INE 5645

Programação Paralela e Distribuída

Professor:

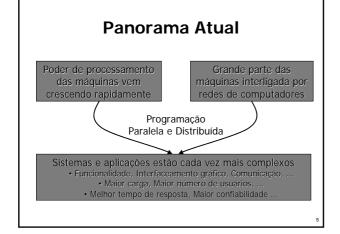
Frank Siqueira

INE – UFSC

frank@inf.ufsc.br

Conteúdo Programático

- 1. Introdução
- 2. Programação Paralela
- 3. Controle de Concorrência
- 4. Programação Distribuída
- 5. Comunicação entre Processos


Recursos Computacionais

- Software J2SE SDK
- Página da disciplina http://www.inf.ufsc.br/~frank/INE5645
- Lista de e-mails ine5645-0538@inf.ufsc.br

Unidade 1

Introdução à Programação Paralela e Distribuída

- Programação Paralela e Distribuída
- Vantagens e Dificuldades
- Plataformas de Execução
- Suporte Computacional

Programação Paralela

- O que é?
 - Consiste em executar simultaneamente várias partes de uma mesma aplicação
 - Tornou-se possível a partir do desenvolvimento de sistemas operacionais multi-tarefa, multi-thread e paralelos
- Aplicações são executadas paralelamente:
 - Em um mesmo processador
 - Em uma máquina multiprocessada
 - Em um grupo de máquinas interligadas que se comporta como uma só máquina

1

Programação Distribuída

- O que é?
 - Consiste em executar aplicações cooperantes em máquinas diferentes
 - Tornou-se possível a partir da popularização das redes de computadores
- Aplicações são executadas em máquinas diferentes interligadas por uma rede
 - Intranets
 - Internet
 - Outras redes públicas ou privadas

Diferenças

- Acoplamento
 - Sistemas paralelos são fortemente acoplados: compartilham hardware ou se comunicam através de um barramento de alta velocidade
 - Sistemas distribuídos são fracamente acoplados
- Previsibilidade
 - O comportamento de sistemas paralelos é mais previsível; já os sistemas distribuídos são mais imprevisíveis devido ao uso da rede e a falhas

Diferenças

- Influência do Tempo
 - Sistemas distribuídos são bastante influenciados pelo tempo de comunicação pela rede; em geral não há uma referência de tempo global
 - Em sistemas paralelos o tempo de troca de mensagens pode ser desconsiderado
- Controle
 - Em geral em sistemas paralelos se tem o controle de todos os recursos computacionais; já os sistemas distribuídos tendem a empregar também recursos de terceiros

Vantagens

- Usam melhor o poder de processamento
- Apresentam um melhor desempenho
- Permitem compartilhar dados e recursos
- Podem apresentar maior confiabilidade
- Permitem reutilizar serviços já disponíveis
- Atendem um maior número de usuários
- **.**..

10

Dificuldades

- Desenvolver, gerenciar e manter o sistema
- Controlar o acesso concorrente a dados e a recursos compartilhados
- Evitar que falhas de máquinas ou da rede comprometam o funcionamento do sistema
- Garantir a segurança do sistema e o sigilo dos dados trocados entre máquinas
- Lidar com a heterogeneidade do ambiente

..

intel

Platafomas de Execução

- Um S.O. multitarefa permite simular o paralelismo em um único processador, alternando a execução de processos
- Um processador com núcleo múltiplo permite paralelismo real entre processos, executando múltiplas instruções por ciclo

Plataformas de Execução

■ Uma Placa-Mãe Multiprocessador permite que cada processador execute um processo

Plataformas de Execução

 Um Cluster é uma solução de baixo custo para processamento de alto desempenho

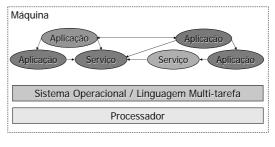
Plataformas de Execução

■ Computação Distribuída é possível em redes, como numa Intranet e na Internet

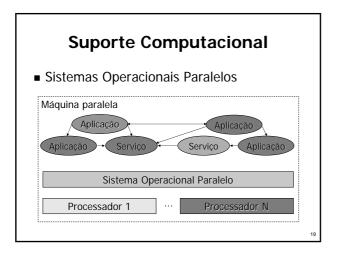
Suporte Computacional

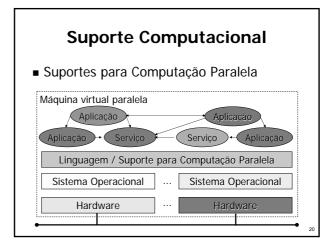
- Suportes para Computação Paralela e Distribuída devem fornecer:
 - Mecanismos para execução paralela ou distribuída de programas
 - Mecanismos para controle de concorrência
 - Mecanismos para comunicação entre processos / threads paralelos / distribuídos
 - Ferramentas e mecanismos para desenvolvimento, testes, gerenciamento, controle, segurança, tolerância a faltas, etc.

10


Suporte Computacional

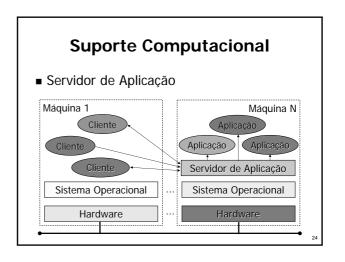
- Suporte para Computação Paralela
 - Sistemas Operacionais Multi-Tarefa: permitem a troca de contexto entre processos / threads. Ex.: Windows, Linux, Solaris, HP-UX, AIX, etc.
 - Linguagens Multi-Tarefa: permitem escrever programas paralelos. Ex.: Pascal FC, Java, etc.
 - Sistemas Operacionais Paralelos: permitem usar vários processadores em uma máquina.
 Ex.: Linux, Solaris, Windows, etc.
 - Suportes para Programação Paralela: permitem criar uma máquina paralela virtual. Ex.: PVM


17


Suporte Computacional

■ Sist. Operacionais / Linguagens Multi-tarefa

18



Suporte Computacional

- Suporte para Computação Distribuída
 - APIs e Bibliotecas: fornecem rotinas para comunicação entre processos
 Ex.: UNIX Sockets, WinSock, java.net, etc.
 - Middleware para Programação Distribuída: fornece suporte para criar / executar programas distribuídos. Ex.: CORBA, COM, etc.
 - Servidores de Aplicação: permitem o acesso a aplicações via rede. Ex.: Tomcat, JBoss, etc.
 - Linguagens e sistemas operacionais distribuídos caíram em desuso por não suportarem heterogeneidade de ambiente

Suporte Computacional ■ APIs e Bibliotecas para Comp. Distribuída Máquina 1 Máquina N Aplicação Aplicação API / Biblioteca Sistema Operacional Hardware Hardware Hardware

Suporte Computacional Middleware para Programação Distribuída Máquina 1 Máquina N Aplicação Aplicação Middleware para Programação Distribuída Sistema Operacional Hardware Hardware Hardware

