
Adaptive SOA Solution Stack
Krzysztof Zieli�nski, Member, IEEE, Tomasz Szydło, Robert Szymacha,

Jacek Kosi�nski, Joanna Kosi�nska, and Marcin Jarzab

Abstract—This paper presents the concept of an Adaptive SOA Solution Stack (AS3). It is an extension of the S3 model, implemented

via uniform application of the AS3 element pattern across different layers of the model. The pattern consists of components

constituting an adaptation loop. The functionality of each component is specified in a generic way. Aspects of these patterns are

analyzed in relation to individual S3 layers. The ability to achieve multilayer adaptation, provided by several cooperating AS3 elements

is also discussed. Practical usage of the proposed concepts for Adaptive Operational Systems, Integration, and Service Component

layers are presented in the form of three case studies. Each study describes the architecture of the proposed system extensions,

selected software technologies, implementation details, and sample applications. Related work is discussed in order to provide a

background for the reported research. This paper ends with conclusions and an outline of future work.

Index Terms—Services architectures, services management, operational model, quality of services.

Ç

1 INTRODUCTION

OVER the last several years adaptive systems have
attracted significant attention. Development of these

systems is driven by the emergence of new software
technologies enabling dynamic and reconfigurable soft-
ware development, such as Dynamic AOP [1], OSGi [2],
and virtualization technologies, e.g., Xen [3], VMware [4],
and Solaris Containers [5], offering runtime control of
computer resources.

Adaptive systems focus on the development of systems
that modify their structure and behavior in response to
changes in the execution environment [6]. These systems
monitor state, correlate information and perform actions
according to user-defined policies. They are considered a
simpler form of Autonomic Computing [7], [8], [9] systems,
capable of performing self-management on their own,
based on knowledge collected during operation.

Adaptive systems ameliorate the complexity of comput-
ing systems, expressed not only by the number of connected
hardware and software components but also by the
growing space of configuration parameters and manage-
ment strategies offered through middleware and virtua-
lized computational platforms. Better utilization of modern
IT infrastructures is a prerequisite for achieving the
required Quality of Service (QoS) and end-user satisfaction,
characterized by Quality of Experience (QoE).

All these aspects can be considered in the context of
Service Oriented Architecture (SOA) [10], [11]—the most
popular paradigm for implementing enterprise software
systems. SOA enables the development of applications by
combining loosely coupled and interoperable services. The
complexity of this process and the need to guarantee QoE

and QoS make adaptive systems especially suitable for
SOA deployment.

1.1 Adaptive SOA Research Issue

SOA application development, deployment and execution
requirements may be analyzed in the context of the SOA
Solution Stack (S3) [11] proposed by IBM. It is a highly
generic model, taking into account all presented aspects,
with particular attention to SOA policy-driven governance.
This justifies its selection as a starting point for research on
integrated SOA adaptive systems.

Research addressing adaptive SOA applications [12],
[13], [14] concentrates mainly on the application level.
Adaptability aspects cover SOA application deployment
[15], dynamic selection of services [13], and dynamic service
composition [16], [14]. The key observation is that S3 layers
are not independent of one another and decisions made on
a given layer may influence the behavior of other layers.
Any parameter set by lower layers can be considered as a
constraint for the adaptability strategies implemented on
higher layers. This is a well-known problem in hierarchical
system optimization. Its practical solution in the context of
SOA systems requires not only adaptation strategies
capable of being applied across several layers of the system,
but also a uniform approach to extending each layer with
adaptability mechanisms. This distinguishes the proposed
approach from other studies focusing on selected layers,
such as adaptive ESB [17] or Middleware [18].

In the context of existing work on adaptive SOA, there are
still some critical issues that have not been well explored.

. Construction of a uniform adaptive system model
which could be applied to any layer of SOA-based
computing systems including virtualized computa-
tional resources. Such a model should include basic
components with well-defined interfaces, suitable
for constructing an adaptation loop.

. Selection of a software implementation technology
that can be applied across S3 layers, providing
interoperability of adaptability extensions. The same
category of adaptability components from different

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012 149

. The authors are with the Department of Computer Science, AGH—
University of Science and Technology, Al. Mickiewicza 30, Kraków 30-059,
Poland. E-mail: {kz, tszydlo, szymacha, jgk, kosinska, mj}@agh.edu.pl.

Manuscript received 5 Apr. 2010; revised 29 July 2010; accepted 28 Jan. 2011;
published online 7 Feb. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org and reference IEEECS Log Number TSCSI-2010-04-0038.
Digital Object Identifier no. 10.1109/TSC.2011.8.

1939-1374/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

layers should be easy to integrate and use in
adaptation loops spanning more than one layer.

. The adaptation strategy must process large amounts
of data collected during SOA application runtime.
Thus, efficiency and scalability issues require parti-
cular attention. This calls for research on selective
and dynamic instrumentation of the system to add
monitoring and management functionality. The
collected information (facts) should be processed
efficiently by decision engines implementing the
adaptability strategy.

. SOA systems are characterized by high levels of
elasticity and dynamicity as runtime composition is
one of the most important features of these systems.
The same aspect refers to adaptability extensions
which may be reconfigured on demand, without
restarting or suspending the system. This requires
further research on dynamic and reconfigurable
software development.

. The proposed framework is characterized by agnostic
adaptation strategy selection. In spite of this, adop-
tion of probability and statistical theories for predict-
ing the QoS of computing resources and services
could play an important practical role. Recently,
runtime utilization models [15] for SOA systems have
emerged as a focus of intensive research.

1.2 Main Contribution

The main research contribution of this study is an
integrated approach to adaptive SOA system development.
The integrated approach means that adaptability aspects
are introduced in a uniform way to each layer of the S3
model. This leads to a multilayer adaptive system which
offers full control over QoS and QoE parameters, taking
advantage of modern software and hardware technologies.
The proposed approach has the following specific features:

. A pattern-based approach to adaptive extensions. The
extension of each S3 layer follows the same proposed
pattern consisting of typical components which,
together, create an adaptation loop. This pattern
focuses on policy-driven management systems and
is similar to the Autonomic Computing model [19].

. A flexible approach to adaptation loop component
selection. Components can be implemented using
existing software packages such as Event Processors
or Rule Engines, wrapped with suitable interfaces
ensuring interoperability. The OSGi [2] technology is
used for this purpose—therefore, components can be
deployed as bundles.

. A practical presentation of the proposed concepts,
applied to several layers of the S3 model. It provides
guidance for system developers on how to construct
adaptive loops for different layers. The key point is
that the same pattern is used in a uniform way for
various layers, such as virtualized computer re-
source management and adaptive ESB deployment.

. Assessments and evaluation of the proposed solu-
tions. The presented concept is verified by imple-
mentation of the Adaptive Operational System layer,
Adaptive Integration layer, and Adaptive Service
Components layer of the S3 model.

This paper is organized as follows. Section 2 introduces
the work by presenting and analyzing the S3 model and
stating the requirements of adaptive extensions for each
layer. Section 3 presents the concept of Adaptive S3 (AS3)
elements—a compound pattern for adaptive loop construc-
tion. In Section 4, the Adaptive S3 model is described.
Section 5 presents the Adaptive Operational Systems layer
built with Xen Virtual Machines and Solaris Containers as an
initial case study of the proposed model. Adaptive ESB and
Adaptive SCA are presented in Sections 6 and 7, respectively.
Section 8 provides an overview of related work. Finally,
Section 9 concludes this paper and outlines future work.

2 MOTIVATION

SOA application development and deployment should be
considered in the context of the SOA Solution Stack
proposed by IBM [11], which provides a detailed architec-
tural definition of SOA split into nine layers. This model is
depicted in Fig. 1. Each layer has a logical and physical
aspect. The logical aspect includes all the architectural
building blocks, design decisions, options, key performance
indicators, and so on. The physical aspect covers the
applicability of each logical aspect in reference to specific
technologies and products and is out of scope of our
analysis. The S3 model is based on two general assumptions.

1. The existence of a set of service requirements that are
both functional and nonfunctional and collectively
establish the SOA objective. Nonfunctional service
aspects include security, availability, reliability,
manageability, scalability, latency, and the like.

2. A single layer or some combination of layers can
fulfill specific service requirements and, for each
layer, service requirements are satisfied by a specific
mechanism.

