
880 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. t i , NO, 6. NOVEMBERIDECEMBER 1999

A One-Phase Algorithm
to Detect Distributed Deadlocks

in Replicated Databases
Ajay D. Kshemkalyani, Senior Member, /€E€, and Mukesh Singhal, Senior Member, /€€E

Abstract-Replicated databases that use quorum-consensus algorithms to perform majority voting are prone to deadlocks. Due to the
P-out-of-Q nature of quorum requests, deadlocks that arise are generalized deadlocks and are hard to detect. We present an efficient
distributed algorithm to detect generalized deadlocks in replicated databases. The algorithm performs reduction of a distributed wait-
for-graph (WFG) to determine the existence of a deadlock. if sufficient information to decide the reducibility of a node is not available at
that node, the algorithm attempts reduction later in a lazy manner. We prove the correctness of the algorithm. The algorithm has a
message complexity of 2n messages and a worst-case time complexity of 2d + 2 hops, where c is the number of edges and d is the
diameter of the WFG. The algorithm is shown to perform significantly better in both time and message complexity than the best known
existing algorithms. We conjecture that this is an optimal algorithm, in time and message complexity, to detect generalized deadlocks if
no transaction has complete knowledge of the topology of the WFG or the system and the deadlock detection is to be carried out in a
distributed manner.

Index Terms-Distributed database, replicated database, quorum consensus, generalized deadlock, graph reduction

+
1 INTRODUCTION

N database systems, a deadlock occurs when some I transactions wait indefinitely on each other for their
requests to be satisfied. A deadlock hampers the progress of
transactions in a database and lowers the resource avail-
ability; therefore, all deadlocks must he promptly detected
and eliminated 1181, [19], 1261. Although deadlock detection
has been extensively studied in traditional distributed
databases, e.g., [15], [17], 1191, 1241, [271, it has not received
sufficient attention in the context of replicated (distributed)
databases 141, 151, [lo].

In a replicated database, data items are replicated at
different sites to increase availability (i.e., fault tolerance)
and responsiveness to read requests. A write to a data item
requires that the value should he written to all the replicas
of that item. A read of a data item can he satisfied by
reading any copy. Quorum algorithms are used to serialize
concurrent read and write operations from different
transactions for concurrency control 141, [5], 1121. Several
quorum-consensus algorithms have been proposed and
they require some form of voting by the replicas of the data
item to be read/written, to reach a consensus on whether a
read/write can proceed without violating serializability [l],
141, [5], [lo], (121, [25]. A typical quorum request is a P-out-
of-Q request where the requesting transaction is waiting for

~~

at least P votes out of the total of Q votes distributed among
the replicas. Once a replica of a data item grants its vote,
that replica gets locked and cannot revote until it is
unlocked. Replicated databases that use quorum-consensus
algorithms are prone to deadlocks because transactions
which are waiting for a quorum to he satisfied may be
involved in an indefinite wait. Requests in replicated
databases fall under the P-out-of-Q request model and the
resulting deadlocks are generalized deadlocks.

For the purpose of modeling deadlocks, interaction
between transactions is modeled by a directed graph, called
a wait-for graph (WFG) 1181. Nodes in a WFG represent
transactions and an edge from node i to node j indicates
that transaction i has requested a resource from transaction
j and transaction ,? has not granted the resource to
transaction i . A deadlock is characterized by topological
properties of the WFG that depend upon the underlying
transaction request model. For example, in the simplest
request model, called the single-request model, as well as in
the AND request model, the presence of a cycle in the graph
implies a deadlock. In the OR request model, the presence
of a knot is a necessary and sufficient condition for a
deadlock to exist.

In the P-out-of-Q request model [6], also called the
aeneralized request model, a transaction makes requests for
I

Q resources and remains blocked until it is granted any P
out of the Q ~h~ p.out.of.~ request model is
equivalent to the AND-OR request model [14] in which the
condition for a blocked transaction to get unblocked is
expressed as a predicate on the requested resources using
AND and OR operators. For example, predicate i A (j V k)
denotes that the transaction is waiting for a resource from i

AND-OR models are equivalent because a predicate in the

A.D. Ksheniknlyaiii is with tile Electrical Engineering nnd Computer
Science Dcpnrtment, Llnizarsit!/ of Illinois at Chicngo, 1120 Science nnd
Engineering Ofices, 851 S. M o ~ p n St., Chicngo, IL 60607-7053.
E mail: njaykOwcs.uic.edii.
M . Singhni is with the Deparrment of Cornputer and JnJormntion Science,
Ohio Stntc University, 2015 Neii Ave., Columbus, OH 43210.
E-mnil: singhal9cis.ohio-statc.eda.

