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A One-Phase Algorithm 
to Detect Distributed Deadlocks 

in Replicated Databases 
Ajay D. Kshemkalyani, Senior Member, /€E€, and Mukesh Singhal, Senior Member, /€€E 

Abstract-Replicated databases that use quorum-consensus algorithms to perform majority voting are prone to deadlocks. Due to the 
P-out-of-Q nature of quorum requests, deadlocks that arise are generalized deadlocks and are hard to detect. We present an efficient 
distributed algorithm to detect generalized deadlocks in replicated databases. The algorithm performs reduction of a distributed wait- 
for-graph (WFG) to determine the existence of a deadlock. if sufficient information to decide the reducibility of a node is not available at 
that node, the algorithm attempts reduction later in a lazy manner. We prove the correctness of the algorithm. The algorithm has a 
message complexity of 2n messages and a worst-case time complexity of 2d + 2 hops, where c is the number of edges and d is the 
diameter of the WFG. The algorithm is shown to perform significantly better in both time and message complexity than the best known 
existing algorithms. We conjecture that this is an optimal algorithm, in time and message complexity, to detect generalized deadlocks if 
no transaction has complete knowledge of the topology of the WFG or the system and the deadlock detection is to be carried out in a 
distributed manner. 

Index Terms-Distributed database, replicated database, quorum consensus, generalized deadlock, graph reduction 
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1 INTRODUCTION 

N database systems, a deadlock occurs when some I transactions wait indefinitely on each other for their 
requests to be satisfied. A deadlock hampers the progress of 
transactions in a database and lowers the resource avail- 
ability; therefore, all deadlocks must he promptly detected 
and eliminated 1181, [19], 1261. Although deadlock detection 
has been extensively studied in traditional distributed 
databases, e.g., [15], [17], 1191, 1241, [271, it has not received 
sufficient attention in the context of replicated (distributed) 
databases 141, 151, [lo]. 

In a replicated database, data items are replicated at 
different sites to increase availability (i.e., fault tolerance) 
and responsiveness to read requests. A write to a data item 
requires that the value should he written to all the replicas 
of that item. A read of a data item can he satisfied by 
reading any copy. Quorum algorithms are used to serialize 
concurrent read and write operations from different 
transactions for concurrency control 141, [5], 1121. Several 
quorum-consensus algorithms have been proposed and 
they require some form of voting by the replicas of the data 
item to be read/written, to reach a consensus on whether a 
read/write can proceed without violating serializability [l], 
141, [5], [lo], (121, [25]. A typical quorum request is a P-out- 
of-Q request where the requesting transaction is waiting for 

~~ 

at least P votes out of the total of Q votes distributed among 
the replicas. Once a replica of a data item grants its vote, 
that replica gets locked and cannot revote until it is 
unlocked. Replicated databases that use quorum-consensus 
algorithms are prone to deadlocks because transactions 
which are waiting for a quorum to he satisfied may be 
involved in an indefinite wait. Requests in replicated 
databases fall under the P-out-of-Q request model and the 
resulting deadlocks are generalized deadlocks. 

For the purpose of modeling deadlocks, interaction 
between transactions is modeled by a directed graph, called 
a wait-for graph (WFG) 1181. Nodes in a WFG represent 
transactions and an edge from node i to node j indicates 
that transaction i has requested a resource from transaction 
j and transaction ,? has not granted the resource to 
transaction i .  A deadlock is characterized by topological 
properties of the WFG that depend upon the underlying 
transaction request model. For example, in the simplest 
request model, called the single-request model, as well as in 
the AND request model, the presence of a cycle in the graph 
implies a deadlock. In the OR request model, the presence 
of a knot is a necessary and sufficient condition for a 
deadlock to exist. 

In the P-out-of-Q request model [6], also called the 
aeneralized request model, a transaction makes requests for 
I 

Q resources and remains blocked until it is granted any P 
out of the Q ~h~ p.out.of.~ request model is 
equivalent to the AND-OR request model [14] in which the 
condition for a blocked transaction to get unblocked is 
expressed as a predicate on the requested resources using 
AND and OR operators. For example, predicate i A ( j  V k) 
denotes that the transaction is waiting for a resource from i 

AND-OR models are equivalent because a predicate in the 
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TABLE 1 
Comparison of Worst-case Performance Complexities 

I Criterion B I ~ C I Y ~ -  1 Wang I Kshcmkalyani- 1 Brzczinski 1 Proposed 1 
Touq 161 ctal. 1281 Singhall211 ctal. [7] algorithm 

2 2 1 S 1 
4d 3 d + 1  2d+ 2 S2 2d 

Mcssages 1 4e 6e I 4e - 2 n  + 21 (< 4e) 1 S2 2e 

AND-OR model can be expressed as a disjunction of P-out- 
of-Q type requests and vice-versa. A generalized deadlock 
corresponds to a deadlock in the P-out-of-Q (or ANU-OR) 
request modcl. AND and OR models are special cases of the 
generalized deadlock model. 

Although the problem of deadlock detection has been 
well explored in the single-request and the AND request 
models in database systems, e.g., [E], 191, [ill, [151,[171, [HI, 
[201, (221, (231, (241, (271, (291, much remains to be done 
toward the detection of generalized deadlocks in replicatcd 
databases. Generalized deadlocks also arise in other 
domains such as resource allocation in distributed opcrat- 
ing systems, store-and-forward communication networks, 
and communicating processes. Therefore, efficient detection 
of generalized deadlocks is an important problem. 

1.1 Previous Work on Generalized Deadlock 
Detection 

Detccting generalized deadlocks in a distributed database 
system is a difficult problem because it requires detection of 
a complex topology in the global WFG; the topology is 
determined by the conditions that need to be satisfied for 
each of the blocked nodes in the WFG to unblock. A cycle in 
the WFG is a necessary but not sufficient condition, whereas 
a knot in the WFG is a sufficient but not necessary condition 
for a generalized deadlock. 

Traditionally, ad hoc methods like timeout have been 
used to handle deadlocks. A major drawback of this simple 
approach is that oftentimes, deadlock is falsely detected 
when it does not exist, thus causing a wastage of system 
resources when the transaction is rolled back and then 
redone. The timeout based methods are proving to be less 
viable as we strive for high performance computing 
systems whcre applications and end-users' expectations of 
quick response times, continuous availability, and minimal 
failures are being increasingly market-driven. Precise 
algorithms are needed to detect deadlocks. 

Design of correct and efficient distributed algorithms to 
detect generalized distributed deadlocks is a difficult 
problem and very few distributed algorithms exist to detect 
generalized distributed deadlocks 161, [7], 1211, [28]. We do 
not consider centralized algorithms such as [21, 1141 in 
which a snapshot of the WFG is collected by some process 
and then examined by that process for deadlock. The 
algorithms in [61, 1211, [28] are based on the "record and 
reduce" principle; that is, the distributed WFG is recorded 
and reduced to determine if there is a deadlock. Reduction 
of the WFG simulates the granting of requests and is a 

general technique to detect deadlocks 1181. Algorithms that 
follow thc "record and reduce" principle must have a way 
to detect the termination of the reduction process so that a 
correct conclusion about the existencc of a deadlock may be 
drawn. The algorithm in [7] is based on the principle of 
detection of weak termination of a distributed computation. 

The algorithm by Bracha and Toueg [6] consists of two 
phases. In the first phase, the algorithm records a snapshot 
of a distributed WFG and in the second phase, the 
algorithm reduces the graph to check for generalized 
deadlocks. The second phase is nested within the first 
phase. Therefore, the first phase terminates after the 
second phase has terminated. In the two-phase algorithm 
of Wang et al. [28], the first phase records a snapshot of a 
distributed WFG. The end of the first phase is detected 
using an explicit terminatiou detection technique, after 
which the second phase is initiated to reduce the rccorded 
WFG to dctect a deadlock. Termination of this phase is also 
detected using an explicit tcrmination detection technique. 
In the one-phase Kshemkalyani-Singhal algorithm [21], the 
recording of a snapshot of the distributed, dynamically 
changing WFG and reduction of the recorded WFG is done 
in two concurrent sweeps of the WFG. The algorithm deals 
with the complications introduced because the reduction of 
a node in the inward sweep can begin before the state of all 
WFG edges incident at that node havc been recorded in the 
outward sweep. The termination detection of the "reduce" 
sweep is merged with the termination detection of the 
"record sweep and achieved by a single iiivocatioii of an 
explicit termination detection algorithm. Brzezinski et al. 171 
definc a generalized deadlock in terms of weak termination 
of a distributed computation and develop an algorithm that 
detects weak termination. Nodes are logically arranged as a 
ring and a token circulates on the ring to monitor the states 
of the nodes. The token keeps circulating until the 
monitored states of the nodes are the same in two 
consecutive rounds. Table 1 compares the performance of 
the above distributed algorithms. 

