grid technology
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Abstract

Innovative DNA sequencers, relying on pyrosequencing, are now being produced, which cut down costs and speed up sequencing by an
order of magnitude. Hence the capability of handling high throughput sequencing is becoming increasingly important for Bioinformatics.

This study concerns the development of a high performance pipeline for analyzing cDNA sequences produced by a high throughput
pyrosequencer. Mainly, this analysis system has been developed by us to map the sequenced cDNA strands against a cDNA database for
studying different mutations that can influence the genes functionality. The pipeline supports heterozygous organisms.

In order to use a high throughput pyrosequencer fruitfully, the related bioinformatics analysis requires high performance. Hence we
implemented our analysis system leveraging the European EGEE project infrastructure: a network of several computational resources and
storage facilities distributed at different sites.

The results of this high performance pipeline are stored into an output database directly from the grid sites using the Web Services technology.
By querying this database it is possible to inspect the analysis results to detect different mutations in the cDNA sequences, as well as other
meaningful biological parameters and information.
© 2006 Published by Elsevier Inc.
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1. Introduction

Bioinformatics studies complex biological processes in sil-
ico to understand how reactions allowing the survival of the
cell take place. Particularly, genomics aims to study DNA char-
acteristics for establishing the genes functionality, expression
features and how their variations can influence biological pa-
rameters.

Once a genomic sequence of an organism is completely se-
quenced, and its peculiarities are washed out by averaging the
sequences coming from different individuals (a process similar
to that of creating a consensus sequence), it acts as a reference
to understand how DNA modifications influence different phys-
iological and pathological gene expressions [15]. Particularly,
the sequencing of cDNA, that is DNA cloned from transcribed
RNA, is used to determine how variations in the coding zones
of DNA influence the gene expression.
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This study concerns the development of a genomic analy-
sis system working on the output data of a high throughput
sequencer. This pipeline was designed to assemble the cDNA
sequences starting from the sequencer output data, and using
the human cDNA database as a reference, in order to identify
punctual mutations in the expressed sequences.

Our main purpose is to detect punctual variations of the
sequenced cDNAs in heterozygous organisms, in order to find
either punctual mutations (genomic mutations [7] present in iso-
late biological samples) or SNPs (Single Nucleotide Polymor-
phism—genomic variations present in a statistically relevant
percentage of the population [9]). These analyses are impor-
tant to establish a relationship between mutations in the coding
zone of DNA and genomic diseases.

2. Motivation

Problems in genomics and proteomics tend to have a
quadratic or higher computational complexity [8]. For ex-
ample, global/local genome pairwise alignment with general
or affine gap penalty functions, genome assembly, inversion
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distance computation, genome rearrangement analysis and
molecular dynamics have all got a quadratic or higher com-
plexity: small increases in the input data, due to the advance-
ment in knowledge or improvement in machines providing
the input, greatly increase the computation time. CPU speed
increases also have been nonlinear (in fact exponential) for a
long time, providing approximately a doubling in speed every
two years; however, this is no longer the case, as the speed
increases have almost stopped in recent years.

As far as genomic problems are concerned, we must also take
into account that the development of sequencers has been far
from linear in the last years, recently leading to high throughput
pyrosequencers having a tenfold increase in throughput [13],
and a similar decrease in operating costs, compared to the previ-
ous technology. Such high throughput pyrosequencer technolo-
gies create an enormous flow of genomic sequences that must
be elaborated in minimum time to best exploit the sequencer
capabilities.

In our case, in order to detect punctual mutations, compar-
ing each of the sequences output of the sequencer, called reads,

Fig. 1. The analysis pipeline.

against the whole cDNA database was necessary. Having as
reference a large database of over 39,000 cDNAs [14], and the
output rate of our pyrosequencer as high as 10,000 reads per
hour it was not possible to keep up reliably with a single ma-
chine. In addition, we wanted to allow repeatability of past cal-
culations after variation of the algorithm or parameters, which
meant a potentially very large dataset to be recomputed in a
reasonable time.

Hence, for the implementation of this pipeline a high per-
formance system needed to be designed to coordinate a large
number of computation resources and to manage the flow of
such large amount of information. This has been possible by
leveraging a massively distributed environment such as the grid
platform [5].

3. Implementation

First make it work, then make it fast. Our first approach
was with a non-distributed pipeline (Fig. 1). The first stage of
our pipeline leverages Blast [2] to match the reads against the
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Fig. 2. Clustered reads belonging to a cDNA. An A−− >G punctual mutation in one chromosome only (heterozygosis) is shown.