Adaptability can be described as an activity whose goal
is to guarantee the required level of nonfunctional para-
meters specified by QoE or QoS for each layer.

The nine layers of the S3 stack are as follows: Opera-
tional Systems, Service Components, Services, Business
Process, Consumer, Integration, QoS, Information Archi-
tecture, and Governance and Policy. A brief description of
each layer is presented below as a background for further
discussions in this section. Only the Consumer layer is not
described, as it constitutes a topmost, nontechnical layer

150 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

Fig. 1. SOA solution stack model.

wherein the global effects of system activity are observed
and evaluated by end users.

Operational systems. This layer includes all application
and hardware assets running in an IT operating environ-
ment that supports business activities (whether custom,
semicustom or off-the-shelf). As this layer consists of
existing application software systems, SOA solutions may
leverage existing IT assets. Currently, this layer typically
includes a virtualized IT infrastructure that results in
improved resource manageability and utilization. This
property could be effectively exploited in the development
of an adaptive virtualized infrastructure, guaranteeing the
required level of computational or communication re-
sources accessibility.

Service components. This layer contains software
components, each of which is an incarnation of a service
or service operation. Service components reflect both the
functionality and QoS for each service they represent. Each
service component

. provides an enforcement point for ensuring QoS and
service-level agreements,

. flexibly supports the composition and layering of IT
services, and

. conceals low-level implementation details from
consumers.

In effect, the service component layer ensures proper
alignment of IT implementations with service descriptions.
Service QoS depends on the efficiency of internal compo-
nents used for service provisioning. It opens a space for
adaptability within the Service Component layer. The
observed service QoS is not only the result of Service
Component activity but also depends on computational
resources used in execution. This behavior illustrates the
role of the Operational Systems layer and facilitates multi-
layer adaptability.

Services. This layer consists of all services defined
within SOA. In the broadest sense, services are what
providers offer and what consumers or service requesters
use. In S3, however, a service is defined as an abstract
specification of one or more business-aligned IT functions.
This specification provides consumers with sufficient
information to be able to invoke the business functions
exposed by a service provider. It is necessary to point out
that services are implemented by assembling components
exposed by the Service Component layer and that this
assembly process might be performed dynamically with the
support of adaptability mechanisms.

Business process. In this layer, the organization assem-
bles the services exposed in the Services layer into composite
services that are analogous to key business processes. In the
non-SOA world, business processes exist as custom applica-
tions. In contrast, SOA supports application construction by
introducing a composite service which orchestrates infor-
mation flow among a set of services and human actors.
Again, these composite services can be constructed dyna-
mically, according to a specific adaptation policy.

Integration. This layer integrates layers 2 through 4. Its
integration capabilities, supported by ESB, enable mediation,
routing and transporting service requests from the client to
the correct service provider. This layer is particularly well

suited for adaptability mechanisms, which is further illu-
strated by the discussion of Adaptive ESB.

Quality of service. Certain characteristics of SOA may
exacerbate well-known IT QoS concerns: increased virtua-
lization, loose coupling, composition of federated services,
heterogeneous computing infrastructures, decentralized
service-level agreements, the need to aggregate IT QoS
metrics to produce business metrics and so on. As a result,
SOA clearly requires suitable QoS governance mechanisms.

Information architecture. This layer covers key data and
information-related issues involved in developing business
intelligence with the use of data marts and warehouses. It
includes stored metadata, required for correct interpretation
of actual business information.

Governance and policy. This layer covers all aspects of
managing the business operations’ lifecycle. This layer
includes all policies, from manual governance to autono-
mous policy enforcement. It provides guidance and policies
for managing service-level agreements, including capacity,
performance, security, and monitoring. As such, the
Governance and Policy layer can be superimposed onto
all other S3 layers. From a QoS and performance standpoint
it is tightly connected to the QoS layer. The layer’s
governance framework includes service-level agreements
based on QoS and key process indicators, a set of capacity
planning and performance management policies to design
and fine-tune SOA solutions as well as specific security-
enabling guidelines for composite applications.

It is evident that the final three layers are directly related
to adaptability. They provide key mechanisms required by
the adaptation loop, thereby affecting the first five layers
listed above.

This observation constitutes our motivation for the
presented work on Adaptive S3.

3 CONCEPT OF ADAPTIVE S3 ELEMENT

The concept of the proposed Adaptive S3 element is
presented in Fig. 2 and refers to a single S3 layer. S3 layer
is defined as a set of components, such as architectural
building blocks, architectural decisions and interactions
among components and layers. This definition emphasizes
the existence of many options that can be subjected to

ZIELI�NSKI ET AL.: ADAPTIVE SOA SOLUTION STACK 151

Fig. 2. AS3 element model.

architectural decisions taken during the SOA application
design phase or postponed until runtime. The structure of
the AS3 element follows the typical control loop construction
patterns and consists of the components listed below.

The Managed Resource is instrumented with sensors
and effectors. The term Resource is used here in an abstract
way, meaning anything (e.g., virtual machine, application
server or ESB) that can be monitored and managed. The
instrumentation process equips the Resource with the
ability to expose its state and data required to characterize
its activity. The same process also installs mechanisms for
changing Resource parameters or configuration, according
to decisions imposed by the control loop. The key point is
that instrumentation should be nonintrusive, selective, and
dynamic (performed during runtime).

Data communicated by sensors is collected by the
Monitoring Component. This component is responsible
for calculating selected metrics and processing events.
Simple events may be assembled into complex ones,
important for the adaptation strategy. Complex Event
Processors such as Esper [20], or Drools [21] can be used
to perform this activity in a scalable and efficient way.

The aggregated data—the output of the Monitoring
Component—is forwarded to the Exposition Component.
The exposition process is related to the Adaptive Manager
(AM) used for selection of control actions. It transforms
monitored data into a format used by given manager
representations. Therefore, the Exposition Component
plays the role of a harmonization layer.

To enact the adaptation strategy, an Adaptive Manager

is used. It may be based on the standard theory of
regulation, fuzzy logic or neural networks. In the proposed
study, policy-based management has been chosen. Such a
solution is suitable when a decision has to be based on
many different parameters and a precise mathematical
model of the managed system is not available. The
adaptation actions are selected by the Policy Engine (PE).
Rule Engines such as Jess [22] or Drools [21] can be used in
scalable implementations.

The action selected by the Adaptive Manager is con-
verted by the Exposition Component to a format acceptable
by the Management Component. This component enforces
management actions using effectors which instrument the
Managed Resource.

Adaptive Service layer of composite services can be
constructed dynamically, akin to adaptive services, which
are built from components in the adaptive Service Compo-
nents layer. The same applies to the adaptive Business
Process layer where processes are constructed from
services. These three layers are conceptually very similar.
The abstraction level (granularity) is, however, significantly
greater in the Service and Business Process layer, as
explained by ongoing studies [13], [14], [16]. Thus, the
pattern specified by the proposed AS3 element could be
applied here. The Business Process layer activity concerns
mainly the choreography and orchestration processes
which may be performed with the aid of the adaptive
Integration layer, investigated in more detail in Section 6.

The presented AS3 element constitutes a standard adapta-
tion loop. The activity of this loop could be event-driven or

performed at regular intervals. It could act autonomously or
in cooperation with other similar elements. For this purpose
the AS3 element sends out monitored data and facts, and is
able to receive decisions and actions taken by other AS3
elements. Adaptive Managers from different AS3 elements
are also able to cooperate with one another. This feature
makes AS3 suitable not only for single-layer adaptation but
also for making global decisions which affect many layers.
This issue will be further explained in Section 4.

4 ADAPTIVE S3 STACK

The proposed AS3 element can be applied in a uniform way
across the S3 stack layers described in Section 2. This leads
to the Adaptive SOA Solution Stack, depicted in Fig. 3.
Every layer of this stack is marked with a symbol of the AS3
element. This stack is presented in a slightly modified way
comparing to the original S3 model as the Integration layer
is placed directly above the Operational Systems layer. In
the standard S3 model the Integration layer is vertical, to
signify its importance for each horizontal layer. Fig. 3
assumes that every higher layer relies on the functionality
of the lower layers. This is why the Integration layer is
placed just above the Operational Systems layer.