1.2 Paper Objectives 
We present an efficient one-phase distributed algorithm for 
detecting generalized distributed deadlocks and prove its 
correctness. The algorithm initiated by an initiator consists 
of two concurrent sweeps-an outward sweep that records 
the WFG and an inward sweep that reduces the WFG to 
detect a deadlock. The outward sweep induces a spanning 
tree in the WFG. Reduction is performed by sending replies 
backward on cross-edges of the WFG and backward on 
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spanning tree edges. During this distributed reduction, 
even if sufficient information to decide the reducibility of a 
node is not available at that node, appropriate replies are 
sent, and the algorithm attempts reduction later in a lazy 
manner at an up-tree node in the spanning tree. The 
initiator receives replies on all its outgoing spanning tree 
edges and cross-edges because the sending of replies is 
never delayed, and detects termination of the distributed 
reduction when all such replies are received. Thus, no 
explicit termination detection algorithm is used. At termi- 
nation, the existence of a deadlock, if any, is detected. 

The proposed algorithm performs better than the 
existing algorithms to detect generalized deadlocks in terms 
of the worst-case time complexity and the worst-case 
message complexity [6], [7], 1211, [28]; the algorithm has a 
mcssage complexity of 2e messages and a worst-case time 
complexity of 2d + 2 hops, where e is the number of edges 
and d is the diameter of the WFG. We conjecture that this 
algorithm is optimal in the number of messages and in time 
delay if detection of generalized deadlocks is to be carried 
out under the following framework 1) no node has 
complete knowledge of the topology of the WFG or the 
system, and 2) the deadlock detection is to be carried out in 
a distributed manner. If the initiator is deadlocked, it has all 
the necessary information to adequately resolve the dead- 
lock, unlike the algorithms in [61, 171, [211, [281. 

The rest of the paper is organized as follows: In Section 2, 
we discuss the system model and give a precise problem 
description. In Section 3, we describe the idea behind the 
algorithm and use an illustrative example. In Section 4, we 
present the algorithm. In Section 5,  we prove the algor- 
ithm's correctness. In Section 6, WO analyze the performance 
of the algorithm, and compare it with that of previous 
algorithms. Section 7 contains a discussion and concluding 
remarks. 

2 SYSTEM MODEL 
A distributed database system contains databases at various 
sites. Each data itcm may be replicated in the databases at 
various sites. Each transaction in the distributed database 
system runs at a single site and may access different data 
items at various different sites. Each transaction is managed 
by a Transaction Manager, and each replica of a data item is 
managed by a Data Manager. 

The various sites are connected by communication 
channels so that a logical channel can be set up between 
each pair of sites. There is no shared memory in the system 
and sites communicate solely by sending messages over the 
channels. The messages are reliably delivered with finite 
but unpredictable delays, and in the order in which they 
were sent on a channel. If the logical channels deliver 
messages out of order, then a simple message numbering 
scheme can help the receiver to process the messages 
arriving on a logical channel in the correct order. 

We make the following assumptions about the system 
model: 

1. It has been shown in [20] that during the execution 
of a transaction, a data item replica (managed by a 

Data Manager) behaves like a transaction (managed 
by a Transaction Manager) which makes requests 
only in the single-request model, in the following 
sense. A transaction (respectively, a data item) 
blocks when it is waiting for a reply for lock requests 
(respectively, waiting to be unlocked) and cannot 
release locks (respectively, cannot be locked by 
another entity) while it is blocked. Thus, a transac- 
tion blocks when it makes a P-out-of-Q request to 
lock a data item, whereas a data item replica blocks 
when it grants its lock and implicitly makes a single 
request that it be unlocked. Henceforth, we will not 
distinguish between "transaction" and "data item" 
to provide a uniform treatment for both transactions 
and data items and simplify thc presentation of the 
deadlock detection algorithm. Moreover, the result- 
ing algorithm is directly applicable to resource 
deadlocks that occur in databases, as well as to 
communication deadlocks. 
A deadlock detection algorithm is run by the 
Transaction Managers and Data Managers. As far 
as the algorithm is concerned, these Managers are 
synonymous with the corresponding transactions 
and data item replicas; therefore, we will refer only 
to transactions and data item replicas. 

2. 

As a result of the above assumptions, each transaction 
and data item replica can henceforth be referred to as a 
node. The WFG now models both transactions and data 
item replicas. A node in the WFG is a transaction or a data 
item replica; a WFG edge from node i to node ,j  denotes one 
of the following: 1) transaction i has requested a lock on 
data item (replica) j and j has not granted the lock request 
to i .  2) data item (replica) i is locked by transaction j and j 
has not released the lock on i. 

We now formalize the blocking and unblocking of nodes. 
When a node i makes a generalized request and blocks (i.e., 
goes from active to idle state), the unblocking condition of 
its request is denoted as f $ .  The domain of f, is the set of all 
nodes which are referenced in 1,. Function f a  is evaluated in 
the following manner: substitute true for a node i d  in f? if i 
has received a reply, indicating granting of that request, 
from that node; otherwise, substitute false for it. Then 
evaluate the function. 

The node unblocks (goes from idle to active state) when a 
sufficient number and combination of its requests to make 
f s  true are granted. When the node unblocks, it withdraws 
the remaining requests it had sent but are not yet granted. 

The following two axioms describe the blocking and 
unblocking of nodes: 

Axiom 1. A node blocks when it makes a generalized request and 
does not send any computation messnges until it gets 
unblocked. 

Axiom 2. A blocked node gets unblocked ifand only f i t s  requests 
are satisfied zuithout any interventioiz in the computation. 

Note that Axiom 2 describes the normal way in which a 
node can get unblocked. A node can get unblocked 
abnormally if it spontaneously withdraws its requests or 
its requests are satisfied due to the resolution of a deadlock 
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of which it is a part [Zfl]. There is a risk of false deadlocks 
being reported if a nodc unblocks abnormally. Detection ol 
such falsc deadlocks can be eliminated by using a time- 
stamping mechanism to consider the dynamically changing 
WFG along the latest observable state [XI]. We do not allow 
a node to unblock abnormally fur simplicity. 

The interaction between transactions and data items is 
modeled by a directed AND-OR wait-for graph denoted by 
( N , E ) ,  whcrc N is the set of nodes and F is the set of 
directed edges between nodes. Typically, the number of 
nodes in a WFG is small compared to the numbcr of nodes 
in the system, i.e., IN1 << /SI, wlierc S is the set of all nodes 
in the system. 

A node i keeps the following variables to keep track of its 
portion of the directed AND-OR WFG: 

INa: set of node ids t 0; /*set of nodes which are 
directly blocked on node %. It denotes thc direct 
predecessors of node i in the WFG. "/ 

/*set of nodes on which 
node i is blocked. It denotes the set of nudes that are 
direct successors of node i, in thc WFG. "/ 

Ji: AND-OR expression c I; /*the condition for 
unblocking.*/ 

OUT, gives the domain of function J,. The transitive 
closure of O U Z ,  denoted by OU ~ ' ,  gives thc rcachability 
set of i .  Thc transitive closure of IN, ,  dcnotcd by I N i ' ,  is the 
set of nodes whose reachability set contains 7. 

OlJT,: set of node ids + 0; 

2.1 Problem Statement 
A generalized deadlock exists in the system iff a certain 
complex topology, identified next, exists in the global WFG. 
Definition 1. A p w n l i z e d  dendlock is a sl,bgrnplr (11, K )  of a 

WFC (A', F:) where: 1) ~ ~ c h  i E D(# (4) is blocled on a 
functiorr Ji(O171;) which evnlunfes to fnlsr ?ulien each varinble 
is iJlstantiated Os fo//oWS: 

('dj t l1 , j  is set Lo ,[n/,w) A ( V j  E OUT, \ D,:j is scl Lo true),  

and 2 )  I< is the projection of the edges in (N, P:) on th(> 
nodes in D. 

From Axioms 1 and 2, it follows that none of the nodes in 
D will ever get unblocked. All nodes in D thus remain 
blocked forever. All the nodes in the WFG that do not 
belong to any D have a sufficicnt number of edges to nodes 
in OUT. \ D, i.e., f i(OU7;) evaluates to true when each 
variable is instantiated as follows: 

('dj t l1 , j  is se1 lo f a l s e )  A (V,j t OIJT, \ D,,j is sct to trzic). 

All these nodes that are not in any D are not deadlockcd 
because their requests can be satisfied. 

A distributed deadlock detection algorithm should 
satisfy the following two correctness conditions: 
Liveness: If a deadlock exists, i t  is detected by the algorithm 

within a finite time. 

Safety: If a deadlock is declared, thc deadlock exists in 
the system. 

At the time that a node blocks or within a system-tuned 
timeout period during which the node has remained 
blocked, the node initiates a deadlock detection algorithm. 
Notc that only the nodes that are reachable from a node in 
thc WFG can be involved in a deadlock with that node. 
Thus, thc complete WFG is not examined to determine if a 
node is deadlocked; only the part of the WFG which is 
reachable from that node needs to be examined. Thc 
deadlock dctcction algorithm is prescnted for a static 
WFG. In Section 7, we explain how to extend the algorithm 
to handle a dynamically changing WFG. 