39,000 cDNA reference database. Starting from the Blast
results groups of reads are then made, gathering together the
reads which best match the same reference sequence. These
associations are written onto a database. In case of alternative
splicing, two or more reference cDNAs will have common
parts, hence, when the Blast matching is attempted, a read
matching a common part will match all such reference cDNAs.
Since at this first stage it is not possible to determine, or even
guess, which reference cDNA this read belongs to, our policy
is to accept all. During the next (second) stage, it will be possi-
ble to heuristically filter out some reference cDNAs (and their
associated groups) which were not in fact expressed, based on
the coverage of the cDNA which would be covered by reads
only on the common parts of the alternative splicing. In the
meanwhile, during this first stage we already distinguish the
cases in which the second (or further) Blast match of a read
against another cDNA is caused by alternative splicing (for
which our policy at this stage is to accept it) from the cases
in which the match is determined by random similarity (which
we clearly want to reject). An heuristic and partly adaptive
algorithm solves this.

Once groups are made, a second computation stage clusters
the reads together, using the cDNA as a reference [12]. For this
second stage again we leveraged Blast, this time for anchoring
the sequences (as Blast “subjects”) against the reference cDNA
(as Blast “query”), to obtain a multiple alignment of the reads
referring to each cDNA [3].

A third computation stage analyzes each multi-alignment ob-
tained at the previous stage looking for punctual mutations. We
remark that we are working with gene expressions from het-
erozygous organisms, which can have any punctual mutations
present on either homologous chromosome, or both of them.
In the same way, gene expressions also will.

Hence, when looking at multiple alignments, it is to be kept
in mind that, on average (even if with a significant variance),
half of the aligned reads should come from a chromosome

and the other half from the other homologous. In a column of
aligned reads where more than one nucleotide is present, the
most present nucleotide will most certainly be that of (at least)
one chromosome, but the second most present nucleotide can
either be a sequencing error or the expression of the gene on
the homologous chromosome (Fig. 2).

After a statistical analysis we decided that a coverage of 10×
(at least ten overlapping strands over each and every point of the
whole multi-alignment) should be used to distinguish reliably
between the two, and we put the threshold of >= 30% (of the
coverage over that specific point, i.e. the column height) for
calling the expression of the second allele.

4. The grid platform

The EGEE grid project infrastructure is a wide area grid
platform for scientific applications composed of about 1000
CPUs [1]. This platform is a network of several Computing
Elements, that are the gateways for the computer clusters on
which jobs are performed, and an equal number of Storage
Elements, that implement a distributed file system on which
databases are stored. The grid core is a set of Resource Brokers
delegated for controlling the execution of the different jobs
(Fig. 3).

The EGEE grid project infrastructure is founded on the
Globus Toolkit [4] that represents an ideal communication
layer between the different grid components. The European
EGEE grid platform middleware relies primarily on this open
source software for building grid systems and applications.
The major services are implemented using the Globus Toolkit
software: the security service (GSI), the information service
(GIS), the resource management service (GRAM) and the data
access to storage facilities (GASS).

The computational resources are connected to a Resource
Broker that routes each job on a specific Computing Element
and takes into account the directives of the submitting script,
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Fig. 3. Schema of the European EGEE project infrastructure with a detailed view on the information flow during a job elaboration.

called JDL because it is composed through the Job Descrip-
tion Language, and implements a load balancing policy. Each
Computing Element has a Gatekeeper service that submits the
incoming job to a batch system queue that hides a Working
Nodes farm.

A set of tools is used to manage data as in a distributed file
system. These tools allow the data to be allocated to different
Storage Elements, maintaining the coherence between them
through a Replica Manager, and help using this information in
an efficient way. The Resource Broker, in fact, is able to redirect
the execution of an application to a Computing Element as near
as possible to the data location, minimizing the communication
time.

The software that gives access to the distributed platform is
made up of a set of tools, by which secure communications can
be established between the grid infrastructure and User Inter-
face. Through the grid User Interface it is possible to submit
jobs, control the pipeline state of advancement and retrieve the
outputs when the computations have a normal termination or
resubmit the jobs in case of failure.