The Operational Systems layer is usually represented as
a Virtualized Execution Infrastructure (VEI). Computational
and communication resources are virtualized, which results
not only in better hardware utilization but also higher
manageability. For instance, a Xen Virtual Machine or a
Solaris Container with CPU and memory usage guarantees
could be allocated to process a single service instance with a
required QoS level. Computational resource allocation
might be dynamically changed according to the observed
load and decisions performed by the adaptation strategy.
This leads us directly to the AS3 element concept.

The same considerations apply, in a natural way, to other
layers of the AS3 stack, giving rise to an adaptive
Integration layer, Service Components layer, etc.

Adaptation abilities and metrics are discussed exten-
sively in the literature [23]. The definition of an adaptation
strategy as well as its associated parameters, e.g., threshold
points, etc., is always very much domain-specific and must
be analyzed in the context of a given application domain,
along with a preliminary experimental study. This is why
the AS3 model is presented as a framework which needs
further refinement. In the presented case studies, data are

152 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

Fig. 3. Adaptive SOA solution stack.

collected from the experimental implementation and not
from simulation experiments. With large data sets, the
efficiency of the AS3 stack could be a significant issue. This
is why the following measures have been taken.

. Each AS3 layer is controlled independently, with
dedicated AS3 elements which may be connected in
a hierarchical structure. This concept is similar to the
one used by IBM [19] and Motorola [24] in their
Autonomic Elements cooperation scheme to control
complex systems.

. Each AS3 element is able to communicate mon-
itored data and facts to other elements. This
communication can be performed very selectively
to reduce the amount of data which needs to be
processed. Event processors can be used for this
purpose [20]—a standard solution used by modern
event-driven systems.

. Adaptive Managers activity could be also organized
into hierarchical systems. Local decisions could be
coordinated by higher level policies. If Rule Engines
[21], [22] are used for the implementation of the
Adaptive Manager module, this approach is fully
supported. Additionally, the RETE algorithm used
by Rule Engines offers high scalability even with a
single Rule Engine.

The full potential of the proposed approach is mani-
fested in the cooperation abilities of AS3 components
representing different layers. For instance, it is possible to
monitor the whole AS3 stack by collecting information
from the Monitoring Component of every deployed AS3
element. This reasoning may also refer to other types of
AS3 components—thus, we can identify the following
important aspects:

1. Observability. The monitoring data and facts are
propagated from lower layers to higher ones. This
could be achieved by connecting Monitoring and
Exposition Components from different AS3 elements.

2. Manageability. Management actions are sent between
Management Components and can be transformed
by Exposition Components.

3. Policy. This aspect refers to cooperation between PE
components. A hierarchical connection scheme
seems to be the most natural solution.

Together, these three aspects are illustrated as a vertical
layer which cuts across all layers of the proposed AS3
model.

A key implementation issue concerns interoperability of
components belonging to different AS3 elements. This issue

can be resolved by applying a common software technology
for all AS3 elements—something that will be discussed in
more detail in subsequent sections.

The AS3 model presents a reference architecture which is
technology-agnostic. While full implementation of this
architecture would require significant effort, a good starting
point is the construction of adaptive layers. The next step
would be to consider the cross-layer adaptation processes.
An example of an AS3 model implementation is presented
in Fig. 4. In contrast to the AS3 model itself, the
implementation depends on a specific technology—JMX
[25], Xen, Solaris Containers, ESB, SCA, etc. This is
summarized in Table 1. The presented case studies should
be considered as proofs of concept. Software technology
coherency ensures natural interoperability of individual
components. In Fig. 4, this is illustrated by connections
between Exposition Components and the Global Adaptive
Manager. Any matching AS3 input and output elements
could be connected in a similar way.

5 ADAPTIVE OPERATIONAL SYSTEMS LAYER

Modern execution environments for SOA operate over
virtualized execution resources deployed in a physical
infrastructure. This leads to the Operational Systems layer
with three basic sublayers: physical, virtualization, and
infrastructure, which together constitute the execution
infrastructure for SOA applications.

Each of these sublayers can be further structured with
service orientation principles in mind, resulting in a so-
called Service Oriented Infrastructure (SOI) [26]. SOI
enables moving from dedicated infrastructures for specific
applications to an architecture in which IT resources and
infrastructures’ system tools are exposed as services, being
defined in resource pools allocated on demand using
virtualization techniques.

Adaptive management of SOI involves open mechan-
isms for monitoring and management of infrastructure
resources and services. In general, we can distinguish at
least two types of resources whose parameters must be
subject to monitoring: 1) Middleware, which is an applica-
tion container for given SOA services, and 2) Virtual
Execution Infrastructure, in which application containers
operate. Monitoring processes apply to such parameters as
actual resource usage, QoS attributes (if SLA contracts are
maintained) and information about service availability.
Their principal task is to collect comprehensive information
about the history and state of services necessary during
planning and realization of specific adaptation strategies.

ZIELI�NSKI ET AL.: ADAPTIVE SOA SOLUTION STACK 153

Fig. 4. AS3 model case study.

TABLE 1
AS3 Layers Implementation Examples

When analyzing the relationship between SOI and the S3
Model Operational Systems layer, which includes all
application assets running in a virtualized IT infrastructure,
is the main point of interest. SOI tools should enable
effective provisioning of databases, transaction processing
systems, middleware (e.g., J2EE or .NET) and SOA services
running in a virtualized infrastructure. In fact, the SOI
architecture tends to deliver services that can be described
as a Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS).

Currently many virtualization technologies exist based
on domains [27], virtual machines [28], and OS containers
[29]. When comparing domains to virtual machines, they
can be classified as hardware or firmware functions that
provide stronger isolation compared to virtual machines.
Both enable server virtualization and subdivide physical
resources (CPU, RAM, network), but domains typically
have lower overhead. A disadvantage of domains is the
fixed number of hosted OS instances. Virtual machines are
also managed by a hypervisor which itself is an operating
system implemented in software, without fixed limits on
the number of running OS instances. OS containers can
run in VMs, but have minimal overhead and their isolation
is accomplished by restricting the scope of system calls to
the container from which they are invoked. Thus, there is
no need for CPU-intensive emulation performed in
hypervisors.

Domains and virtual machines host OS instances that can
also be virtualized through OS virtualization techniques
and so-called multilevel virtualization. This approach is
very flexible in terms of computational isolation and level of
resource management, but it also introduces complexity in
terms of monitoring and management.

Despite the fact that virtualization is a very effective
mechanism for consolidation of workloads and provides
means for assigning resource consumption boundaries,
finding appropriate resource attributes values that guaran-
tee a given service level is not a trivial task. Considering
such factors, one comes to the conclusion that there is a
need for a workload monitoring and modeling tool that
enables monitoring and planning system performance in
virtualized environments. This type of software platform
should automate the management of virtualized resources
and provision of information about running workloads in a
given service center.

5.1 Architecture

The architecture based on the SOI concept assumes a
mapping between a typical IT infrastructure and a set of
services. Such services are usually based on shared
virtualized resources (servers, communication infrastruc-
ture, data storage, and applications). To ensure flexible
mechanisms for creation of SOA environments that exploit
the SOI architecture concept, suitable SOA Virtualized
Infrastructure mechanisms for regulating resource access
should exist. These mechanisms are called Resource
Management Systems (RMSs) and are particularly impor-
tant in situations where resources are shared.

The usage of virtualization techniques is a natural
evolution of existing RMS in distributed environments.
Hence, the solution presented in this section can be treated

as the answer to the question whether the virtualization
offered by available technologies is mature enough to
develop virtual computers and virtual communication
infrastructures to effectively organize processing in dis-
tributed environments. A key point to address is whether
efficient management of on demand resources with
virtualization techniques is possible using such mechan-
isms as dynamic infrastructure instantiation and resource
allocation according to the requirements of applications or
changing environmental conditions. These mechanisms
should be able to fully utilize the available infrastructure
and decrease the operational costs through resource usage
reduction, with no impact on the service QoS level.

The Operational Systems layer that includes the virtua-
lized IT infrastructure and hardware assets is used for
adaptive virtualized infrastructure development. A Virtual
Execution Infrastructure model that takes this approach
into account has been proposed and analyzed in the
context of SOA-related technologies. The novelty of the
proposed approach can be expressed as several important
aspects [30].