Mnniiscript received 9 June 199G; revised 2 Sept. 1333.

to: tkdr&ompater.org, nnd reference IEEECS 1.q Number 104370.
F~~ infornstimt obtni,,in8 repriflts of titis nrticle, piease serld e-mni~ and for a resource from either j or k. The P-out-of-Q and the

1041-43471981$10.00 0 18'39 IEEE

http://tkdr&ompater.org

KSHEMKALYANI AN0 SINGHAL A ONE-PHASE ALGORITHM TO DETECT DISTRIBUTED DEADLOCKS IN REPLICATED OATABASES 881

Phases
Dclav

TABLE 1
Comparison of Worst-case Performance Complexities

I Criterion B I ~ C I Y ~ - 1 Wang I Kshcmkalyani- 1 Brzczinski 1 Proposed 1
Touq 161 ctal. 1281 Singhall211 ctal. [7] algorithm

2 2 1 S 1
4d 3 d + 1 2d+ 2 S2 2d

Mcssages 1 4e 6e I 4e - 2 n + 21 (< 4e) 1 S2 2e

AND-OR model can be expressed as a disjunction of P-out-
of-Q type requests and vice-versa. A generalized deadlock
corresponds to a deadlock in the P-out-of-Q (or ANU-OR)
request modcl. AND and OR models are special cases of the
generalized deadlock model.

Although the problem of deadlock detection has been
well explored in the single-request and the AND request
models in database systems, e.g., [E], 191, [ill, [151,[171, [HI,
[201, (221, (231, (241, (271, (291, much remains to be done
toward the detection of generalized deadlocks in replicatcd
databases. Generalized deadlocks also arise in other
domains such as resource allocation in distributed opcrat-
ing systems, store-and-forward communication networks,
and communicating processes. Therefore, efficient detection
of generalized deadlocks is an important problem.

1.1 Previous Work on Generalized Deadlock
Detection

Detccting generalized deadlocks in a distributed database
system is a difficult problem because it requires detection of
a complex topology in the global WFG; the topology is
determined by the conditions that need to be satisfied for
each of the blocked nodes in the WFG to unblock. A cycle in
the WFG is a necessary but not sufficient condition, whereas
a knot in the WFG is a sufficient but not necessary condition
for a generalized deadlock.

Traditionally, ad hoc methods like timeout have been
used to handle deadlocks. A major drawback of this simple
approach is that oftentimes, deadlock is falsely detected
when it does not exist, thus causing a wastage of system
resources when the transaction is rolled back and then
redone. The timeout based methods are proving to be less
viable as we strive for high performance computing
systems whcre applications and end-users' expectations of
quick response times, continuous availability, and minimal
failures are being increasingly market-driven. Precise
algorithms are needed to detect deadlocks.

Design of correct and efficient distributed algorithms to
detect generalized distributed deadlocks is a difficult
problem and very few distributed algorithms exist to detect
generalized distributed deadlocks 161, [7], 1211, [28]. We do
not consider centralized algorithms such as [21, 1141 in
which a snapshot of the WFG is collected by some process
and then examined by that process for deadlock. The
algorithms in [61, 1211, [28] are based on the "record and
reduce" principle; that is, the distributed WFG is recorded
and reduced to determine if there is a deadlock. Reduction
of the WFG simulates the granting of requests and is a

general technique to detect deadlocks 1181. Algorithms that
follow thc "record and reduce" principle must have a way
to detect the termination of the reduction process so that a
correct conclusion about the existencc of a deadlock may be
drawn. The algorithm in [7] is based on the principle of
detection of weak termination of a distributed computation.

The algorithm by Bracha and Toueg [6] consists of two
phases. In the first phase, the algorithm records a snapshot
of a distributed WFG and in the second phase, the
algorithm reduces the graph to check for generalized
deadlocks. The second phase is nested within the first
phase. Therefore, the first phase terminates after the
second phase has terminated. In the two-phase algorithm
of Wang et al. [28], the first phase records a snapshot of a
distributed WFG. The end of the first phase is detected
using an explicit terminatiou detection technique, after
which the second phase is initiated to reduce the rccorded
WFG to dctect a deadlock. Termination of this phase is also
detected using an explicit tcrmination detection technique.
In the one-phase Kshemkalyani-Singhal algorithm [21], the
recording of a snapshot of the distributed, dynamically
changing WFG and reduction of the recorded WFG is done
in two concurrent sweeps of the WFG. The algorithm deals
with the complications introduced because the reduction of
a node in the inward sweep can begin before the state of all
WFG edges incident at that node havc been recorded in the
outward sweep. The termination detection of the "reduce"
sweep is merged with the termination detection of the
"record sweep and achieved by a single iiivocatioii of an
explicit termination detection algorithm. Brzezinski et al. 171
definc a generalized deadlock in terms of weak termination
of a distributed computation and develop an algorithm that
detects weak termination. Nodes are logically arranged as a
ring and a token circulates on the ring to monitor the states
of the nodes. The token keeps circulating until the
monitored states of the nodes are the same in two
consecutive rounds. Table 1 compares the performance of
the above distributed algorithms.