Due to the use of remote computational resources, the grid
communication software must offer an efficient security sys-
tem. The access to remote clusters is granted by a Personal Cer-
tificate, which accompanies each job to authenticate the user.
Moreover, users must be authorized to job submission by a Vir-
tual Organization, a grid community having similar tasks, that
grants for him. This procedure is indispensable for maintaining
a high security level.

5. Distributed implementation

Our distributed implementation for this pipeline shares the
computational load over the grid nodes of EGEE grid. The
whole pipeline is coordinated by a single central server, on
which the grid User Interface software is installed. This creates
a high performance and relatively scalable system according to
the grid performance and the power of the central server (the
central server can act as a bottleneck in the general case de-
pending on the amount of work assigned to it, but such work
was small enough in our case). The central server is both in-
volved in the coordination of the parallel execution of the grid
jobs through the User Interface and in the pre and post elabo-
ration of sequences.

To obtain a high performance implementation of this analysis
pipeline the most time-consuming steps have been implemented
in a distributed way. The first step implemented on the grid
platform is the blast that groups sequences according to cDNA
similarity. The input data of this step are the raw sequences
produced by the sequencer while the output is used as input of
the second distributed step, anchoring each read to the related
cDNA for creating a complete coverage.

Both of these steps are based on blast and their implemen-
tation is quite similar. Bioinformatics application that relies on
the comparison of an input sequence against a database are usu-
ally implemented on a distributed platform by subdividing the
input data set in small groups [11]. To manage the distributed
implementation of these pipeline steps an efficient system has
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been implemented for coordinating the execution of the jobs,
controlling the completion status and retrieving the output in
case of a successful termination.

For each job a JDL script is generated with the information
about the input sequence, the job requirements and the infor-
mation about the databases that have to be accessed. The jobs
are routed by the Resource Broker to the best Computing Ele-
ment that is available at the moment. From the User Interface
the execution of the pipeline analysis is automatically moni-
tored by our software and, in case of failure, is re-submitted to
the grid infrastructure.

Porting onto the grid platform bioinformatics applications
which rely on databases implies dealing with distributed
database management. In the first analysis step of this pipeline,
input sequences are clustered according to a database of cDNA.
This is a flat file database of significant size which needs to be
transferred to the used Computing Elements prior of invoking
Blast. In order to minimize the transfer time we replicated the
cDNA flat file database to various Storage Elements. In this
way it is possible to use a high number of Computing Elements
(each located near one of such replicas, i.e. local network)
while keeping the database transfer overhead for the execution
of step one minimal.

Grid technology does not support distributed RDBMS.
This is a problem when the output data has to be collected
in a database. Although it would be possible to retrieve data
into the User Interface and parse them before storing results
in the database, this solution would remarkably slow down
the system performance. To obviate this problem a solu-
tion based on the technology of the Web Services has been
implemented [6].

For each grid job, the blast output is parsed directly on the
Computing Element on which it has been executed. In this
way a temporary result set is created and, eventually, through
a small Web Service client carried into the grid together with
the input sequence, it is entirely stored into the results database
on the User Interface. This is performed in one pass, hence
minimizing the SOAP communication overhead [10]: the Web
Service receives the incoming SOAP message from the client
containing information about the blast results, and performs the
SQL insert onto the results database.

6. Results database

The working data are passed from a computational stage
of the pipeline to the next through the help of a database
(Fig. 4). In the non-distributed version of the pipeline, the pre-
vious stage would store the result on a database which the
next stage would read. This ensured complete separation of the
stages, and made the repeatability of computations very easy,
implying a simple deletion of some result rows of a certain
stage from the database (or cloning of some input rows of the
same stage) and re-run of the computational stage.

In the current, distributed version of the pipeline, at the end
of a stage computation a Web Service is used to dump the
results onto the database on the User Interface, which is then

responsible for passing such data to the next stage. This does
add some overhead, however it ensures that:

• the stages are fully separated,
• the computation is repeatable in part or whole,
• the intermediate results are held on a single and local

database.

Results of intermediate calculations may hold important in-
formation for biological analyses which might not even be fully
foreseen at this point. In order to allow inspired searches by the
biologists, we kept all such database information meaningfully
ordered and easily searchable with SQL queries and scripts.

Results of intermediate calculations include:

• grouping of the reads mapping onto any cDNAs, for each
biological sample, potentially giving information for the rel-
ative amounts of gene expression for each cDNAs,

• multi-alignments within the groups,
• punctual mutations found (homozygous/heterozygous),

whose frequency could be investigated to find new SNPs, or
correlation between the presence of different SNPs,

• reads not matching reliably any known cDNA, which can
be a clue for a new unknown cDNA that could be investi-
gated further via multiple alignments among such reads, and
could then be tested for “amount of expression” comparing
it against genomic data collected in the past (e.g. unknown
multiple splicing of a known cDNA).