3 BASIC IDEA 
No node has the knowledge of thc complete topology of thc 
WFG or thc system; therefore, the initiator nodc determines 
the reachable part of thc WFG and attcmpts to sense its 
topology by diffusing FLOOD messages. To initiate dead- 
lock dctcction, the initiator nude sends FLOOD messages to 
all of its successor nodes. When a node receives the first 
FLOOD message, it propagatcs it to all of its successor 
nodes, and so on. The edges of the WFG on which the first 
FLOOD message is received by each node induce a directed 
spanning trce (DST) in the WFC. 

Deadlock detection as wcll as detecting termination of 
the algorithm are perfornicd by echoing the FLOOD 
messages at "terminating" nodes and reducing the graph 
when an appropriate condition at a node in the echo phase 
is satisfied. A ferniinntiizg node in the graph is cither a sink 
node or a nonsink node that has already received a FLOOD 
message. Sincc a sink node is active (and thus, is already 
reduced), it responds to all FI<OOD messages by ECHO 
messages. By sending an ECHO message, a node informs 
that it has bccn reduced. When a nonsink node in the graph 
receives thc sccond or a subseqncnt FLOOD message, it 
responds with an ECHO message provided it has been 
reduced by then. However, a dilemma arises i f  a nonsink 
node in thc graph has not been reduced when it rcccives a 
second or subsequent FLOOD message. The state of such a 
node is prescntly indetermiiiatc and may eventually 
become reduced after a sufficicnt number of ECHO 
mcssagcs have been generated and moved up in the graph. 
Such a node cannot immediately respond to a FLOOD with 
an ECHO message and, if it waits to see if it is latcr rcduccd, 
the algorithm may deadlock! This dilcmma is solved in the 
algorithm using lazy evaluation as follows. 

3.1 Lazy Evaluation 
If a nonsink node in the graph has not been reduced when it 
rcccivcs the second or a subsequent FLOOD message, it 
immediately responds to such a FLOOD message with a 
Position lndeterminate Packet (PIP) message. A PIP 
message conveys thc indeterminate state of thc node. In 
contrast, an ECHO message conveys the fact that the sender 
node is reduced. A node attempts a reduction whenever it 
receives an ECHO. Tf a node is reduced after it has received 
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a response to all the FLOOD messages that it sent (we call 
this "local reduction" of the node), it sends an ECHO 
message to its parent in the DST. Otherwise, it sends a PIP 
message to its parent in the DST. Note that if the node was 
not rcduced at this instant, it does not mean that it is not 
reducible. This is because some of its successor nodes that 
sent a PIP, might have gotten reduced later and reduction of 
these nodes might have been sufficient to reduce this node, 
had it waited long enough. To take care of such conditions, 
1) the reduced status of nodes that previously sent a PIP 
message is propagated upward in the DST toward the 
initiator node. Also, 2) when an (unreduced) node sends a 
PIP message to its parent node, the message contains the 
unsatisfied portion of the unblocking function, called the 
residua\ function, of the sender node. For example, if the 
unblocking function of a node is z A (g V z )  and the nodc 
has received an ECHO from y, then the residual function is 
: E .  Ancestor nodes of thc unreduced node gather both these 
pieces of information and make an attempt to determine if 
the node can be reduced. 

The information about nodes that sent a PIP but were 
later reduced is propagated in the following manner. A 
node i keeps a set of node ids, denoted by a, that 
contains the ids of nodes in OUT,+ that sent a PIP, but 
were reduced later, men a node sends an ECHO or a 

PIP message, tl,e current value of ni is sent in the 
message, when a node 
message, it adds the contents of the received R set to Ri. 
This is eager dissemination of reduced node information. 
The eager dissemination is sufficient but not necessary for 
lazy evaluation. It is necessary for node i only to send H ,  

last messages has 

functions (discussed next) at nodes in the WFG is likely to 
be larger with this modification. 

A node j keeps a set of residual functions, denoted by 
Zj, that contains tuples of the form (k,fk), where f k  
denotes the residual function of node k. The information 
about the residual function of nodes is propagated in the 
following manner: When a node sends an ECHO or a PIP 
message to its Parent in the DST (this hapPcns when the 
node has received a from Of its 
nodes), the message contains the residual function set of are given next using an oversimplified notation illustrated 
the sender node. An ECHO or a PIP message sent to a 
nonparent node carries null as the value of the residual 
function set. When a node j receives an ECHO or a PIP 

it adds the received residual function set to Z,. This 
retarded collection of residual functions is necessary and fl = denotes that node needs a Irom node Or 

sufficient for evaluation of the unblocking function at node to 
nodes, This is how the information about fie residual Suppose node 1 initiates deadlock detection and sends 
unblocking function of nodes and the information that a out FLOOD messages to nodes 2 and 4. Fig. 2 &n~s the 
node that sent a PIP was eventually reduced is propagated diffusion of FLOOD messages through the WFG. The 
upward in the tree. thicker edges of the graph denote the edges along which 

A node j evaluates its unblocking function fj whenever it nodes received their first FLOOD message and define 
receives an ECHO message. In addition, after a node j has the DST. 
received a response to all FLOOD messages it had sent, it Fig. 3 shows how various nodes respond to FLOOD 
evaluates every rcsidual function in the set Z, as follows: messages they receive. Since node 6 is active, it responds 

Fig. 1. An example of a wait-for graph (WFG). 

select a tuple ( k ,  f h )  from Z:i and check if entries in RI are 
sufficient to reduce h. If a node .j succeeds in reducing node 
k's residual function h, we say that node k has been 
remotely reduced (at node j ) .  In such a situation, node ,f adds 
k to Rj and deletes tuple (kid from 4. This is done 
repeatedly until no more entries in .Z3 can he reduced. 

Thus, a node j uses information in Rj about its successor 
nodes that sent PIP but got reduced or that were remotely 
reduccd, to attempt to reduce the residual function of as yet 
unreduced descendants in Z3. As a residual function 
traverses up the DST, it can progressively strengthen 
because more reduced node information gets collected by 
lazy evaluation further up the DST, 

receiving responses to all of its FLOOD messages because 

deadlocked, ~h~ message complexity, time complexity, 
local computational complexity, and the size of messages 
for this algoritllm are analyzed in section 6, 

3.2 An Example 
We now illustrate the basic idea behind the algorithm with 
the help of an example. Fig. 1 shows a distributed WFG that 
spans seven nodes numbered I through 7. All nodes except 
node 6 are blocked. The unblocking functions at these nodes 

by the foliowing 

receives an or a 

the Or 'Ip response sent to the parent after the The initiator node is deadlocked if it is not 
Or 'Ip response to its 

heen received. However, the size of the set of residual no further lazy evaluation can occur, Otherwise, it is not 

f i  = 1 V 2, .fz = 3 A 4 A 6, Jj = 2 V (ti A 7), fzi = 7, f 
message with a nonnull value of the residual function set, = 1. v 7, f a  = true, J7 = ti. 
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Fig. 2. Diffusion of FLOOD messages. 

to the FLOOD messages from nodes 3 and 7 by ECHO’ 
(6, 1, Vi, Vi) messages. Before node 7 receives the ECHO 
message, it receives FLOOD messages from nodes 3 and 4. 
Node 7 responds to these FLOOD messages by PIP(7,1,0, I) 
messages because the state of node 7 is indeterminate at 
these instants. On the receipt of an ECHO(6, 1, 69, II) 
message, node 7 succeeds in reducing itself and sends an 
ECHO(7, 1, (7),0) message to node 5, its parent in the DST. 

After receiving an ECHO message from node 7, node 5 
gets reduced and sets H s  to (7). On receipt of a PIP message 
from node 1, node 5 sends ECHO(5, 1, (71, 0) messagc to 
node 2. 

Node 4 receives a FLOOD from node 1 before it receives 
PIP from node 7. Consequently, it responds to the FLOOD 
with a PIP(4, 1, Vi, Vi). Node 4 is not reduced after it has 
received PIP from node 7 and thus sends a PII’(4, 1, Vi, 
((4,791) to its parent in the DST (node 2). 

Node 2 sends a PTP(2, 1, @, 0) message to node 3 in 
response to the FLOOD it receives from node 3. Node 3 
is not reduced after it has received ECHO from node 6 
and PIP messages fram nodes 2 and 7. However, its 
res idua l  func t ion  is 2V7. Therefore,  i t  s ends  
PIP(3, I, Oi, { (3 ,2 V 7 ) ) )  message to node 2. 

On the receipt of PIP(4,1, II, ((4,7)}) from node 4 and 
PIP(:I, 1, 0, {(:I, 2 V 7 ) } )  from node 3, Z, at node 2 becomes 
{ (3 ,2V  7), (4,7)}. On the receipt of ECHO(5, 1, 171, Vi) 
message from node 5, node 2 sets Rz to (7). It adds its 
residual function (2, 3 A 4) to 2, and succeeds in reducing 
all three residual functions in Z2 using RL. consequently, R, 
becomes (3, 4, 71. Since node 2 is reduced, it sends 
ECHO(2,1,{3,4,7},B), to node 1. On receipt of this 
message, node 1 is reduced and declares “no deadlock.” 