1.2 Paper Objectives
We present an efficient one-phase distributed algorithm for
detecting generalized distributed deadlocks and prove its
correctness. The algorithm initiated by an initiator consists
of two concurrent sweeps-an outward sweep that records
the WFG and an inward sweep that reduces the WFG to
detect a deadlock. The outward sweep induces a spanning
tree in the WFG. Reduction is performed by sending replies
backward on cross-edges of the WFG and backward on

882 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6. NOVEMBERIDECEMBER 1999

spanning tree edges. During this distributed reduction,
even if sufficient information to decide the reducibility of a
node is not available at that node, appropriate replies are
sent, and the algorithm attempts reduction later in a lazy
manner at an up-tree node in the spanning tree. The
initiator receives replies on all its outgoing spanning tree
edges and cross-edges because the sending of replies is
never delayed, and detects termination of the distributed
reduction when all such replies are received. Thus, no
explicit termination detection algorithm is used. At termi-
nation, the existence of a deadlock, if any, is detected.

The proposed algorithm performs better than the
existing algorithms to detect generalized deadlocks in terms
of the worst-case time complexity and the worst-case
message complexity [6], [7], 1211, [28]; the algorithm has a
mcssage complexity of 2e messages and a worst-case time
complexity of 2d + 2 hops, where e is the number of edges
and d is the diameter of the WFG. We conjecture that this
algorithm is optimal in the number of messages and in time
delay if detection of generalized deadlocks is to be carried
out under the following framework 1) no node has
complete knowledge of the topology of the WFG or the
system, and 2) the deadlock detection is to be carried out in
a distributed manner. If the initiator is deadlocked, it has all
the necessary information to adequately resolve the dead-
lock, unlike the algorithms in [61, 171, [211, [281.

The rest of the paper is organized as follows: In Section 2,
we discuss the system model and give a precise problem
description. In Section 3, we describe the idea behind the
algorithm and use an illustrative example. In Section 4, we
present the algorithm. In Section 5, we prove the algor-
ithm's correctness. In Section 6, WO analyze the performance
of the algorithm, and compare it with that of previous
algorithms. Section 7 contains a discussion and concluding
remarks.

2 SYSTEM MODEL
A distributed database system contains databases at various
sites. Each data itcm may be replicated in the databases at
various sites. Each transaction in the distributed database
system runs at a single site and may access different data
items at various different sites. Each transaction is managed
by a Transaction Manager, and each replica of a data item is
managed by a Data Manager.

The various sites are connected by communication
channels so that a logical channel can be set up between
each pair of sites. There is no shared memory in the system
and sites communicate solely by sending messages over the
channels. The messages are reliably delivered with finite
but unpredictable delays, and in the order in which they
were sent on a channel. If the logical channels deliver
messages out of order, then a simple message numbering
scheme can help the receiver to process the messages
arriving on a logical channel in the correct order.

We make the following assumptions about the system
model:

1. It has been shown in [20] that during the execution
of a transaction, a data item replica (managed by a

Data Manager) behaves like a transaction (managed
by a Transaction Manager) which makes requests
only in the single-request model, in the following
sense. A transaction (respectively, a data item)
blocks when it is waiting for a reply for lock requests
(respectively, waiting to be unlocked) and cannot
release locks (respectively, cannot be locked by
another entity) while it is blocked. Thus, a transac-
tion blocks when it makes a P-out-of-Q request to
lock a data item, whereas a data item replica blocks
when it grants its lock and implicitly makes a single
request that it be unlocked. Henceforth, we will not
distinguish between "transaction" and "data item"
to provide a uniform treatment for both transactions
and data items and simplify thc presentation of the
deadlock detection algorithm. Moreover, the result-
ing algorithm is directly applicable to resource
deadlocks that occur in databases, as well as to
communication deadlocks.
A deadlock detection algorithm is run by the
Transaction Managers and Data Managers. As far
as the algorithm is concerned, these Managers are
synonymous with the corresponding transactions
and data item replicas; therefore, we will refer only
to transactions and data item replicas.

2.

As a result of the above assumptions, each transaction
and data item replica can henceforth be referred to as a
node. The WFG now models both transactions and data
item replicas. A node in the WFG is a transaction or a data
item replica; a WFG edge from node i to node ,j denotes one
of the following: 1) transaction i has requested a lock on
data item (replica) j and j has not granted the lock request
to i . 2) data item (replica) i is locked by transaction j and j
has not released the lock on i.

We now formalize the blocking and unblocking of nodes.
When a node i makes a generalized request and blocks (i.e.,
goes from active to idle state), the unblocking condition of
its request is denoted as f $. The domain of f, is the set of all
nodes which are referenced in 1,. Function f a is evaluated in
the following manner: substitute true for a node i d in f? if i
has received a reply, indicating granting of that request,
from that node; otherwise, substitute false for it. Then
evaluate the function.

The node unblocks (goes from idle to active state) when a
sufficient number and combination of its requests to make
f s true are granted. When the node unblocks, it withdraws
the remaining requests it had sent but are not yet granted.

The following two axioms describe the blocking and
unblocking of nodes:

Axiom 1. A node blocks when it makes a generalized request and
does not send any computation messnges until it gets
unblocked.

Axiom 2. A blocked node gets unblocked ifand only f i t s requests
are satisfied zuithout any interventioiz in the computation.