. The VEI environment enables creating a container
for resource allocation (grouping virtual resources)
in the case of synchronized usage.

. Once deployed, the VEI container can be modified
during runtime so the running application can
obtain or release access to physical resources during
execution.

. The VEI runtime management can be performed
manually or by a policy engine, executing policy
rules defined by the system administrator.

. The VEI container deployment and runtime manage-
ment should be neutral from the perspective of SOA
middleware usage.

The VEI system architecture presented in Fig. 5 leverages
the pattern introduced in Section 3. More precisely, its
components are specified as follows:

. Virtualized resources. This sublayer consists of the
heterogeneous resources comprising the infrastruc-
ture. It also creates an abstraction of physical
resources through proper instrumentation mechan-
isms. Instrumentation relies on provision of dynamic
resource grouping and is used by the management

154 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

Fig. 5. Architecture of adaptive operational system layer.

subsystem. Resource grouping relies on VM virtua-
lization or container creation and dynamic modifica-
tion of its configuration accomplished via virtual
networks (as well as via modification of its dynamic
parameters). This subsystem is also responsible for
provisioning components enabling distribution of
operating system images over the virtualized re-
source instances.

. Monitoring. This sublayer collects and aggregates
information about the virtualized resources. Its
operation relies on unification of information com-
ing from different components (such as CPU, RAM)
of virtual resources. Subsequently, this information
is delivered to components (in the Exposition layer)
as rule engine facts describing the system state.

. Exposition layer. Components added to adjust and
unify virtualization mechanisms to simplify the
interfaces realizing basic VEI system functions
related to resource management. These components
are exposed as SOI services and provide the
following functionality:

- Self-configuration and reconfiguration (some-
times also called autoconfiguration) supports
the diversity of managed virtualization technol-
ogies. The system must be able to adapt to
specific virtualization platforms and automati-
cally install appropriate versions of components
that are dynamically loaded and provide sen-
sors and effectors to be used in a given
hypervisor and OS. This ensures that the system
is easy to deploy. Self-organization would
enable dynamic creation of lists that contain all
available physical nodes (which are further
virtualized) and domains with hosted OS
instances. Such functionality covers many re-
quirements related to managed elements that
should be automatically discovered by the
Adaptive Manager during system startup or
whenever a new element appears [8].

- Representing monitoring data and system con-
figuration using facts.

- Provisioning services for searching and localiza-
tion of resources (specifically, VEI system
components realizing resource management);
registration and retrieval of other components.

- Resource management policy enforced via ex-
posed effectors.

. Management. Components of this sublayer execute
proper actions that are determined by the Adaptive
Manager subsystem. The main operations that are
executed by these components implement the con-
trolling properties of the application’s execution
environment (VEI). These operations include re-
source optimization decisions. Actions that result
from and are connected with changes in system
components introduce adaptability into the Opera-
tional Systems layer.

. Adaptive manager. Implemented as a Policy Engine
(Drools Rule Engine), which performs management
actions referring to resource allocation for VEI.

5.2 Implementation Details

Adaptive Operational System layer is based on virtualiza-
tion technologies. Feature analysis and practical verification
of functionality underpin our selection of virtualization
technologies in different types as hardware virtualization
(Oracle LDOM), paravirtualization (Xen), and operating
system containers (Solaris Containers).

The need for resource management based on complex
heterogeneous mechanisms (mentioned above) has led us to
choose Java Management Extensions (JMX) technology for
developing the prototype of the Adaptive Operational
Systems layer (more specifically, its resources and instru-
mentation layer). By using this technology, we can create
and unify diverse methods of distributed object manage-
ment in the form of a uniform and clear programming
interface. A more extended study on implementing such
complex systems is presented in [31].

5.3 Case Study

The prototype VEI implementation was tested on dedicated
hardware and a dedicated network. This infrastructure
consisted of a set of connected servers. The scenario
assumed testing the proposed solution in conditions similar
to a distributed environment. Therefore, resources were
divided into three independent computing clusters and
connected with network devices whose configuration
corresponded to communication parameters available in
WAN networks.

The system was tested through measurement of para-
meters that describe the resource level usage (e.g., average
CPU usage). The sample application was a concurrent
implementation of particle interactions computing service
for computers with distributed memory, running in an
MPI environment.

The experiment ran two instances of the test application
in two groups of distributed resources connected with a
WAN network with limited bandwidth. Optimization
consisted in correcting virtual machine distribution (via
VM migration) to eliminate the WAN bottleneck.

The purpose of the experiment was to show the ability to
improve application operation through autonomic modifi-
cations of VM deployment according to information
derived from monitoring network communication.1 This
optimization would be essential for distributed applications
which need to exchange large amounts of data.

To conduct measurements, two VEI instances were
created and the test application executed within them.
The initial virtual machine deployment was random. The
system collected information from network communication
monitoring modules and enforced its optimization deci-
sions by changing VM deployment. The optimization
algorithm was implemented as a rule system.

Fig. 6 shows the load carried by the test application
depended on the actions taken by the system. In the initial
phase, when migration is taking place, access to resources is
limited—hence, the application achieves lower performance
compared with optimization-free execution. Once the
migration process concludes, a significant performance

ZIELI�NSKI ET AL.: ADAPTIVE SOA SOLUTION STACK 155

1. Executing two tightly bound VMs within one physical node results in
the communication having practically unlimited bandwidth.

increase is observed. This is because the bottleneck (in the
form of the WAN network communication) has disap-
peared. The next result is a reduction in application
response time.2

Another test was performed on a Solaris 10 instance with
a number of running containers. Solaris Resource Manager
enables specifying resource consumption limits for given
container instances through the use of Fair Share Scheduler
(FSS) [32], allowing optimal use of virtualized system
resources. The system administrator must specify the
importance of each workload running in a given container
by assigning to it a number of shares according to the FSS
model. In Solaris, these limits are expressed via resource
control entities that can be set statically or changed
dynamically during runtime. The latter case occurs in
dynamic environments when new SOA services are provi-
sioned over virtualized resources and new limits on
resource consumption must be assigned. Another scenario
involves migration of the VM which hosts the Solaris
instance—in this case, operating conditions change as the
target node might contain more resources and the internal
configuration of FSS should be adjusted. The adaptation
strategies can be expressed with control algorithms based
on the control theory [33] and structured as open or closed-
loop controllers. Given 1) Sw: shares assigned to workload
W , 2) N : number of active workloads, and 3) Si: shares
assigned to active workload i ¼ 1; . . . ; N , the relative
entitlement Ew of workload W can be expressed with the
following equation [34], [35]:

Ew ¼ Sw
�XN

1

Si: ð1Þ

Transformation of (1) yields the following formula, to be
used by the open-loop controller, where 1) Nw is the
number of workloads; 2) number of active workloads
changes at time t according to activity state vector
At ¼ ½At

1; . . . ; At
Nw
�, where At

i ¼ 0 if Wi is not active and At
i ¼

1 if Wi is active, i ¼ 1; . . . ; Nw,

Stw ¼ Uw
XNw

i6¼s
Si � At

i

 !,
ð1� UwÞ: ð2Þ

Practical exploitation of such a controller is depicted in
Fig. 7. The goal of the management policy expressed in

Drools was to guarantee CPU consumption on the level of
70 percent. It can be observed that following the activation
of the policy, the settling time is approximately 2 minutes
and the target workload is able to consume enough CPU
resources. The presented scenarios describe one of the
many practical aspects of system operation and prove the
concept of applying virtualization techniques as an effective
way of regulating access to resources and binding services
to resources through a dedicated execution environment is
useful in practice.

6 ADAPTIVE ESB

This section presents how the AS3 element concept can be
applied to constructing the Adaptive ESB, which is the main
building block of the Adaptive Integration layer. As
mentioned earlier, the Enterprise Service Bus is an integra-
tion technology that allows architects to compose applica-
tions with services using various communication protocols.
ESB provides mechanisms for message normalization and
routing between selected components. A generic structure
of an Adaptive ESB functional element is shown in Fig. 8.
As it was already described the policy engine perceives the
system as an abstraction exposed by the exposition layer,
which can be defined as a complex service execution model
or a simple set of services involved in execution. In both
cases, an adaptation policy has to be defined. This policy is
used to represent a set of considerations guiding decisions.
Each adaptation policy may express different goals of

156 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

Fig. 6. The load carried by two VEI instances and the whole system.
Fig. 7. The open loop controller for adaptive management of CPU
consumption of Solaris container.