1. Thc first parameter of an ECnO or a PIP message is the sendcis id, the 
second parameter is the initiator nndc id, the third psrsrnctcr is the if set of 
the sender, and the fourth ~ w a m c t c r  is tlrc 2 set of the sender iiodc. 

* PIP ....................... 

Fig. 3. Propagation of ECHOPIP messages. 

4 A DISTRIBUTED DEADLOCK DETECTION 
ALGORITHM 

The pseudocode for the algorithm uses the symbol + for 
the assignment operator, and the CSP-like symbol 0 for 
the selection operator. We choose the CSP-like notation 
becausc it expresses concurrency more explicitly. The 
notation [GC,U GC2n . . .  UGCr,] is an alternative 
guarded command, where a guarded command GC, 
h a s  t h e  fo rm ” a - b ”  w i t h  t h e  s e m a n t i c s  
’’X alhen belsrskip”. A n o d e  i h a s  v a r i a b l e s  
OUT,, I N z ,  arid fi which dcscribe the WPG locally. 
Different invocations of the algorithm by the same 
initiator are differentiated by timestamps, which are not 
shown for simplicity. The deadlock detection algorithm is 
given in Fig. 4a and Fig. 4b. The processing when a 
FLOOD, ECHO, or PIP is received is done atomically. 

5 CORRECTNESS PROOF 
We prove that the initiator of the deadlock detection 
algorithm declares deadlock i f f  i t  is deadlocked. The proof 
uses several observations (Observations 1-7) and lcmmas 
(Lemmas 1-11) about the properties of the algorithm. 

The FLOOD messages induce a directcd spanning trcc 
(DST) in the WFG. The root of the tree is the initiator and 
the parent of each node i in the tree, denoted by parent,, is 
the node from which i received its first FLOOD. The 
transitive closure of pa~cnt , ,  denoted by parml:, is the set 
of all ancestors of i. The children of node 7: in tlic DST, 
denoted by of f .yrhrq , ,  are the nodes k such that 
paTen lk  = i. The transitive closure of o,Jfspring,, denoted 
by offspring:, is the set of nodes in the subtree rooted at i. 

Assertion: FLOOD messages are diffused through the 
entire reachable WFG of the initiator. 
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Data Structures 
parenti: integer t 0; 
outi: set of integer t OUT,; 
Ri : set of integer t 0; 

pip-senti: boolean t false; 
Xi : AND-OR expression t fi; 
#define struct FNRES ridinteeer: 

2tc :ANDTOR expression;) 
str: FNRES t I; 
Zi : set of FNRES t 0; 

/*node id of parent of node i .  */ 
Pnodcs for which nodc i is wailing. */ 

I* nodes in this suhlrcc which scnt PIPS, */ 
/*and which subsequently got reduced.*/ 

/* indicatcs i l  i sent PIP to othcr nodes. :$I 
I** unblocking Sunclion fori. "I 

/;* nodc idcnlifier. :$I 
I*: rcsidual unblocking runclion. :I:/ 

/* local rcsidual [unction. *I 
/;* rcsidual functions of unreduced nodes in suhtree. *I 

initiate algorithm 
PExcculcd by node i to detect whether it is dcadlockcd. *I 
init t i; 
parenti ei; 
send FLOOD((,  i )  to each j in outi. 

rcccivc FLOOD(k, init) 
/*Executed by nodc i 011 rccciving a FLOOD mcssage from k .  :I:/ 
r 
L 
I* FLOOD for new invocation (detected by timestamps, unshown).:F/ /*Casc FI .*/ 
outi = I t  

parenti t k ;  outi t OUTi; Ri, 2, t 0; Xi t fi; pip-senti t false; 
f i  = true t 

fi = false t 

/"; i is unblocked. Case Fl-A. */ 

P i is blockcd. Casc FI -B. */ 
send ECHO(i ,  init,  0,0) to I C ;  

send FLOOD(i,  init) to each j t outi; 
0 
I* FLOOD received hecore all expected PIPslECHOs rcceived. */ I* Case F2. " I  

/* i is unblocked. Case F2-A. *I 

I* i is hlockcd. Case F2-B. "/ 

outi # 0 t 
xi = true t 

Xi = false --t 
send ECHO((,  init, Ri, 0) to IC; 

send PIP( i ,  init, I&, 0) to I C ;  
pipsenti t true; 

0 
PI FLOOD receivcd arlcr all cxpccted ECHOs/PIPs received. *::I /* Case F3. "I 

/* i is unblocked. Case F3-A. */ 

/* i is hlockcd. Casc F3-B. */ 

outi = 0 i 
Xi  = true i 

Xi = false t 
send ECHO(i ,  init, &,0) lo k ;  

send PIP( i ,  init,&, 0) to k .  
1 

receive ECHO(j, init, R, 2) 
/*Executed by nodc i on rccciving an ECHO from j. *:I 
Xi = false --t /* i f ' i  is blocked, Icy rcducing il by instantiating all instanccs of j */ 

I" in OUT; by true and lhcn cvaluating Xi. Stcp El ,  " I  xi Xi (0UTi  I j  
Xi = true i 

init = i t NO deadlock; exit; 

Fig. 4a. The deadlock detection algorithm (continued on next page). 
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pip-senti = true t Ri t Ri U {i}; /* update Ri Lo indicate i sent PIPs. '$1 
I* pcrlorm processing coininon to PIPs and ECHOs. * I  common_rcply-proccssing; 

receivc PIP(j, init, R, 2) 
/"Executed hy node i on recciving a PIP lrom i .  *I  - 
common_rcply_proccssing ; I" No special x i ion?  unique to PIP arc nccdcd. *I  

coinmon_l.eply_processing 
/'$Executed by node i to do coininon actions when either a PIP or ECHO is received. */ 
outi t o u t <  \ { j } ;  
Ri t R i  IIR: 

I* updalc local variahlcs outi, Ri, Zi. Step EPI. " I  
. -  , 

2, t 2, U 2; 
outi = 0 + I* all cxpected rcplics arc received. Step EP2. *I  

/* i is no1 ye1 reduccd. Add Lo Z j .  Step EP2. I, *I  Xi  = f a l s e  t 
&.id t i; 
str.uc t xi; 
Zi Zi U {str};  

eval; 
( X i  =true Apip-senti) i 

Xi =true + 

I" use Ri lo evaluate uiircduccd nodes i n  Zi. Stcp EP2.2. *I 
I" examine X i  using Ri which was updated i n  eval. " I  

/* ili  ScnL PIP, update Ri Lo indicate so. Step EP2.3. */ 
I" i is locally I-cduccd using updated Ri. Slcp EP2.4. * I  

Ri t ni U{(}; 

init = i t NO deadlock; exit; 
send ECHO(i,  init, li;, 2,) to parenti; 

xi = f  alse t 
init = i t deadlock; exit; 
send PIP(( ,  init, &, Zi)  to parenti; 

I" i is not locally reduccd using updalcd Ri. Stcp EP2.5. *I  

& 
PExcculed by node i Lo evaluate Z using the data that nodcs in R are onblockcd. */ 
tempR : set of integer t Ri; 

repeat 

l1' working variablc lor Ri. *I  

For  cvcry r t tempR do par 
for every z t Zi do par instantiate each occurrence of r in z.uc by true ; 
rap od; 
tempR t tempR \ { r } ;  

rap od; 
Tor cvcry z t Zi do par 

z.uc =true + 
tempR t tempRU{z.id}; 
z.id # i t Ri t Ri U{z . id};  /* i f  z.id = i, then Xi will also be lruc. " I  
zi + zi \ { z } ;  

rap od; 
until tempR = 0. 

Fig. 4b. The deadlock detection algorithm (continued from previous page) 

The initiator arkit sends FLOOD messages to all nodes in 
its OUT,,,,,. When a node receives thc first FLOOD message, 
it sends FLOOD messages to all its direct successor nodes 

are diffused through the entire reachable WFG of the 
initiator. finite time. 

Definition 2. A node i is locally terminuted iff it has processed 
d l  the PIPS and ECHOs it expected in response to the 
FLooDs " sent, i'c', 'Iuii '. 

(case F W  and so on. From induction, FLOOD messages F~~~ Theore,,,s and 3 on time and message complexity 
(see Section 6), it follows that the algorithm terminates in 
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Definition 3. Node i is locally reduced iff it receives a 
sufficient number of ECHOs so that X, =true when 
out, = ffl. 

Definition 4. Node i is remotely reduced nt 

such that z.id = i and there are enough elements in  R, (these 
have all been reduced either locally or remotely) by the time 
outj = 0 to satisfy a's residual unblocking condition z.uc at j .  

This reduction is remote and i is not aware of it. Note 
that i 's  residual unblocking condition in Z, may be stronger 
than Xi, indeed it may even be true. The presence of a 
sufficient number of elements in Rj indicates that i 's  
requests as representcd in X, are satisfiable. 