Note that Axiom 2 describes the normal way in which a
node can get unblocked. A node can get unblocked
abnormally if it spontaneously withdraws its requests or
its requests are satisfied due to the resolution of a deadlock

KSHEMKALYANI AND SINGHAL A ONE-PHASE ALGORITHM TO DETECT DISTRIBUTED DEADLOCKS IN REPLICATED DATABASES 883

of which it is a part [Zfl]. There is a risk of false deadlocks
being reported if a nodc unblocks abnormally. Detection ol
such falsc deadlocks can be eliminated by using a time-
stamping mechanism to consider the dynamically changing
WFG along the latest observable state [XI]. We do not allow
a node to unblock abnormally fur simplicity.

The interaction between transactions and data items is
modeled by a directed AND-OR wait-for graph denoted by
(N , E) , whcrc N is the set of nodes and F is the set of
directed edges between nodes. Typically, the number of
nodes in a WFG is small compared to the numbcr of nodes
in the system, i.e., IN1 << /SI, wlierc S is the set of all nodes
in the system.

A node i keeps the following variables to keep track of its
portion of the directed AND-OR WFG:

INa: set of node ids t 0; /*set of nodes which are
directly blocked on node %. It denotes thc direct
predecessors of node i in the WFG. "/

/*set of nodes on which
node i is blocked. It denotes the set of nudes that are
direct successors of node i, in thc WFG. "/

Ji: AND-OR expression c I; /*the condition for
unblocking.*/

OUT, gives the domain of function J,. The transitive
closure of O U Z , denoted by OU ~ ' , gives thc rcachability
set of i . Thc transitive closure of IN, , dcnotcd by I N i ' , is the
set of nodes whose reachability set contains 7.

OlJT,: set of node ids + 0;

2.1 Problem Statement
A generalized deadlock exists in the system iff a certain
complex topology, identified next, exists in the global WFG.
Definition 1. A p w n l i z e d dendlock is a sl,bgrnplr (11, K) of a

WFC (A', F:) where: 1) ~ ~ c h i E D(# (4) is blocled on a
functiorr Ji(O171;) which evnlunfes to fnlsr ?ulien each varinble
is iJlstantiated Os fo//oWS:

('dj t l1 , j is set Lo ,[n/,w) A (V j E OUT, \ D,:j is scl Lo true),

and 2) I< is the projection of the edges in (N, P:) on th(>
nodes in D.

From Axioms 1 and 2, it follows that none of the nodes in
D will ever get unblocked. All nodes in D thus remain
blocked forever. All the nodes in the WFG that do not
belong to any D have a sufficicnt number of edges to nodes
in OUT. \ D, i.e., f i(OU7;) evaluates to true when each
variable is instantiated as follows:

('dj t l1 , j is se1 lo f a l s e) A (V,j t OIJT, \ D,,j is sct to trzic).

All these nodes that are not in any D are not deadlockcd
because their requests can be satisfied.

A distributed deadlock detection algorithm should
satisfy the following two correctness conditions:
Liveness: If a deadlock exists, i t is detected by the algorithm

within a finite time.

Safety: If a deadlock is declared, thc deadlock exists in
the system.

At the time that a node blocks or within a system-tuned
timeout period during which the node has remained
blocked, the node initiates a deadlock detection algorithm.
Notc that only the nodes that are reachable from a node in
thc WFG can be involved in a deadlock with that node.
Thus, thc complete WFG is not examined to determine if a
node is deadlocked; only the part of the WFG which is
reachable from that node needs to be examined. Thc
deadlock dctcction algorithm is prescnted for a static
WFG. In Section 7, we explain how to extend the algorithm
to handle a dynamically changing WFG.

3 BASIC IDEA
No node has the knowledge of thc complete topology of thc
WFG or thc system; therefore, the initiator nodc determines
the reachable part of thc WFG and attcmpts to sense its
topology by diffusing FLOOD messages. To initiate dead-
lock dctcction, the initiator nude sends FLOOD messages to
all of its successor nodes. When a node receives the first
FLOOD message, it propagatcs it to all of its successor
nodes, and so on. The edges of the WFG on which the first
FLOOD message is received by each node induce a directed
spanning trce (DST) in the WFC.

Deadlock detection as wcll as detecting termination of
the algorithm are perfornicd by echoing the FLOOD
messages at "terminating" nodes and reducing the graph
when an appropriate condition at a node in the echo phase
is satisfied. A ferniinntiizg node in the graph is cither a sink
node or a nonsink node that has already received a FLOOD
message. Sincc a sink node is active (and thus, is already
reduced), it responds to all FI<OOD messages by ECHO
messages. By sending an ECHO message, a node informs
that it has bccn reduced. When a nonsink node in the graph
receives thc sccond or a subseqncnt FLOOD message, it
responds with an ECHO message provided it has been
reduced by then. However, a dilemma arises i f a nonsink
node in thc graph has not been reduced when it rcccives a
second or subsequent FLOOD message. The state of such a
node is prescntly indetermiiiatc and may eventually
become reduced after a sufficicnt number of ECHO
mcssagcs have been generated and moved up in the graph.
Such a node cannot immediately respond to a FLOOD with
an ECHO message and, if it waits to see if it is latcr rcduccd,
the algorithm may deadlock! This dilcmma is solved in the
algorithm using lazy evaluation as follows.