7. Distributed implementation performance

Even though the performance of the grid pipeline is more
than adequate for our situation, a numeric estimate of such
performance is difficult due to the great variance in queue times
for jobs sent on the grid. This depends mainly on the workload
which is assigned to the grid throughout Europe at the specific
time of submission. In addition, the higher the number of jobs
which are submitted together to the grid, the more unfavorable
(in terms of queue times) the computing resource the last of
those will get. Needing to wait the execution of all jobs makes
the pipeline wait for the worst queue time of the set of jobs,
hence, the pipeline-perceived queue wait time for 40 jobs is
significantly worse than the pipeline-perceived queue wait time
for 10 jobs.

It is also obvious that, given a certain amount of computation
to be performed, splitting such computation into a high number
of grid jobs will reduce the size for each of them, and since
the jobs are executed independently on the grid, raising the
number of jobs increases the execution parallelism and reduces
the computation time as it is perceived by the pipeline. Hence it
is clear that splitting the workload in a too small number of grid
jobs would also hinder the pipeline performance. In facts, in our
executions we try to keep the length of every job comparable
to the (estimated) queue wait time of the set with a lower limit
of 20 min (in order to avoid excessive grid overhead).

Our performance is best described as follows: the non-
distributed version of our pipeline needs 19 computation hours
on a Xeon class CPU for the 100,000 reads that a high through-
put pyrosequencer is ideally able to produce in 1 h. These are
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Fig. 4. Entity–relationship diagram for our current database—10 tables. Biological samples are sequenced in pyrosequencer runs producing reads. Computation
analysis projects are initiated on the reads of one or more runs, producing groups of reads according to Blast-detected most similar reference (cdnas) in
pipeline step 1. These groups are clustered in multialignments (multialig) in pipeline step 2 and their punctual mutations (punmuts), either homozygous or
heterozygous, are finally detected in pipeline step 3.

roughly 10 h for the first step, 6 for the second step and 3 for
the third step. With the grid distributed version of our pipeline
we can parallelize the three steps as much as we want by rais-
ing the number of grid jobs we submit. A good compromise
for the number of jobs to complete such a computation in the
shortest time considering the queue wait time is around: 20
jobs for the first step, 12 for the second and 6 for the last
step, for a total of 36 half-an-hour-long jobs. A typical queue
wait time is 30 min for the first step (a 20-job set) 15 min for
the second step (a 12-job set) and 10 min for the third step
(a 6-job set) making a total wait+execution time of two and
half hour on average (but the variance can be significant, as
we said, depending on the EGEE Grid load). In addition, our
computation resources remain still substantially free and capa-
ble of submitting and handling more grid computation if this
is needed (e.g. for a recomputation of older genomic data with
altered pipeline parameters).

The benefit of the grid is hence very evident, at least for
heavy computational loads, and the costs of joining the Grid are

minimal (sometimes zero, depending on the load one intends to
submit to the Grid) compared to those of a dedicated cluster.

8. Conclusion and future work

Bioinformatics computations are intensive, mostly nonlinear
in complexity, and continuously asking for more processing
power. On the other side, CPU speed improvements recently
have nearly ceased and do not give much better hope for the
future.

This need of high computation powers finds its solution in
distributed and/or parallel environments such as clusters and
the grid, the latter being the best solution in terms of lower
costs due to its large scale combined with the innate ability
of load distribution, which leverages unused machines, hence
intrinsically taking into account the sporadic nature of most
computations.

We have here shown how we were able to distribute most
parts of our power-demanding pipeline for cDNA analysis on
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the EGEE grid platform thus obtaining the needed processing
power, while still maintaining the final and all the significant
intermediate results stored on the User Interface.

The performance of the pipeline is difficult to evaluate, be-
cause the computation time depends primarily on the total com-
putational load of the grid during the execution of the jobs. On
heavy workloads of our pipeline though, the performance ben-
efit of the distributed implementation is very evident compared
to local single CPU execution, and the costs are many times
lower than those of a dedicated cluster.

Our future work will be aimed at providing a web interface
for the pipeline and the results database, to support and ease
the work of the biologists.
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