The Boolean variable reducei will be used to indicate 
whether node i was reduced. The Boolean variable reduce) 
will be used to indicate whether node i is reduced at node j .  
reduce: indicates that node i was locally reduced. reduce;ii 
indicates that node i was remotely reduced at node j .  

Observation 1. The Z parameter senf by i on a PIP or an ECHO 
to parenti is the vnlue of Zi when outi = 0. The Z parameter 
sent by i on a PIP or ECHO to other nodes is ffl. 

Obselvation 2. z (where z.id = i )  can belong to in two ways: 

if j # i, j received an ECHOPIP that contained z and 
added z to Z, (step € P I ) ,  or 
if i = j ,  j added z to ,Zi because reduce: was false 
when O U t j  = ffl (step EP2).  

1 .  

2. 

Lemma 1 states that the residual function for a node i, 
i.e., z, where z.id = i, does not exist at a node that is not an 
ancestor of i in the DST nor is it sent in ECHOs or PIPS by 
such a node. 
Lemma 1. V i  t N , V j  t N \ (parent: U[i}j, Zj does not 

contain z such that z.id = a, nor does node j send or receive 
an ECHO or PIP in  which the Z parameter contains this z. 

Proof. Assume that Zj contains z (where z.id = i j .  This can 
happen only by case 1 of Observation 2. j may receive an 
ECHO or PIP only from some k,  k E N \ (parent: U [ i } ) ,  
containing such a z (follows from Observation 1). k must 
have received such a z in an ECHO or PIP to include it in 
%'and send it to j .  Using an inductive argument and 
noting that exactly one ECHO or PIP is sent on an edge 
( T h e o r e m  3 ) ,  t h e r e  m u s t  b e  a n o d e  h, 
h t N \ (parent: U { i } j ,  that locally inserted i in Z,, by 
case 2 of Observation 2, implying h = i .  This contradicts 
Observation 1. Hence, j does uot receive such a z or send 
such a z in the Z parameter in an ECHO or PIP, and Z j  

0 

Lemma 2 statcs that if node i is not reduced at local 
termination, then its residual function, i.e., z, where z.id = i, 
may exist only at nodes that are ancestors of i. 
Lemma 2. -reduce: JZ (where z.id = i )  may belong only to 

Proof. The Z parameter on all messages other than to 

cannot contain z (where z.id = i ) ,  

Zj, where j t parent:. 

parenti sent by i is CI (Observation 1). 

If -reduce; then at the time oilti = 0, i adds z (where 
z.id = i )  to Zi and z remains in 2, after i executes eval. 
The Z parameter sent to parent, is 2,. parenti(= .jj will 
add the received Z parameter to Zj .  In turn, if -redim;, 
then j will forward Zj which contains the z (where 
z.id = i )  only to parent,. By induction, the z value may 
belong to paren%:. 

From Lemma 1, no other node k receives the z value 
under consideration in any message, or inserts it in 2,. 
The lemma follows. 0 

Lemma 3 states that if the residual function of node i, i.e., 
z, where %.id = i, exists at another node j ,  then the residual 
function was created at i because node i was not reduced at 
local termination. 

Lemma 3. z t Z, where %.id = i =+ i added z to 2, because 
-7ed7ice: when outi = 0. 

Proof. z (where z.id = i) can bclong to Zj in two ways given 
in Observation 2. The lemma holds if i = j (case 2). For 
case 1, assume that j received an ECHO or PIP from 
some IC containing such a z. Either k = i, or k # i and k 
must have received such a z in an ECHO or PIP to 
include it in Zk and send it to ,i. Using an inductive 
argument and noting that exactly one ECHO or PIP is 
sent on an edge, there must be a node /L that locally 
inserted i in Z,, by case 2, implying h = i .  Node i 
includes the a (where z.id = i) in Zi only if  reduce: 
when outi = 0. 0 

Lemma 4 states that i may be reduced at most at one 
node in { i }  Upurent:. 
Lemma 4. 

redircr' j rediicej 

Proof. If rediice;, then no message sent by i will have z 
(where z.id = i) in the Z parameter (Observation 1). 
From Lemma 3, for any other node k, 2, will not contain 
this z variable. reduceLSi cannot happen because z (where 
z.id = 2) 6 Z,. 

If redzicejji, assume without loss of generality that j is 
a node such that -reduce;,, where j ,  k t parent: and 
j E parent:. From Lemma 2, z (where zid = i )  may 
belong only to Zj, where . j  t parmt,'~. As reduce,;., where 
,i t parent:, when i gets reduced in procedure eval at j ,  
the element z (where s.id = i )  is dcleted from Z,. From 
Observation 1 and Lemma 1, it follows that no node in 
parent: will contain this z (where z.id = i); hence i 
cannot get reduccd (again) at a node in parent:. The 
lemma follows. 0 

Obselvation 3. The R parameter that node i sends to parenti in 
an ECHO or a PIP is a superset of the union of the R 
parameters in  ECHOs and PIPS that i received (step EP1). 
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Lemma 5 states that if i was remotely reduced at node 
k, then at local termination, i belongs to R, for every 
ancestor j of k. 

Lemma 5. reduce;+, =+ V,j E parent: U { k }  when out j  = 0, 
i E Ri. 

Proof. If i was remotely reduced at node k, then i is placed 
in RA during procedure eual. The lemma follows from 
Observation 3, the observation that the value of the I? 
parameter on any PIP or ECHO received by , j  is set- 
added to R,, and the observation that an ECHO or PIP is 
sent to parent, only after . j  has received an ECHO or PIP 

0 

Lemma 6 states that if a node j that sent a PIP gets 
reduced before local termination, the element j is contained 
in R, for every ancestor i of . j  at the time i locally terminates. 
Lemma 6. (Node .I sent a PIP and then reduce,:) ==+Vi t 

parent: U{j} at the time ouli = v), j E i&. 
Proof. When node , j  sends a PIP and out, # I, it sets 

pip-sent, to true (case F2-8). In the other cases when , j  
sends a PIP, the following holds: out, = I and reduce: = 
false (steps F3-B, EP2.5). Note that Put, # 0 before 
reduce; if j sent a PIP and then redu 
at the time reduce:, j is added to R, (step E l  or EP2.3) 
and, henceforth, , j  does not send PIPS. When out, = ffl, Rj 
is sent to parentj in an ECHO (step EP2.4). When 

receives the ECHO from ,j, the H parameter 
contains j and is set-added to ha?,,, . Subsequently, when 
autp.Tc711, = 0, parent, sends an ECHO/PIP to its parent, 
and the R parameter on this message contains j 
(Observation 3, steps EP2.4, EP2.5). Using an inductive 
argument, the R parameter containing j is sent in ECHOs 
and PIPs (steps EP2.4 and EP2.5) sent to nodes in 
parent,:. Each i t parent; will have j in Ri at the time 

0 

Lemma 7 states that if i t Rj,  then i was already reduced 
at some node 1 before local termination (1 = i )  or was 
remotely reduced at somc node 1 t OUT/' U { j } .  

Lemma 7. i E R, =+reducej, 1 E OUTj~ u{j} and reduce; 

Proof. i may belong to Ri only under one of the following 

from each node in OUT, (step EP2). 

a t j  = v) (step EPI). 

happened before i was placed in R,. 

conditions: 

I ,  

2. 

If redi~cr! holds and , j  = i = 1. This denotes local 
reduction (step El) .  
When ,f invokes procedure mal, i gets reduced, 
i.e., reduce&, and j = 1. This is remote reduction 
(step EP2.2). 
Whenever a PIP or ECHO is received by j ,  i is 
contained in the R set parameter on the received 
message, and this R parameter is set-added to Rj 
(step EP1). 

If i t R,, then i got reduced at j (items 1 and 2 above) 
or a successor k E OUT, sent j a PIP or ECHO containing 
i in the R parameter (item 3 above). For item 3 above, we 
show by an inductive argument that i got reduced at 

3. 

some node h E OUT: by items '1 or 2. Note that only 
one PIP or ECHO is sent on a WFG edge (proved 
independently in Theorem 3). Therefore, therc must 
exist a finite sequence (j, k ,  . . . , h) of at most c nodes in 
0U.T: where: 

a all the nodes except I k  added i to thcir local 
variable R by item 3, and then sent an ECHO/PIP 
whose R parameter contained j to the previous 
node in the sequence. 
h added i to RI, by items 1 or 2, and then sent an 
ECHO/PIP'whose R parameter contained j to the 
previous node in the sequence. 

a 

It follows that if i E H j ,  then in all cases, ~ed7rc4 ,  
where 1 E Om;+ U{.?}, and reduce; happened before i 
was placed in i$. From Lemma 4, note that 
1 E parent: U{ i } .  0 

Observation 4. !f node i belongs to the R parametev in  some 
ECHO or PIP received by j ,  then redvcc; zuhere k E OU7:. 