3.1 Lazy Evaluation
If a nonsink node in the graph has not been reduced when it
rcccivcs the second or a subsequent FLOOD message, it
immediately responds to such a FLOOD message with a
Position lndeterminate Packet (PIP) message. A PIP
message conveys thc indeterminate state of thc node. In
contrast, an ECHO message conveys the fact that the sender
node is reduced. A node attempts a reduction whenever it
receives an ECHO. Tf a node is reduced after it has received

884 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6 , NOVEMBERIDECEMBER 1999

a response to all the FLOOD messages that it sent (we call
this "local reduction" of the node), it sends an ECHO
message to its parent in the DST. Otherwise, it sends a PIP
message to its parent in the DST. Note that if the node was
not rcduced at this instant, it does not mean that it is not
reducible. This is because some of its successor nodes that
sent a PIP, might have gotten reduced later and reduction of
these nodes might have been sufficient to reduce this node,
had it waited long enough. To take care of such conditions,
1) the reduced status of nodes that previously sent a PIP
message is propagated upward in the DST toward the
initiator node. Also, 2) when an (unreduced) node sends a
PIP message to its parent node, the message contains the
unsatisfied portion of the unblocking function, called the
residua\ function, of the sender node. For example, if the
unblocking function of a node is z A (g V z) and the nodc
has received an ECHO from y, then the residual function is
: E . Ancestor nodes of thc unreduced node gather both these
pieces of information and make an attempt to determine if
the node can be reduced.

The information about nodes that sent a PIP but were
later reduced is propagated in the following manner. A
node i keeps a set of node ids, denoted by a, that
contains the ids of nodes in OUT,+ that sent a PIP, but
were reduced later, men a node sends an ECHO or a

PIP message, tl,e current value of ni is sent in the
message, when a node
message, it adds the contents of the received R set to Ri.
This is eager dissemination of reduced node information.
The eager dissemination is sufficient but not necessary for
lazy evaluation. It is necessary for node i only to send H ,

last messages has

functions (discussed next) at nodes in the WFG is likely to
be larger with this modification.

A node j keeps a set of residual functions, denoted by
Zj, that contains tuples of the form (k,fk), where f k
denotes the residual function of node k. The information
about the residual function of nodes is propagated in the
following manner: When a node sends an ECHO or a PIP
message to its Parent in the DST (this hapPcns when the
node has received a from Of its
nodes), the message contains the residual function set of are given next using an oversimplified notation illustrated
the sender node. An ECHO or a PIP message sent to a
nonparent node carries null as the value of the residual
function set. When a node j receives an ECHO or a PIP

it adds the received residual function set to Z,. This
retarded collection of residual functions is necessary and fl = denotes that node needs a Irom node Or

sufficient for evaluation of the unblocking function at node to
nodes, This is how the information about fie residual Suppose node 1 initiates deadlock detection and sends
unblocking function of nodes and the information that a out FLOOD messages to nodes 2 and 4. Fig. 2 &n~s the
node that sent a PIP was eventually reduced is propagated diffusion of FLOOD messages through the WFG. The
upward in the tree. thicker edges of the graph denote the edges along which

A node j evaluates its unblocking function fj whenever it nodes received their first FLOOD message and define
receives an ECHO message. In addition, after a node j has the DST.
received a response to all FLOOD messages it had sent, it Fig. 3 shows how various nodes respond to FLOOD
evaluates every rcsidual function in the set Z, as follows: messages they receive. Since node 6 is active, it responds

Fig. 1. An example of a wait-for graph (WFG).

select a tuple (k , f h) from Z:i and check if entries in RI are
sufficient to reduce h. If a node .j succeeds in reducing node
k's residual function h, we say that node k has been
remotely reduced (at node j) . In such a situation, node ,f adds
k to Rj and deletes tuple (kid from 4. This is done
repeatedly until no more entries in .Z3 can he reduced.

Thus, a node j uses information in Rj about its successor
nodes that sent PIP but got reduced or that were remotely
reduccd, to attempt to reduce the residual function of as yet
unreduced descendants in Z3. As a residual function
traverses up the DST, it can progressively strengthen
because more reduced node information gets collected by
lazy evaluation further up the DST,

receiving responses to all of its FLOOD messages because

deadlocked, ~h~ message complexity, time complexity,
local computational complexity, and the size of messages
for this algoritllm are analyzed in section 6,

3.2 An Example
We now illustrate the basic idea behind the algorithm with
the help of an example. Fig. 1 shows a distributed WFG that
spans seven nodes numbered I through 7. All nodes except
node 6 are blocked. The unblocking functions at these nodes

by the foliowing

receives an or a

the Or 'Ip response sent to the parent after the The initiator node is deadlocked if it is not
Or 'Ip response to its

heen received. However, the size of the set of residual no further lazy evaluation can occur, Otherwise, it is not

f i = 1 V 2, .fz = 3 A 4 A 6, Jj = 2 V (ti A 7), fzi = 7, f
message with a nonnull value of the residual function set, = 1. v 7, f a = true, J7 = ti.