2. The profit would be more significant for applications with long
execution times. Fig. 8. Adaptive ESB functional elements.

system adaptation, such as minimizing system maintenance
costs or ensuring particular QoS parameters. Design-time
decisions cannot, however, take into account every context
of service execution and lower layer architectural config-
uration. Hence, runtime architectural decision processing is
particularly important for the S3 stack. The ESB layer must,
therefore, be equipped with suitable adaptability mechan-
isms enabling the enforcement of these decisions.

6.1 Architecture

The Adaptive ESB functional element is constructed around
the AS3 element pattern defined in Section 3 and depicted
in Fig. 8. A number of distributed adaptive elements can be
managed by a global Policy Engine in accordance with a
high-level strategy. The instrumentation layer enriches the
ESB with additional elements, providing adaptability
transformations necessary to achieve adaptive ESB (de-
scribed in the following sections). The monitoring layer is
responsible for supplying notifications of events occurring
in the execution environment. As the volume of monitoring
information gathered from the ESB could overwhelm the
Exposition layer, events are correlated with one another and
notifications are sent only about complex events. Complex
Event Processing can be compared to an inverted database
containing stored statements: as data arrives in real time,
these statements are executed and notifications are sent to
registered listeners. The Adaptive Manager layer analyses
facts and infers decisions which are then implemented in
the execution environment. Facts representing the state of
the system or events occurring in the system are supplied
by the Exposition layer.

The approach presented in this section is a model-driven
adaptation policy for SOA. The system analyzes composite
services deployed in the execution environment and adapts
to QoS and QoE changes. The user composes the applica-
tion in a chosen technology and provides an adaptation
policy along with a service execution model. The architec-
ture-specific service composition layer continuously modi-
fies the deployed service in order to enforce the adaptation
policy. The abstract plan, providing input for architecture-
specific service composition, can be hidden and used only
by IT specialists during application development. System
behavior is represented by the service execution model.

The composite service execution model is an abstraction
of the execution environment. It covers low-level events and
relations between services and exposes them as facts in a
model domain for the Policy Engine. Decisions taken in the
model domain are translated to the execution environment
domain and then executed. The Model Analyzer System
gathers monitoring data from the execution environment
via Monitoring and Management Agents.

This process can be described as architecture-specific
service composition adaptation that is performed in order
to achieve the required value of QoS or QoE guided by
the adaptation policy. The adaptation loop addresses
service selection, binding protocol, and interaction policy
choices. Thus, the adaptability process mainly concerns
integration mechanisms.

6.2 Implementation Details

Monitoring ESB allows management actions to be per-
formed. The presented concepts cover selected issues

related to improving communication over ESB by separat-
ing traffic into several flows, which can then be indepen-
dently handled. This leads to increased scalability and is
required by many aspects of infrastructural functionality,
including monitoring, data collection, management infor-
mation distribution and security considerations.

The proposed mechanisms are compliant with existing
integration technologies. Interceptor mechanisms enable
dynamic control of service or component invocation, along
with sensors and effectors necessary to close the adaptation
loop.

The proposed adaptation mechanism provides elements
necessary to close the control loop for ESB. It is used for
compositional adaptation in systems which modify service
composition while retaining their overall functionality. ESB
is suitable for implementation of such adaptation, since one
can modify message flows between components in accor-
dance with high-level goals.

6.2.1 Sensors

An adaptive system should react in accordance with
various goals, requiring several types of information from
ESB. In most cases, this information will be disjunctive, so
one would expect to deploy specialized types of sensors
rather than generic ones. Interceptor design patterns fulfill
these requirements, allowing interceptors to be deployed or
undeployed at runtime.

A message is created in a service, is passed through the
specialized Service Engine and is sent to the Normalized
Message Router (NMR), which reroutes it to a particular
destination through the same components. Common usage
of this concept includes:

. QoS measuring. The functionality of monitoring
interceptors is not limited to creating copies of
messages sent through them, but may include more
complex tasks, providing quantitative information
related to service invocation. In the QoS interceptor,
a message sent to a service is stored in the internal
memory of the interceptor. When a response is
generated, the previous message is correlated and
response time is evaluated.

. Tagging/Filtering. Interceptors are commonly used
for message tagging and filtering.

6.2.2 Effectors

Adaptive software has to modify itself to the changes in the
execution environment. This adaptation requires perform-
ing actions (via effectors) that modify the execution
characteristics of a system. For any sort of system, a set of
operations has to be defined, along with places where these
modifications should be introduced. It has been found that
modifying message routes can affect the adaptation of
complex services deployed in ESB.

Rerouting messages to other instances is justified only
when these instances share the same interface and provide
identical functionality. Current implementations of ESB that
are compliant with the JBI specification share some
common attributes used in the course of message proces-
sing. Each invocation of a complex service is described by
its Correlation ID (CID) and is constant for one invocation,

ZIELI�NSKI ET AL.: ADAPTIVE SOA SOLUTION STACK 157

even when passed among services. A particular message
sent between services is described by an Exchange ID (EID).
Generally speaking, the invocation of a complex service is
described by a CID and consists of several message
exchanges described by an EID. Extending the Normalized
Message Router with a routing algorithm capable to modify
message routing would yield an adaptive ESB.

Once the message reaches the NMR, the routing
algorithm relies on matching the message to routing rules
in the routing table. If the message matches a routing rule,
that rule is fired and the Service Name from the routing
rule substitutes the intended destination Service Name.
Routing rules are split into groups—Virtual ESB (VESB)
with different priorities, analyzed in a particular order. In
every message, parameters such as VESB tag, Correlation
ID, intended Service Name, and Exchange ID are matched
to routing rules. If the message matches several rules, one
of them is selected on a round-robin basis to provide load
balancing.

Depending on the priority value, different parameters
are matched. The presented matching criteria are summar-
ized in Table 2. The lower the priority value the more
important the routing rule. Some attributes are omitted
when processing rules, though each routing rule returns a
Service Name as a result. The decision element which closes
the adaptation loop already presented in Fig. 8 gathers
information about ESB from sensors and uses effectors to
dynamically modify the routing table at runtime.

6.3 Case Study

The purpose of this scenario is to demonstrate how
the system responds to disturbances in the execution
environment.

Let us assume that one would like to create a GeoWeather

service providing weather information for a given location.
Location data will be provided as a zip code, GPS location,
IP address of a computer, or country name. Another
assumption is that accuracy can be limited to cities.

Widely available weather services do not provide weath-
er information for GPS coordinates. Instead, they return
weather information for a given readable address—thus all
possible input formats have to be converted to addresses
and then validated against the weather information service.

In order to better present system responses, a fragment of
the service is analyzed, i.e., it is assumed that requests only
contain geographical locations. The ESB contains several
other services that can be used interchangeably. The model
of the analyzed service and its projection onto instances
found in the ESB is depicted in Fig. 9. There are six possible
combinations of service instances that might be executed.

Without an adaptation policy, user requests are handled
by services called locationB and weatherB. In normal
circumstances the agreed-upon response time is in the
range of 400-450 ms. Unfortunately, sometimes these
instances are overloaded or unloaded, resulting in uneven
response times of the whole complex service. Areas marked
in Fig. 10 show when disturbances are observed. In the 60-
120 s period, the locationB service execution time increases
from about 200 to 500 ms, inducing an overall execution
time of 700 ms which is 300 ms more that it should be. In
the 180-240 s period, the weatherB service responds about
100 ms faster than normal, resulting in the shortest overall
execution time. During the first disturbance phase, the
client did not receive a response in the required time,
whereas during the second phase the client obtained better-
than-agreed upon service quality. With an adaption policy
active, the system counteracts disturbances in the execution
environment and switches to a different set of service
instances whenever it is necessary to maintain the agreed-
upon level of QoE.

7 ADAPTIVE COMPONENTS

Adaptive Components are used in the Adaptive S3 model to
provide adaptability for the Service Components layer. The
main goal of Adaptive Components is to provide a back-
ground for creating atomic services used by the other layers.