Lemma 8 states that if node i sends a PIP (either before it 
is locally reduced or because it is not reduced at local 
termination), then at local termination at each ancestor node 
j of i, [ ( z  t Z,, where z.id = i )  (0 ( i  t Rj)]. 

Lemma 8. 

( i  sends a PIP  A reduce:) v -reduce: wlken out, = f f l  
tj ~j t (parent: U { i } ) w / L e n  outj = 0, 

[ (z  E Z,, where z.id = i )  a (i E E,)]. 

Proof. (=+:) If i sends a PIP and red~rcej, then i is inserted in 
Ri because pip.senti = true (steps El ,  EP2.3), and 12, is 
sent to parenti in the R parameter in ECHO. From 
Observation 3, i E Rj,  'dj E parent:. Z, does not contain 
z, where z.id = i, at the time oulz = v) because redu~e: .  
From Lemma 3, it follows that no node ,j has z t Zj, 
where z.id = i .  

If 7 red7acei, then i adds z, where z.id = i, to Zt which 
is sent to parenti only (Observation 1). i is not inserted in 
Rj and is not sent in thc R parameter to any node. If i is 
remotely reduced at j ( j  t porentl by Lemma 4), then 
'dk t par& that lie between i and ,j, z E Z, and i 6 RI. 
z E Z, because a precondition for reduce;. to occur is that 
z belongs to Z,; from Lemma 1 and Observation 2, the 
only way this can happen is that all nodes k receive z in 
the Z parameter and pass it up the tree toward j .  Also, 
i 6 RA because i gets reduced only at j (Lemma 4); this 
can happen only after ECHOs/PIPs containing z, where 
z.id = i in the 2 parameter reach from i to j through k, at 
which time .j adds i to Rj. If i E R,, it follows from 
Lemma 7 that i is already reduced, a contradiction. 

At j ,  z is removed from Z, and atomically added to 
R, at local termination. For all nodes IL in parent: that 
lie between j and the initiator, the z does not belong 
to Z!, (see Observation 2) because: 1) the Z parameter in 
no message from a node not on the DST path from j 
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to h contains z (Lemma 1); and 2) neither does the PIP/ 
ECHO from any node on the DST path between j and /L 
because j removed z from Zi (Observation 1). Also, from 
Lemma 5, i E l<ls for all such h. Hence, the RHS holds. 
(e:) If z E Z,, where z.id = i, then z must have becn 

locally inserted in Zi by i only (Lemma 3); this happens 
whcn -reduce: at the time vuti = fl. 

If i E I<?, then from Lemma 7, i was remotely reduccd 
( v e d u c e :  whcm outi = fl) or i was locally reduced. Note 
that i f  i did not send a PIP and was locally reduced, thcn 
i is not inserted in Ri or in any Rj, It then follows that i 
must have already sent a PIP if it was locally reduced. 
The LHS follows. 0 

Observation 5. For any i, the vnlne of X7 which is represented in 
z.uc, zuhere z.id = i and z is in  the parameter Z ,  progressively 
strengthens us it ascends np the spanning tree in  PIP nnd 
ECHO messages. 

Lemma 9. I f u  nude i sends an ECHO or n PIP to node j ,  then 
node i must hnve received U FLOOD from node .j. 

Proof. Node i sends an ECHO or PIP to node j only in 
these two cases: 

on the receipt of a FLOOD from ,j  if either case F1- 
A, F2, or F3 holds, or 
on the receipt of the last ECHO or PIP (steps 
EP2.4, EP2.5), i sends an ECHO or a PIP to 
pnrcn,li. parent; is initialized to j, so i must have 
received a FLOOD from the parent (case F1-B). 

In both the situations, i must have received a 
FLOOD from j .  0 

Observation 6 .  l fnode  i receives nn ECHO or U P I P  froin node .j, 
node i kus nlready sent n FLOOD to node .j nnd .f t m t , .  
(Follows from Lemma 9 nnd case FI-B.) 

Before proving that reduction is performed correctly, we 
define a function h on the nodes in the WFG as follows: 
First, view the predicate f z  in disjunctive normal form 
(DNF), where each disjunct z is of type P-out-of-Q [14]. 
OCJ'I;,, is the set of successors of ,i that are involved in 
disjunct 2:. A disjunct :c at node i requires y,.% replies in 
response to its yi,i requests, where 5 qi,,c, to unblock 
node i. For every disjunct at any node 'i in a deadlock 
(I), I < ) ,  there are at least q2,1 ~ I , ; , : ~  + I outgning WFC edgcs 
to other nodes in D. 

/ k ( i )  + 0 
M 

if i is it lcal in WFG 
if i isdeadlockod 

/t,(ij indicates the shortest length over a sufficient 
number of paths that have to be traversed by replies to 
rcach i, so as to unblock i. If node i were to get unblocked 
by receiving replies, at least one of them has to traverse a 
pith of length h(i). However, this does not preclude node i 
from getting unblocked by receiving a reply that has 
traversed a path of length greater than /r(i). This is because 
mure than the required number of nodes may send replies, 
and these nodes need not lie on paths of length 5 h(i). 

A node that is not deadlocked has a finite value of h 
because it has a sufficient numbcr of edgcs to other nodes 
which are not deadlockcd and there are sequences of replies 
by which the node can get unblocked. A deadlocked node is 
assigned a value of w for / I  because there are no sequences 
of replies by which the node can get unblocked. The length 
of the shortest path traversed by a scrics of replies to 
unblock a deadlocked node is w. 

We now show that the algorithm pcrforms reduction 
correctly. 

Definition 5. A node in the WFG performs reduction if it gets 
reduced and behaves ns follows: 

I ,  nude i sends a PIP (ECHO) to all nodes other than 
parenl, from which FLOOD is received before (after) 
/ocd reduction. The Z parurneter is nn/I on the P I P  
(ECHO) rnessuge. 
node i sends nil  ECHO (PIP) to pnrcnl,, when outi = 

v) i f r e d u c e ~ ( r e d i ~ c e ) ~ ~ ) .  The I3 and Z parameters ure 
set to R, and Z7, respectively, wkcre: 

Ri is set to: 

2. 

UkEoc,T, R purunzeter received 011 ECHO/I-'IP 

U{;} if ((i hns sent n PIP) and (mlzice: when 

U (nodes thuf i remotely reduces in proc. evali, 

( u ~ . ~ ~ ~ ~ , ~ ,  z purarneter received in  ECHOPIP 

\{k I k is (remotely) reduced in procedure evall) 
U(. Iz.id = i,z.uc = X i ,  nf, locul lerni~in~atio,~~} 

from k 

0Ul i  = 64)) 

' .  , 15 set to: 

from k 

if -reduce:. when ozil; = I 

Observation 7. Node i does not send nny ECHOs nnless 

Lemma 30. A m d c  i for which h(i) < 00 performs reductiuii. 
Proof. Wc prove the result by using induction on Ik(i). 

reduce;, 

Base case h(i) = 0: We show that a node i for which 
h ( i )  = 0 pcrforms reduction by noting that its following 
two properties satisfy Definition 5. 1) When such a node i 
rcccives the first FLOOD, it executes case F1-A and 
records itself as "active" ( X ,  = 11.76~). redzicc; because i 
has received a sufficient number of ECHOs, which is 
zero (0) in this casc. Such a node returns an ECHO for 
every FLOOD it receives (cases F1-A, F3-A). Cases F1-B, 
F2, F3-B, E*, and El'* do not occur at this node. Hence, it 
does not send any PIP. From Lemma 9, it follows that 
ECHOs i t  sends are unly in response to FLOODS. 2) By 
stcps El'l and BP2, the parameters R and Z sent to 
parenti  are set per Definition 5. Therefore, a node for 
which h(i) = 0 pcrforms reduction. 
h(i) = 2 > 0: Assume that a node i with h(i) = 3: 

performs reduction. 

h(i) = 2; + 1: It necds to be shown that a nodc i with 
h(i) = :c + 1 performs reduction. At the time node i 
receives the first FLOOD, node i executes case F1-B and 
records X ,  = f, (which evaluates to false because i is 
blocked). By definition, there are a sufficient number 
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of nodcs in OUT, to unblock i and these nodes have a 
value of h that is 5 :L Such nodes perform reduction 
by the induction hypothesis. Such a nodc, say 
k t OUT,, gets reduced only in the following ways: 

I ,  

2. 

3. 
4. 

rrd~ice; = true before k receives the FLOOD from 
i (cases F2-A, F3-A). 
pur in tk  = i and reduce;: = tvue (case F1, step 
PE2.4). 
r.rducet during eval at i (step PE2.4). 
reduce:+, j t OUT+, and the reduction of k is 
learned by i through the R parameter in a 
received ECHO or PIP. This scenario includes 
the case where reduce; becomes t m e  after k 
receives a FLOOD from i, where i # purerith. 
Note that j may or may not be an offspring of i .  
reduce:,j 6  OUT:^,,? # i .  In this case, the R para- 
meter containing k sent in ECHOs or PIPs by j 
does not reach i .  
reduce!ih,j t OUT,' and thc II parameter con- 
taining k sent in ECHOs or PIPs by j does not 
reach i .  
rerhrce; after receiving the FLOOD from i, 
pnren,tt # i (casc F2-B) and the H paramctcr 
containing k sent on ECHOs or PIPs by k does 
not reach i. 