KSHEMKALYANI AND SINGHAL: A ONE-PHASE ALGORITHM TO DETECT DISTRIBUTED DEADLOCKS IN REPLICATED DATABASES 885

Fig. 2. Diffusion of FLOOD messages.

to the FLOOD messages from nodes 3 and 7 by ECHO’
(6, 1, Vi, Vi) messages. Before node 7 receives the ECHO
message, it receives FLOOD messages from nodes 3 and 4.
Node 7 responds to these FLOOD messages by PIP(7,1,0, I)
messages because the state of node 7 is indeterminate at
these instants. On the receipt of an ECHO(6, 1, 69, II)
message, node 7 succeeds in reducing itself and sends an
ECHO(7, 1, (7),0) message to node 5, its parent in the DST.

After receiving an ECHO message from node 7, node 5
gets reduced and sets H s to (7). On receipt of a PIP message
from node 1, node 5 sends ECHO(5, 1, (71, 0) messagc to
node 2.

Node 4 receives a FLOOD from node 1 before it receives
PIP from node 7. Consequently, it responds to the FLOOD
with a PIP(4, 1, Vi, Vi). Node 4 is not reduced after it has
received PIP from node 7 and thus sends a PII’(4, 1, Vi,
((4,791) to its parent in the DST (node 2).

Node 2 sends a PTP(2, 1, @, 0) message to node 3 in
response to the FLOOD it receives from node 3. Node 3
is not reduced after it has received ECHO from node 6
and PIP messages fram nodes 2 and 7. However, its
res idua l func t ion is 2V7. Therefore, i t s ends
PIP(3, I, Oi, { (3 ,2 V 7))) message to node 2.

On the receipt of PIP(4,1, II, ((4,7)}) from node 4 and
PIP(:I, 1, 0, {(:I, 2 V 7) }) from node 3, Z, at node 2 becomes
{ (3 ,2V 7), (4,7)}. On the receipt of ECHO(5, 1, 171, Vi)
message from node 5, node 2 sets Rz to (7). It adds its
residual function (2, 3 A 4) to 2, and succeeds in reducing
all three residual functions in Z2 using RL. consequently, R,
becomes (3, 4, 71. Since node 2 is reduced, it sends
ECHO(2,1,{3,4,7},B), to node 1. On receipt of this
message, node 1 is reduced and declares “no deadlock.”

1. Thc first parameter of an ECnO or a PIP message is the sendcis id, the
second parameter is the initiator nndc id, the third psrsrnctcr is the if set of
the sender, and the fourth ~ w a m c t c r is tlrc 2 set of the sender iiodc.

* PIP

Fig. 3. Propagation of ECHOPIP messages.

4 A DISTRIBUTED DEADLOCK DETECTION
ALGORITHM

The pseudocode for the algorithm uses the symbol + for
the assignment operator, and the CSP-like symbol 0 for
the selection operator. We choose the CSP-like notation
becausc it expresses concurrency more explicitly. The
notation [GC,U GC2n . . . UGCr,] is an alternative
guarded command, where a guarded command GC,
h a s t h e fo rm ” a - b ” w i t h t h e s e m a n t i c s
’’X alhen belsrskip”. A n o d e i h a s v a r i a b l e s
OUT,, I N z , arid fi which dcscribe the WPG locally.
Different invocations of the algorithm by the same
initiator are differentiated by timestamps, which are not
shown for simplicity. The deadlock detection algorithm is
given in Fig. 4a and Fig. 4b. The processing when a
FLOOD, ECHO, or PIP is received is done atomically.

5 CORRECTNESS PROOF
We prove that the initiator of the deadlock detection
algorithm declares deadlock i f f i t is deadlocked. The proof
uses several observations (Observations 1-7) and lcmmas
(Lemmas 1-11) about the properties of the algorithm.

The FLOOD messages induce a directcd spanning trcc
(DST) in the WFG. The root of the tree is the initiator and
the parent of each node i in the tree, denoted by parent,, is
the node from which i received its first FLOOD. The
transitive closure of pa~cnt , , denoted by parml:, is the set
of all ancestors of i. The children of node 7: in tlic DST,
denoted by of f .yrhrq , , are the nodes k such that
paTen lk = i. The transitive closure of o,Jfspring,, denoted
by offspring:, is the set of nodes in the subtree rooted at i.

Assertion: FLOOD messages are diffused through the
entire reachable WFG of the initiator.

886 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11. NO. 6. NOVEMBERIDECEMBER 1999

Data Structures
parenti: integer t 0;
outi: set of integer t OUT,;
Ri : set of integer t 0;

pip-senti: boolean t false;
Xi : AND-OR expression t fi;
#define struct FNRES ridinteeer:

2tc :ANDTOR expression;)
str: FNRES t I;
Zi : set of FNRES t 0;

/*node id of parent of node i . */
Pnodcs for which nodc i is wailing. */

I* nodes in this suhlrcc which scnt PIPS, */
/*and which subsequently got reduced.*/

/* indicatcs i l i sent PIP to othcr nodes. :$I
I** unblocking Sunclion fori. "I

/;* nodc idcnlifier. :$I
I*: rcsidual unblocking runclion. :I:/

/* local rcsidual [unction. *I
/;* rcsidual functions of unreduced nodes in suhtree. *I

initiate algorithm
PExcculcd by node i to detect whether it is dcadlockcd. *I
init t i;
parenti ei;
send FLOOD((, i) to each j in outi.