In SOA systems, atomic services are mainly comprised of
components. The need to ensure implementation and

158 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

TABLE 2
NMR Routing Table

Fig. 9. Projection of an abstract composite service into a composite
service.

Fig. 10. Evaluation of ESB use case scenario.

communication protocol independence forces the selection
of an independent integration environment. The Service
Component Architecture (SCA) specification [36] provides
such a solution. It supports several component implemen-
tations (such as Java, C++, BPEL, and Spring) as well as
various communication protocols (Web Services, RMI, and
JMS). Moreover, it is highly extensible, as evidenced by
different SCA implementations [37] which introduce addi-
tional technologies not covered by the original blueprint.

However it should be noted that the SCA specification
lacks of adaptability mechanisms, which play a crucial role
in ensuring conformance between the provided services
and changing user requirements (i.e., Quality of Service).

The SCA specification involves the concept of a
composite which consists of a set of components connected
by wires. A wire consists of a service representing the
functionality exposed by one component, a reference
representing the functionality required by another compo-
nent (delegate object) and a binding protocol which
represents the communication protocol between the refer-
ence and the service. Several components in an SCA
composite may expose services for external communication.
These services are further exposed, e.g., via ESB.

Services created using SCA composites should be able to
adapt to changing customer requirements and service
provider capabilities (such as different CPU speeds result-
ing from infrastructure changes, etc.) Nonfunctional custo-
mer requirements are recognized as QoS metrics and may
be provided by the QoS layer of the S3 model. On the other
hand, the measured service QoE, represents actual capabil-
ities of a service. In an ideal case, QoE metrics should be as
close to QoS requirements as possible.

An SCA composite may be perceived as a directed graph
with nodes representing components and edges represent-
ing wires (directed from references to services), hereafter
called a Composition Instance (CI). A CI is connected with a
specific QoE description derived from a composite. A set of
Composition Instances, which meet the same functional
requirements and differ only with respect to nonfunctional
ones (QoS) is called a Composition. Compositions may also be
represented as a directed graph, created by joining all CIs
which provide a given element of functionality. The rules
for joining CIs are as follows: if CI1 and CI2 use the same
component as a specific node, these components can be
joined; otherwise both components need to be added to the
graph. Such a solution reduces the amount of resources
required by all CIs (by exploiting shared nodes) and enables
more efficient CI processing. A sample Composition with a
selected Composition Instance is depicted in Fig. 11.

7.1 Architecture

The architecture of the Adaptive SCA is depicted in Fig. 12,
and it is a realization of the previously described AS3
Element. The Adaptive SCA service is a service created
using SCA technology with the proposed enhancement,
which could be integrated by the Adaptive ESB Element.

Instrumentation is used to enhance the SCA Container to
manage components, their services and references, and
binding protocols used for remote communication. The
monitoring layer includes the Monitoring Agent, which
gathers QoE metrics for the service. The exposition layer is
mainly composed of the Fact Generator (used to create
specific facts further used by the Policy Engine), and the
Mapping Engine, which is responsible for applying map-
pings between the Composition and Composition Instance
into a particular set of components, discovered by the
Component Discovery. Policy, Instance, and Binding
Managers perform low-level management tasks, such as
applying the selection of components taking part in the
Composition Instance.

7.2 Implementation Details

Adaptive SCA comes as a set of extensions for the Service
Component Architecture [36] (in particular, the Apache
Tuscany SCA [37] implementation). These extensions
enhance the SCA component model, turning it into an
Adaptive SCA component. Low-level extensions provide
interceptors injected into SCA references to enable sensor
invocations and apply selection of proper services and
binding protocols (effectors), as depicted in Fig. 13.

For better understanding of this process, the figure
should be compared with the service model (cf. Fig. 11). A
reference is connected with several component services in
the Composition, but only one should be selected within the
current Composition Instance. This selection is performed
by Instance and Binding Effectors.

The functionality of sensors and effectors is exposed by
the Monitoring and Management Interface (MMI), which is
used on the upper level of the AS3 Element.

The Policy Engine is used to process adaptation policies
provided with the service description (e.g., by the service
customer). Such policies describe QoS requirements using a
high-level abstract language and they are further mapped to
specific rules used to select proper CIs. CI descriptions
(maintained by the Adaptive SCA Element) are used to

ZIELI�NSKI ET AL.: ADAPTIVE SOA SOLUTION STACK 159

Fig. 11. Sample composition with a selected Composition Instance.

Fig. 12. Adaptive SCA.

perform selection decisions using component reference
effectors exposed by MMI (cf. Fig. 13).

7.3 Case Study

Our case study presents a possible adaptation of a typical
service created using Adaptive SCA. The service provides
banknote recognition functionality. The Composition which
realises this functionality is depicted in Fig. 14.

The main component, BanknoteRecognizer, implements
the overall functionality and contains two references. The
first reference is used to provide the functionality of loading
an image from a remote location and converting it to a
specific file format (using specialized libraries, such as
ImageMagick or NetPBM), while the second one is used to
scan two images for similarities.

There are four Composition Instances defined in the
Composition, which differ only in their nonfunctional
parameters. The CIs are as follows:

. CI 1. Banknote Recognizer, Image Loader, File
Loader, NetPBM Image Converter, NeuralNetwork
Image Recognizer.

. CI 2. Banknote Recognizer, Image Loader, File
Loader, NetPBM Image Converter, Edge Recognizer,
Edge Detector.

. CI 3. Banknote Recognizer, Image Loader, File
Loader, ImageMagick Image Converter, NeuralNet-
work Image Recognizer.

. CI 4. Banknote Recognizer, Image Loader, File
Loader, ImageMagick Image Converter, Edge Re-
cognizer, Edge Detector.

With the quality metrics presented in Table 3.

The presented experiment shows a typical situation,
when the capabilities of the service provider change
temporarily, e.g., due to a brief system overload (which
may result from increased service demand, exposure of new
services, etc.).

The adaptation policies used in the case study are
defined as follows:

. Keep average invocation time between 4 and 6
seconds.

. Keep average cost per invocation between 3 and 6
eurocents.

. Maximum allowed invocation time is 11 seconds.

. Keep average memory usage between 1,300 and
1,800 MB.

. If invocation time and cost requirements are fulfilled,
try to find a CI with lower cost.

These policies are transformed to low-level rules by the
Policy Engine, following which the adaptation is per-
formed. During service execution the system discovers that
CI 4 may be used (thus the provided QoE meets
requirements described by the policies). However, after
55 seconds of service execution, the invocation time of CI 4
increases to 10 seconds, which is not acceptable. This
causes selection of the other CIs, which in turn results in
proper average QoE. After 87 seconds, the invocation time
of CI 4 reverts to its initial value (5 seconds), hence this CI
is again selected. The observed QoE achieved with this
adaptability process is depicted in Fig. 15.

8 RELATED WORK

The presented work concerning VEI is very much related to
research on Grid resource management. This paper [38]
presents how to develop collaborative Grids into stable,
flexible, and dynamic resource management environments

160 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

Fig. 14. Case study composition.

TABLE 3
Quality of Service for Case Study CIs

Fig. 15. QoE in the case study experiment.

Fig. 13. Adaptive SCA component with interceptors and reference
selection process.

by means of a Collaborative Awareness Management (CAM)
model. CAM optimises resource collaboration, promotes
cooperation, and responds to specific circumstances.

Management of the underlying network infrastructure
supporting Grid communications is not performed by the
same management systems which manage the Grid itself. In
the presented scenario, integrated management of VEI and
network could simplify the overall maintenance processes.
Work [39] proposes a hierarchical policy-based architecture
whose goal is to allow such integration where Grid policies
are translated to network policies according to rules defined
by network administrators. It also describes a prototype
implementation of such an architecture.

As it can be observed that most of these efforts address
the specific issue of virtualizing computing resources and
concentrate on problems resulting from integration with
existing environments at the management level. There is an
observable lack of complex solutions addressing different
resource virtualization mechanics.