Each node k that gcts reduced by cases 1 and 2 abovc 
sends an ECHO to i .  Each node k that gets reduced by 
cases 3 and 4 above, gets reduced at node i and at a 
successor of i, respectively. 

If a sufficient number and combination of nodes k get 
reduced by cases 14, then i gets locally reduced, and 
behaves as follows: 1) After getting reduced, i sends an 
ECHO only in response to every FLOOD (cases F1-A, F2- 
A, F3-A, and step EP2.4 to respond to the FLOOD from 
parent,) and does not send any PIP. Before i got reduced, 
i ncver sent a ECHO (Observation 7) aiid i sent a PIP 
only in response to every FLOOD (case F2-B), other than 
the FLOOD from parenti. 2) By steps EP1 and EP2, the 
parameters Hand Z scnt to paventi are set per Definition 
5. Hence, i performs reduction. 

Each node k that gets reduced by cases 5-7 above 
sends a PIP to i in response to the FLOOD from i. If a 
sufficient number and combination of nodes k do not gct 
reduced by cases 1-4, then they will get reduced by cases 
5-7, but Tredzicei. We show that i will be remotcly 
reduced. Denote the set of nodes k by A. For cach node k 
in A, identify the node 1 in piwenil  where reduccf, and 1 
added k to I?, (Lemmas 5 aiid 6). Denote this sct of nodes 
1 as 13. Clearly, II exists-it is {init} in the degenerate 
case. Let j be the common DST ancestor of i and the 
nodes in R. Clearly, j exists-it is init in the degenerate 
case. Then, R, contains all the elemcnts in A (Lemmas 5 
and 6) which are sufficient to reduce i in procedure eval 
at j ,  if i is not already in I?,. 

5 .  

6.  

I .  

Specifically, from Lemma 8, 

[ ( z  E z,,w1icrc z.id = i j  83 i E RI )] .  
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If ( z  E Zl wherc z.id = ij, thcii i gets reduced at j .  If 
i t R,, then i was reduced somewhere along the branch 
from i to j (Lemmas 4 and 7). This was due to the eager 
dissemination of R on all PIPs and ECHOs. The residual 
unblocking predicate Xi, represented as z, where 
z.id = i ,  in the 2 parameter of ECHOs/PIPs was 
trausmitted toward j up the spanning tree edges through 
some combination of PIPS and ECHOs. This z.uc, where 
z i d  = i, may have been strengthened along thc way, 
(and might have cvcn becomc true), whcn 11 at the 
intermediate nodes became big enough to satisfy some 
(or all) of z.uf: (Observation 5). 

In addition to getting remotely reduced, i behaves 
as follows: 1) i sends a PIP to only all nodes other than 
parenti from which a FLOOD is received (cases F2-8, 
F3-8) and never sends ECHOs (Observation 7). i sends 
a PIP to parent, (step EP2.5). 2) By steps EPZ, EP2, the 
parameters I1 and Z in thc PIP scnt to prcr'enti are sct 
per Definition 5. 

Hencc, a node whose h = z + 1 performs reduction. 0 

Lemma 11. A node i f o r  which h(i) = w does not get reduced. 
Proof. By definition, all nodes whose h is m form a 

deadlock (J),Kj in the WFG. For any node i t U ,  i 
does not havc a sufficient number of edges to nodes in 
OUT, \U to gct unblocked. When node i receivcs the 
first FLOOD, X, = f j  (which is false) and i propagates 
FLOOD on its outward edges. 

From casc F1-8 and Observation 6, node i may rcceive 
at most one ECHO only on an outgoing WFG edge. All 
the nodes in OUC \I) have their R < 00 and perform 
reduction. Each node in OUT, \ D may scnd an ECHO on 
its incoming edges but that is not sufficient to reduce i .  

We show by contradiction that no nodc in D gets 
reduced. Assume that i t J) is the first node in I1 to 
get reduced (locally or remotely). If i was locally 
reduced, then i received at least an ECHO from 
another node in I) (contradicts the assumption, by 
Observation 7) or at least one j t D belongs to R,, 
implying by Lemma 7 and Observation 4 that ,j was 
reduced before i got reduced (contradicts the assump- 
tion). If ,i was remotely reduced at some k, at least one 
j t D belongs to RA, implying by Lemma 7 and 
Observation 4 that , j  was reduced (cither local or 
remote to j) before i was rcduced at k (contradicts thc 
assumption). Reductio ad absurdum. 

Thus, no i E D gets rcduced. 0 

Theorem 1. The initiator declnres dendlock iff it is deadlocked. 
Proof. Reduction of the WFG is performed correctly from 

Lemmas 10 and 11. The order of reduction of nodes is 
unpredictable because of unprcdictable message delays. 
However from Holt's result [MI, the nodes can be 
reduced in any order without changing the final out- 
come. All deadlocked nodes are not reduced and all 
othcr nodes are reduced. 

(Sufficiency:) If the initiator declares deadlock, it is not 
locally reduced (stcp EP2.5). The initiator cannot get 
remotely reduced. Therefore, it is not reduced. From 
Lemmas 10 and 11. it is deadlocked. 
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(Necessity:) If the initiator is deadlocked, it is not 
reduced (Lemma 11). So, on local termination, it declares 
deadlock in step EP2.5. 0 

5.1 Deadlock Resolution 
If the initiator i finds that it is deadlocked, it can use 2, to 
locally construct the topology of the deadlocked portion of 
the WFG. It can then use various strategies to choose a 
desirable set of nodes to abort to resolve the deadlock [MI. 
The algorithm considerably facilitates efficient and fast 
resolution of a dctected deadlock, whereas the other 
algorithms [6], [7], [21], [28] require an additional round 
of messages to collect the information that is needed to 
resolve the deadlock. 

6 PERFORMANCE 
We analyze the time complexity, message complexity, size 
of messages, and computational complexity for an invoca- 
tion of the proposed deadlock detection algorithm on a 
WFG (N, E ) .  The parameters used are d, the diameter of the 
WFG, and e = 1731. 

Theorem 2. The algoyithm terminates in 2d + 2 message hops. 
Proof. The algorithm terminates when the initiator receives 

a reply along each outgoing edge. Assume that each 
message hop takes one time unit. 

The FLOODs initiated by the initiator induce a 
spanning tree in the WFG. When a node receives its 
first FLOOD, it sends FLOODs immediately. Let 
d,,,,, 5 d be the maximum distance of any node from 
the initiator in the WFG. The latest time that a FLOOD 
is in transit is d,,,,,. + 1 message hops. 

A node i in the spanning tree immediately replies 
to its parent when it has received an ECHO or PIP 
from each node in OUT,. FLOODs sent to nodes in 
Or/?; \offspring, are immediately responded to by 
ECHOs or PIPS. At d,,c,z, + 2 time units, each node i has 
received an ECHO/PIP f rom each node  in  
OUT, \off ,~pringi.  A node at distance d,,, will have 
received all expected replies at time d,,,,,: + 2, and sends 
a reply to its parent at distance d,,,,,,: ~ 1. By induction, a 
node at depth z receives all expected replies by time 
d,,,,,, -k 2 i- d,,,,, - z. The initiator which is at distance 0 
receives all expected replies by time 2 d,,,,, + 2 and 
terminates. 0 

Observe that the initiator can detect it is not deadlocked 
in fewer message hops as soon as it gets locally reduced. In 
the best case, this is only two message hops. 
Theorem 3. An invocation of the algorithm uses 2e messages. 
Proof. A node sends exactly one FLOOD on each outgoing 

edge once (case F1-B). Thus, e FLOODs are sent for an 
invocation of the algorithm. 