rcccivc FLOOD(k, init)
/*Executed by nodc i 011 rccciving a FLOOD mcssage from k . :I:/
r
L
I* FLOOD for new invocation (detected by timestamps, unshown).:F/ /*Casc FI .*/
outi = I t

parenti t k ; outi t OUTi; Ri, 2, t 0; Xi t fi; pip-senti t false;
f i = true t

fi = false t

/"; i is unblocked. Case Fl-A. */

P i is blockcd. Casc FI -B. */
send ECHO(i , init, 0,0) to I C ;

send FLOOD(i, init) to each j t outi;
0
I* FLOOD received hecore all expected PIPslECHOs rcceived. */ I* Case F2. " I

/* i is unblocked. Case F2-A. *I

I* i is hlockcd. Case F2-B. "/

outi # 0 t
xi = true t

Xi = false --t
send ECHO((, init, Ri, 0) to IC;

send PIP(i , init, I&, 0) to I C ;
pipsenti t true;

0
PI FLOOD receivcd arlcr all cxpccted ECHOs/PIPs received. *::I /* Case F3. "I

/* i is unblocked. Case F3-A. */

/* i is hlockcd. Casc F3-B. */

outi = 0 i
Xi = true i

Xi = false t
send ECHO(i , init, &,0) lo k ;

send PIP(i , init,&, 0) to k .
1

receive ECHO(j, init, R, 2)
/*Executed by nodc i on rccciving an ECHO from j. *:I
Xi = false --t /* i f ' i is blocked, Icy rcducing il by instantiating all instanccs of j */

I" in OUT; by true and lhcn cvaluating Xi. Stcp El , " I xi Xi (0UTi I j
Xi = true i

init = i t NO deadlock; exit;

Fig. 4a. The deadlock detection algorithm (continued on next page).

KSHEMKALYANI AND SINGHAL A ONE-PHASE ALGORITHM TO DETECT DISTRIBUTED DEADLOCKS IN REPLICATED DATABASES 887

pip-senti = true t Ri t Ri U {i}; /* update Ri Lo indicate i sent PIPs. '$1
I* pcrlorm processing coininon to PIPs and ECHOs. * I common_rcply-proccssing;

receivc PIP(j, init, R, 2)
/"Executed hy node i on recciving a PIP lrom i . *I -
common_rcply_proccssing ; I" No special x i ion? unique to PIP arc nccdcd. *I

coinmon_l.eply_processing
/'$Executed by node i to do coininon actions when either a PIP or ECHO is received. */
outi t o u t < \ { j } ;
Ri t R i IIR:

I* updalc local variahlcs outi, Ri, Zi. Step EPI. " I
. - ,

2, t 2, U 2;
outi = 0 + I* all cxpected rcplics arc received. Step EP2. *I

/* i is no1 ye1 reduccd. Add Lo Z j . Step EP2. I, *I Xi = f a l s e t
&.id t i;
str.uc t xi;
Zi Zi U {str};

eval;
(X i =true Apip-senti) i

Xi =true +

I" use Ri lo evaluate uiircduccd nodes i n Zi. Stcp EP2.2. *I
I" examine X i using Ri which was updated i n eval. " I

/* ili ScnL PIP, update Ri Lo indicate so. Step EP2.3. */
I" i is locally I-cduccd using updated Ri. Slcp EP2.4. * I

Ri t ni U{(};

init = i t NO deadlock; exit;
send ECHO(i, init, li;, 2,) to parenti;

xi = f alse t
init = i t deadlock; exit;
send PIP((, init, &, Zi) to parenti;

I" i is not locally reduccd using updalcd Ri. Stcp EP2.5. *I

&
PExcculed by node i Lo evaluate Z using the data that nodcs in R are onblockcd. */
tempR : set of integer t Ri;

repeat

l1' working variablc lor Ri. *I

For cvcry r t tempR do par
for every z t Zi do par instantiate each occurrence of r in z.uc by true ;
rap od;
tempR t tempR \ { r } ;

rap od;
Tor cvcry z t Zi do par

z.uc =true +
tempR t tempRU{z.id};
z.id # i t Ri t Ri U{z . id}; /* i f z.id = i, then Xi will also be lruc. " I
zi + zi \ { z } ;

rap od;
until tempR = 0.

Fig. 4b. The deadlock detection algorithm (continued from previous page)

The initiator arkit sends FLOOD messages to all nodes in
its OUT,,,,,. When a node receives thc first FLOOD message,
it sends FLOOD messages to all its direct successor nodes

are diffused through the entire reachable WFG of the
initiator. finite time.

Definition 2. A node i is locally terminuted iff it has processed
d l the PIPS and ECHOs it expected in response to the
FLooDs " sent, i'c', 'Iuii '.

(case F W and so on. From induction, FLOOD messages F~~~ Theore,,,s and 3 on time and message complexity
(see Section 6), it follows that the algorithm terminates in

888 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBERIDECEMBER 1999

Definition 3. Node i is locally reduced iff it receives a
sufficient number of ECHOs so that X, =true when
out, = ffl.