Some projects attempt to extend adaptability mechan-
isms in ESB, but these solutions are focused on selecting the
most appropriate service instances without evaluating how
it may influence overall composition. Chang et al. propose a
Dynamic Composition Handler (DCH) [16] for ESB. Busi-
ness processes are defined using BPEL and may include
several activities. Some of them may have more than one
service component which can perform a given activity.
DCH determines the most appropriate service component
and invokes it according to the requirements and circum-
stances of various service consumers. Bai et al. propose
Dynamic Routing in the Enterprise Service Bus (DRESR)
[40] framework to enable dynamic message routing. The
authors define an Abstract Routing Table as an execution
sequence of services in terms of abstract service specifica-
tions. Prior to execution of an abstract service, the frame-
work analyses existing service providers and chooses one
that meets nonfunctional requirements such as response
time. The services are evaluated based on current testing
results as well as historical data. Chen et al. present an
Adaptable Service Bus (ASB) [41] that enables, to some
extent, dynamic composition of services. In order to modify
the behavior of the application at runtime, developers can
adjust the parameter values maintained in external storage.

In [15] and [6], Morin et al. present results of their work
in the DiVA [42] project, which focuses on dynamic
variability in complex, adaptive systems. In several aspects,
this work is related to the concepts of Adaptive Compo-
nents. The aim of the prepared dynamically adaptive systems
is to provide the functionality described with a specified
model, according to specified QoS and current context (e.g.,
user location). The authors propose several metamodels for
architecture, context, and reasoning description. Although
adaptation to context changes is precisely described, the
methods of adapting to changing QoS requirements and
capabilities are only mentioned.

In [14], Vukovi�c presents service composition methods
for a context-aware environment, especially a mobile one.
Nau et al. investigate planning-based service composition
[13], [43]. The framework, called GoalMorph, mainly
focuses on resilience to failures arising both at composition
and execution time.

S-Cube (Software Services and Systems Network [44]) is
a project funded by the European Community’s Seventh
Framework Programme. One of its activities (WP-JRA-1.2)
focuses on “Adaptation and Monitoring Principles, Techni-
ques and Methodologies for Service-based Applications
[12].” According to its description, it should propose
solutions for different levels of adaptation, in particular
for: optimization, recovery, QoS-based adaptation, evolu-
tion, mediation. In contrast to the presented work, it uses
adaptation mechanisms for composing services into busi-
ness processes and recomposes them according to adapta-
tion strategies. Unfortunately, this project is scheduled for
2007-2013 and currently there are no detailed results on the
investigation of adaptation mechanisms.

9 CONCLUSIONS AND FUTURE WORK

This paper presents the concept of the Adaptive S3 Model.
Individual layers of this model are currently in the process
of development and subject to intensive research which
requires a lot of effort. The major contribution of this paper
is the proposition of how the adaptation loop construc-
tion—the AS3 element pattern—could be applied in a
uniform way across the S3 layers to reduce the complexity
of SOA applications QoE and QoS governance. The
essential part of this study shows practical usage of the
AS3 pattern across different layers. Such an approach,
supported by proper selection of available software tools
for code instrumentation, monitoring, and policy proces-
sing, leads to an efficient and scalable solution. This has
been illustrated by the implementation of adaptive Opera-
tional Systems, Integration and Service Components layers.

Uniform implementations of the AS3 elements over
different layers facilitate their interoperability and provide
opportunities for multilayer adaptation of SOA systems.
This challenge has not been explored in this paper, but the
presented systems are fully prepared for such experiments
and we intend to pursue them in the course of our future
work. The integrated adaptation of SOA applications and
their execution environments should lead to full control
over service QoS and QoE. Realization of this vision
requires careful analysis of new adaptation strategies,
metrics, and models.

The proposed study relies on the adaptive system
concept. The complexity of management actions means
that autonomic systems, being the most mature and
advanced form of adaptation, are an appropriate solution
in this regard. More complex adaptation algorithms can
take into account additional knowledge gained during
system operation, while other parts of the proposed system
can be applied without any changes.

This paper focuses on the Adaptive S3 model concept,
while software tools for AS3 elements for particular layers
are not presented. A collection of these tools, called AS3
Studio [45], is now under development at the Computer
Science Department, AGH University of Science and
Technology. AS3 Studio supports implementation and
deployment of adaptation loop components via a user-
friendly GUI. It also facilitates convenient definition of
policy rules and retrieval of monitoring data. It is con-
structed as a set of plug-ins for the Eclipse framework.

ZIELI�NSKI ET AL.: ADAPTIVE SOA SOLUTION STACK 161

ACKNOWLEDGMENTS

The research presented in this paper was partially sup-

ported by the European Union in the scope of the European

Regional Development Fund program no. POIG.01.03.01-

00-008/08.

REFERENCES

[1] P. Bachara, K. Blachnicki, and K. Zielinski, “Framework for
Application Management with Dynamic Aspects J-EARS Case
Study,” Information and Software Technology, vol. 52, no. 1, pp. 67-
78, 2010.

[2] N. Bartlett, OSGi In Practice, http://njbartlett.name/osgibook.
html, 2009.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” Proc. 19th ACM Symp. Operating Systems Principles
(SOSP ’03), pp. 164-177, 2003.

[4] E.L. Haletky, VMware ESX Server in the Enterprise: Planning and
Securing Virtualization Servers. Prentice Hall, 2008.

[5] M. Lageman, Solaris Containers What They Are and How to Use
Them, Sun Microsystems, http://www.sun.com/blueprints/
0505/819-2679.pdf, 2005.

[6] F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, and J.-M. Jézéquel,
“Modeling and Validating Dynamic Adaptation,” MoDELS Work-
shops, pp. 97-108, 2009.

[7] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41-50, 2003.

[8] A.G. Ganek and T.A. Corbi, “The Dawning of the Autonomic
Computing Era,” IBM Systems J., vol. 42, pp. 5-18, 2003.

[9] A. Janik and K. Zielinski, “Adaptability Mechanisms for Auto-
nomic System Implementation with AAOP,” Software—Practice
and Experience, vol. 40, no. 3, pp. 209-223, 2010.

[10] L.-J. Zhang, N. Zhou, Y.-M. Chee, A. Jalaldeen, K. Ponnalagu, R.R.
Sindhgatta, A. Arsanjani, and F. Bernardini, “SOMA-ME: A
Platform for the Model-Driven Design of SOA Solutions,” IBM
Systems J., vol. 47, no. 3, pp. 397-413, 2008.

[11] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and K. Channaba-
savaiah, “S3: A Service-Oriented Reference Architecture,” IT
Professional, vol. 9, pp. 10-17, 2007.

[12] C. Cappiello, K. Kritikos, A. Metzger, M. Parkin, B. Pernici, P.
Plebani, and M. Treiber, “A Quality Model for Service Monitoring
and Adaptation,” Proc. Workshop Monitoring, Adaptation and
Beyond (MONA+) at the ServiceWave Conf., Dec. 2008.

[13] D.W. Evren, D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia,
“Automatic Web Services Composition Using SHOP2,” Proc.
Workshop Planning for Web Services, 2003.

[14] M. Vukovi�c, “Context Aware Service Composition,” PhD dis-
sertation, Univ. of Cambridge, Apr. 2006.

[15] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg,
“Models@Run.time to Support Dynamic Adaptation,” Computer,
vol. 42, pp. 44-51, 2009.

[16] S.H. Chang, H.J. La, J.S. Bae, W.Y. Jeon, and S.D. Kim, “Design of a
Dynamic Composition Handler for ESB-Based Services,” Proc.
IEEE Int’l Conf. e-Business Eng. (ICEBE ’07), pp. 287-294, 2007.

[17] I.Y. Chen, G.-K. Ni, and C.-Y. Lin, “A Runtime-Adaptable Service
Bus Design for Telecom Operations Support Systems,” IBM
Systems J., vol. 47, no. 3, pp. 445-456, 2008.

[18] K.-J. Lin, M. Panahi, Y. Zhang, J. Zhang, and S.-H. Chang,
“Building Accountability Middleware to Support Dependable
SOA,” IEEE Internet Computing, vol. 13, no. 2, pp. 16-25, 2009.

[19] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.

[20] “Esper—Event Stream and Complex Event Processing for Java,”
http://www.espertech.com, Dec. 2009.