A FLOOD from i sent to a node in OFra \ o f f  sfJringi 
is responded to by a ECHO or a PIP (cases F2 and F3). A 
FLOOD sent by i to a node in offsprin,g,, where 
offspringi is a leaf node in the WFG is responded to 
by an ECHO (case F1-A). A FLOOD sent by i to a node in 
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o f f spr ing i ,  where o,f,fspringj is a nonleaf node in the 
WFG is responded to by exactly one PII' or ECHO (step 
EP2.5 or step EP2.4). Thus, there are exactly e I'IPs or 
ECHOs, and the message complexity is exactly 2e. 0 

Observe that PIP and ECHO messages are of variable 
length, and may be larger than those in earlier algorithms 
[6], [7], 1211, [28]. However, message headers are usually 
large, so a slightly larger message body should not pose a 
problem. We now analyze the size of PIPS and ECHOs. A 
node . j  cannot belong to any Ri if it does not send any PIPS 
before it is locally reduced. In the best case, R, is @. Due to 
eager dissemination of reduced node information, K can 
contain any node in OTJT,'~ that sent a PIP before local 
reduction or that was remotely reduced at some other node 
in O U T 1  , Hence, in the worst case, Ri is the set of lOU7;' I 
node identifiers. To analyze the sizc of /%, we use the P-out- 
of-Q representation of generalized requests; as reviewed in 
Section 1, the P-out-of-Q request model and the AND-OR 
request model have equivalent expressive power and the 
presented algorithm can be applied directly to both request 
models. A P-out-of-Q formula when translated to the AND- 
OR model can become exponentially large in Q. An AND- 
OR formula can always he translated into a P-out-of-Q 
formula, as shown in [19]. In the P-out-of-Q model, the 
unblocking function X ,  at a node i requires the representa- 
tion of IOUTjl node identifiers. In the best case, the residual 
function of i at local terminalion can be true and Zi can be 1. 
In the worst case, the local residual function can be Xi  for 
node i and 2, contains X ,  for every j in  OUT;^, thus 
requiring the representation of 

IWT,l 
j tOUTsl  ll{ij 

node identifiers. The size of a PIP or ECHO is the sum of the 
estimates of the sizes of Ri and Z,. In the best case, this is 
the representation of v); in the worst case, it is the 
representation of 

l O W + l +  c lOU.r,l 
j E o r f p { , j  

node identifiers, with the added constraint that a node 
identifier cannot appear in both Ri and 2,. Although no 
empirical data on the size of WFGs or deadlocks is available 
for the P-out-of-Q request model, for the single-request and 
AND request models, it is argued in [3], [13] that most 
deadlock cycles are of length 2 and WFGs are also relatively 
small. We expect that for the P-out-of-Q request model, the 
WFGs will not be significantly larger than those for the 
AND request model. Hence, even in the worst case, 
messages are expected to be small. 

For the computational complexity at a node, we again 
consider the equivalent P-out-of-Q representation of un- 
blocking functions. We need to determine the computa- 
tional complexity of procedure m a l ,  which is executed once 
by each node i when it receives its last ECHO or PIP. For 
each pass of the outer repent loop, at least one new node is 
inserted in tempR. In the worst case, there will be 1, 
executions of the Yepeat loop, where %, is the number of 
nodes in the subtree of the WFG rooted at i .  Within each 
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repent loop, at most l i  Zs arc instantiated by the new 
members of tem& and cvaluated; this can be done in 
parallel in O(1) steps, and serially in O(t,)  steps. Hence, in 
the worst case, the processing at node i without any 
parallclization is O(t:).  In the best case, it is O(1) when 
Itj = I or Zz = 0. 

Tablc 1 compares the pcrformance of the proposed 
algorithm and thc algorithms in [6], 171, [21], [28] in terms of 
the number of phases, time complexity, and messagc 
complexity. The proposed algorithm peiforms better than 
the algorithms in 161, [7], [21], [28]; it has a message 
complexity of 

(2 * tlrc ,number of ed.qes in tlic W F G )  

and the worst-case time complexity of 

(2 * tire diri,rrietev of h e  W F G )  -1- 2 

hops. Also, thc proposed algorithm has information locally 
available at the initiator to dctermine how to resolve a 
detected deadlock; other algorithms incur extra time and 
messagc overhead to achieve this. In addition, even if the 
initiator is not deadlocked, Z j  at the initiator contains 
information on the residual function of cach node in the 
WFG that could not be even remotely reduced. 

We conjecture that the proposed algorithm is uptimal in 
the number of messages and in time delay i f  detection of 
gencralized deadlocks is to be carried out undcr the 
following framework 

No node has complete knowlcdge of the topology of 
the WFG or the system. 
The deadlock detection is to be carried out in a 
distributed manner. 

This framework is similar to that in [6], [211, 1281. The 
algorithm docs not introduce the latent message overhead 
to acknowledge computation messages (in [71, every 
computation messagc sent has to be individually acknowl- 
edged; this greatly increases the messagc complexity) and 
does not have latent delays (as in [7], where the algorithm 
blocks until all previously sent computation messages are 
acknowledgcd). 

The informal argument to support our conjecture of 
optimality is as folluws: The only way to identify the 
WFG when the topology of neither the WFG nor the 
system is known is to use the diffusion of messages 
along the WFG edgcs (folklore). This takcs d + 1 time 
units and e messages. Due to the following two reasons, 
it is necessary that a node respond to every FLOOD 
message it reccives: 

I .  If a node is in the indeterminate state when it 
receives a sccond or subsequeut FLOOD message, it 
must immediately respond to it (e.g., by a PIP) to 
avoid deadlocking of the algorithm itself. Consider 
an cxamplc given in Fig. 5. The thick edges define 
the DST. If node 4 does not immcdiately respond to 
the FLOOD messages from nodes 3 and 5, and node 
5 does not immediately respond to the FLOOD 
message from node 4, the algorithm is deadlocked. 

Fig. 5. An example detection 

2. If evaluation of the WFG topology for deadlock is to 
be conducted in a distributed manner, each node 
involved in the diffusion process must receive a 
response to the diffusion messages from each of its 
direct successor nodes so that it can decide about its 
own reducibility. In turn, it must send a response 
containing information about its reducibility status 
to all nodes from which it rcceivcd a diffusion 
(FLOOD) message. 

Thus, at least e return messages are rcquired. Since 
return messages sequentially travcrsc thc WFG, they take 
d -1 1 time units to reach the initiator node. Thus, an 
additional d + I time units and at least e mcssages are 
required aftcr the diffusion of messages is over. Hence, we 
conjecture that the time and the message complexity of 2 1  - 1  
2 and 2e, respectively, are optimal. 

7 DISCUSSION AND CONCLUSIONS 

Handling Dynamic WFGs. The algorithm was prcsented for 
a static WFG. In practice, nodes are making requcsts and 
requests are being satisfied; therefore, a WFG is dynamic. 
Consider an edge from i to j .  Ay the time a FLOOD sent by L 
reaches j, j has already replied to i .  This edge is a phnntonl 
edge. Treatment of phantom edges that arisc due to thc 
dynamic nature of the WFG is described in [Zl]. When a node 
j receives a FLOOD from a node a, ,I checks if this is a phantum 
edge, i.e., is i @ [AT?? If so, then ,j  immediately rcturns an 
ECH0toi.Foraphantomedgefroinnodei tonodeJ,nodeiis 
defined to perceive h(,j) as zero (0). Node j may still be a part 
of the WFG, but pnrerktj # i and parmr; may perceive a 
nonzcro value of h ( j ) .  The message and the time complexitics 
of the modified algorithm remain unchanged; however, 
phantom edges are appropriately handlcd in the reachable 
WFG during the diffusion of FLOOD messages. 

Handling Concurrent Initiations. Due to the symmetric 
nature of the algorithm, multiple nodes may initiate the 
deadlock detection concurrently and a particular node 
may initiate it multiple times. Sequence numbers and 
initiator-ids distinguish between different instances of the 
algorithm. An optimization on the number of messages 
can be performed by maintaining a timestamp-based 
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priority order (in all invocations of the algorithm and 
suppressing lower priority algorithms. 

In summary, we presented an efficient algorithm for 
detecting deadlocks in replicated databases. Replicated 
databases offer increased fault-tolerance and better respon- 
siveness but require quorum algorithms to serialize con- 
current read and write operations from different 
transactions for concurrency control [t], [4l, [51, [12l. 
Replicated databases that use quorum-consensus algo- 
rithms are prone to deadlocks because transactions which 
are waiting for a quorum to be satisfied may be involved in 
an indefinite wait. Requests in replicated databases are 1’- 
out-of-Q or AND-OR type requests arid the resulting 
deadlocks are generalized deadlocks. The presented algo- 
rithm to detect generalized deadlocks is based on the 
principle of diffusion compntatioii and performs reduction 
of a distributed WFG to detect a deadlock. Deadlock 
detection is performed by echoing the diffusion computa- 
tion messages a t  terminating nodes and reducing the graph 
when an appropriate condition at a node in the echo phase 
is found. If sufficient information to decide the reducibility 
of a node is not available at that node, the algorithm 
optimizes the performance by attempting the reduction 
later in a lazy manner. 

We proved the correctness of the algorithm. The 
algorithm detects all deadlocks in a finite time and if it 
reports a deadlock, the deadlock exists in the system. The 
algorithm performs considerably better than the existing 
algorithms to detect generalized deadlocks in distributed 
systems. It has a message complexity of 21, messages and 
the worst-case time complcxity of 2 d  + 2 hops. We con- 
jectured that the algorithm is optimal in time and message 
complexity to detect generalized deadlocks if no node has 
complete knowledge of the topology of the WFG or of the 
system and the deadlock detection is to be carried out in a 
distributed manner. 

The presented algorithm is applicable to detecting 
deadlocks in other domains such as resource allocation in 
distributed operating systems, store-and-forward commu- 
nication networks, and communicating processes, where 
gcncralized deadlocks occur, as well as to traditional 
domains where single request, AND request, and OR 
request deadlocks occur. 
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