[21] P. Browne, JBoss Drools Business Rules. Packt Publishing Ltd., 2009.
[22] E. Friedman-Hill, Jess in Action: Java Rule-Based Systems (In Action

Series). Manning Publications, Dec. 2002.
[23] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B.H.C. Cheng,

“Composing Adaptive Software,” Computer, vol. 37, no. 7, pp. 56-
64, 2004.

[24] J. Strassner and D. Raymer, “Implementing Next Generation
Services Using Policy-Based Management and Autonomic Com-
puting Principles,” Proc. IEEE/IFIP 10th Network Operations and
Management Symp. (NOMS), 2006.

[25] Java Management Extensions (JMX) Specification, Version 1.4, JSR
160, Sun Microsystems, http://jcp.org/en/jsr/detail?id=160,
2006.

[26] “Service Oriented Infrastructure Reference Framework,” draft
technical standard, The Open Group, SOA Working Group,
https://www.opengroup.org/projects/soa-soi/uploads/40/
19218/soi-V1-5-P1.pdf, 2008.

[27] R.W. Doran, “Amdahl Multiple-Domain Architecture,” Computer,
vol. 21, pp. 20-28, 1988.

[28] M. Rosenblum, “The Reincarnation of Virtual Machines,” Queue,
vol. 2, no. 5, pp. 34-40, 2004.

[29] S.J. Vaughan-Nichols, “New Approach to Virtualization is a
Lightweight,” Computer, vol. 39, pp. 12-14, 2006.

[30] J. Kosi�nska, J. Kosi�nski, and K. Zieli�nski, “Virtual Grid Resource
Management System with Virtualization Technology,” Proc.
Second Conf. High Performance Computers’ Users (KU KDM ’09),
2009.

[31] K. Balos, M. Jarzab, D. Wieczorek, and K. Zielinski, “Open
Interface for Autonomic Management of Virtualized Resources in
Complex Systems Construction Methodology,” Future Generation
Computer Systems, vol. 24, no. 5, pp. 390-401, 2008.

[32] J. Kay and P. Lauder, “A Fair Share Scheduler,” Comm. ACM,
vol. 31, no. 1, pp. 44-55, 1988.

[33] J.L. Hellerstein, Y. Diao, S. Parekh, and D.M. Tilbury, Feedback
Control of Computing Systems. Wiley-IEEE Press, 2004.

[34] M. Jarzab and K. Zielinski, “Framework for Consolidated Work-
load Adaptive Management,” Proc. Software Eng. in Progress—II
IFIP Central and East European Conf. Software Eng. Techniques,
pp. 17-29, 2006.

[35] J. Adamczyk, R. Chojnacki, M. Jarzab, and K. Zielinski, “Rule
Engine Based Lightweight Framework for Adaptive and Auto-
nomic Computing,” Proc. Eighth Int’l Conf. Computational Science
(ICCS), pp. 355-364, 2008.

[36] SCA Service Component Architecture, Assembly Model Specification,
Version 1.00, OASIS, May 2007.

[37] Apache Tuscany Home Page, http://tuscany.apache.org, 2012.
[38] P. Herrero, J.L. Bosque, M. Salvadores, and M.S. Perez, “A Rule

Based Resources Management for Collaborative Grid Environ-
ments,” Int’l J. Internet Protocol Technology, vol. 3, no. 1, pp. 35-45,
2008.

[39] R. Neisse, E.D.V. Pereira, L.Z. Granville, M.J.B. Almeida, and
L.M.R. Tarouco, “An Hierarchical Policy-Based Architecture for
Integrated Management of Grids and Networks,” Proc. IEEE Fifth
Int’l Workshop Policies for Distributed Systems and Networks, pp. 103-
106, 2004.

[40] X. Bai, J. Xie, B. Chen, and S. Xiao, “DRESR: Dynamic Routing in
Enterprise Service Bus,” Proc. IEEE Int’l Conf. e-Business Eng.,
pp. 528-531, 2007.

[41] I.-Y. Chen, G.-K. Ni, and C.-Y. Lin, “A Runtime-Adaptable Service
Bus Design for Telecom Operations Support Systems,” IBM
Systems J., vol. 47, no. 3, pp. 445-456, 2008.

[42] DiVA Home Page, http://www.ict-diva.eu, Jan. 2010.
[43] D. Nau, M. Ghallab, and P. Traverso, Automated Planning: Theory

& Practice. Morgan Kaufmann, 2004.
[44] S-Cube, the Software Services and Systems Network Project Home

Page, http://www.s-cube-network.eu, Dec. 2009.
[45] IT-SOA Project, http://www.soa.edu.pl, 2012.

Krzysztof Zieli�nski is working as a full profes-
sor and head of the Institute of Computer
Science at AGH-UST. His interests focus on
networking, mobile and wireless systems, dis-
tributed computing, and service-oriented distrib-
uted systems engineering. He is the author of
more than 200 papers in this field. He has been
the project/task leader in numerous EU-funded
projects, e.g., PRO-ACCESS, 6WINIT, and
Ambient Networks. He served as an expert with

the Ministry of Science and Education. Now, he is leading SOA-oriented
research performed by the IT-SOA Consortium in Poland. In this area,
his research interests concern adaptive SOA solution stack, services
composition, service delivery platforms, and methodology. He is a
member of the IEEE, ACM, and the Polish Academy of Science,
Computer Science Chapter.

162 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012

Tomasz Szydło is working toward the PhD
degree and is also a research assistant in the
Department of Computer Science at AGH-UST.
Recently, he has been working on the SOA
project conducted by several universities in
Poland. His interest in this project is concen-
trated on adaptive ESB. His interests focus on
service-oriented architectures as well as mobile
systems. He has participated in several EU
research projects including CrossGrid and Am-

bient Networks. He is the author of 10 research papers. He has
cooperated with the Machine Learning and Inference Laboratory at
George Masson University, working on the conversion of rules into
decision trees. He was also an intern at IBM Hursley, United Kingdom,
where he worked on integration of the MQTT protocol with service-
oriented device architectures. He is involved in the CISCO Regional
Academy at AGH-UST as an instructor.

Robert Szymacha is working toward the PhD
degree and is also a research assistant in the
Department of Computer Science at the AGH-
University of Science and Technology, Krakow,
Poland. Currently, he is working in the SOA
research project performed by the IT-SOA
Consortium in Poland. He works on adaptive
component integration and QoS-aware ser-
vices. His interests focus on networking, dis-
tributed systems, context-aware systems, and

SOA applications. He is author of nine papers in these areas. He has
been working on several large projects, like 6FP EU: Ambient
Networks, SGI Project: Parallel Isosufraces Visualization and Recon-
struction, and Sun Microsystems: Spontaneous Containers Implemen-
tation in Java Multitasking Virtual Machine.

Jacek Kosi�nski has been working as a PhD
research assistant in the Department of Com-
puter Science, AGH University of Science
Technology, Krakow, since 2000. He is a Cisco
CCNP instructor. He has participated in national
and international research projects, mainly EU-
founded. Currently, he is working on an SOA
research project performed by the IT-SOA
Consortium in Poland and on a project related
to the Polish national grid initiative—PL-Grid. He

works on the usage of virtualization techniques in areas related to
resources management. His main interests focus on computer net-
works, operating systems, and virtualization. He is the author of several
papers in these areas.

Joanna Kosi�nska has been working as a
research assistant in the Department of Com-
puter Science, AGH University of Science and
Technology, Krakow, since 2001. She has
participated in several national and international
research projects, mainly EU-funded. Currently,
she is working on the SOA research project
performed by the IT-SOA Consortium in Po-
land. She works on the usage of virtualization
techniques in areas related to resources man-

agement. Her main interests focus on service-oriented architecture and
distributed environments based on Java.

Marcin Jarzab received the MSc degree in
computer science from the University of Science
and Technology (AGH-UST) in Krakow, Poland,
in 2002. He worked as a software consultant at
Consol� Solutions and Software from 2000-
2002, participating in many projects for Telco
companies. He was an intern at Sun Labs in the
latter half of 2003, investigating the application
of the Multitasking Java Virtual Machine to the
J2EE environment. His research interests in-

clude the tuning and performance evaluation of distributed systems,
design patterns, frameworks, and architectures of autonomic computing
environments.

ZIELI�NSKI ET AL.: ADAPTIVE SOA SOLUTION STACK 163