Definition 4. Node i is remotely reduced nt

such that z.id = i and there are enough elements in R, (these
have all been reduced either locally or remotely) by the time
outj = 0 to satisfy a's residual unblocking condition z.uc at j .

This reduction is remote and i is not aware of it. Note
that i 's residual unblocking condition in Z, may be stronger
than Xi, indeed it may even be true. The presence of a
sufficient number of elements in Rj indicates that i 's
requests as representcd in X, are satisfiable.

The Boolean variable reducei will be used to indicate
whether node i was reduced. The Boolean variable reduce)
will be used to indicate whether node i is reduced at node j .
reduce: indicates that node i was locally reduced. reduce;ii
indicates that node i was remotely reduced at node j .

Observation 1. The Z parameter senf by i on a PIP or an ECHO
to parenti is the vnlue of Zi when outi = 0. The Z parameter
sent by i on a PIP or ECHO to other nodes is ffl.

Obselvation 2. z (where z.id = i) can belong to in two ways:

if j # i, j received an ECHOPIP that contained z and
added z to Z, (step € P I) , or
if i = j , j added z to ,Zi because reduce: was false
when O U t j = ffl (step EP2).

1 .

2.

Lemma 1 states that the residual function for a node i,
i.e., z, where z.id = i, does not exist at a node that is not an
ancestor of i in the DST nor is it sent in ECHOs or PIPS by
such a node.
Lemma 1. V i t N , V j t N \ (parent: U[i}j, Zj does not

contain z such that z.id = a, nor does node j send or receive
an ECHO or PIP in which the Z parameter contains this z.

Proof. Assume that Zj contains z (where z.id = i j . This can
happen only by case 1 of Observation 2. j may receive an
ECHO or PIP only from some k, k E N \ (parent: U [i }) ,
containing such a z (follows from Observation 1). k must
have received such a z in an ECHO or PIP to include it in
%'and send it to j . Using an inductive argument and
noting that exactly one ECHO or PIP is sent on an edge
(T h e o r e m 3) , t h e r e m u s t b e a n o d e h,
h t N \ (parent: U { i } j , that locally inserted i in Z,, by
case 2 of Observation 2, implying h = i . This contradicts
Observation 1. Hence, j does uot receive such a z or send
such a z in the Z parameter in an ECHO or PIP, and Z j

0

Lemma 2 statcs that if node i is not reduced at local
termination, then its residual function, i.e., z, where z.id = i,
may exist only at nodes that are ancestors of i.
Lemma 2. -reduce: JZ (where z.id = i) may belong only to

Proof. The Z parameter on all messages other than to

cannot contain z (where z.id = i) ,

Zj, where j t parent:.

parenti sent by i is CI (Observation 1).

If -reduce; then at the time oilti = 0, i adds z (where
z.id = i) to Zi and z remains in 2, after i executes eval.
The Z parameter sent to parent, is 2,. parenti(= .jj will
add the received Z parameter to Zj . In turn, if -redim;,
then j will forward Zj which contains the z (where
z.id = i) only to parent,. By induction, the z value may
belong to paren%:.

From Lemma 1, no other node k receives the z value
under consideration in any message, or inserts it in 2,.
The lemma follows. 0

Lemma 3 states that if the residual function of node i, i.e.,
z, where %.id = i, exists at another node j , then the residual
function was created at i because node i was not reduced at
local termination.

Lemma 3. z t Z, where %.id = i =+ i added z to 2, because
-7ed7ice: when outi = 0.

Proof. z (where z.id = i) can bclong to Zj in two ways given
in Observation 2. The lemma holds if i = j (case 2). For
case 1, assume that j received an ECHO or PIP from
some IC containing such a z. Either k = i, or k # i and k
must have received such a z in an ECHO or PIP to
include it in Zk and send it to ,i. Using an inductive
argument and noting that exactly one ECHO or PIP is
sent on an edge, there must be a node /L that locally
inserted i in Z,, by case 2, implying h = i . Node i
includes the a (where z.id = i) in Zi only if reduce:
when outi = 0. 0

Lemma 4 states that i may be reduced at most at one
node in { i } Upurent:.
Lemma 4.

redircr' j rediicej

Proof. If rediice;, then no message sent by i will have z
(where z.id = i) in the Z parameter (Observation 1).
From Lemma 3, for any other node k, 2, will not contain
this z variable. reduceLSi cannot happen because z (where
z.id = 2) 6 Z,.

If redzicejji, assume without loss of generality that j is
a node such that -reduce;,, where j , k t parent: and
j E parent:. From Lemma 2, z (where zid = i) may
belong only to Zj, where . j t parmt,'~. As reduce,;., where
,i t parent:, when i gets reduced in procedure eval at j ,
the element z (where s.id = i) is dcleted from Z,. From
Observation 1 and Lemma 1, it follows that no node in
parent: will contain this z (where z.id = i); hence i
cannot get reduccd (again) at a node in parent:. The
lemma follows. 0

Obselvation 3. The R parameter that node i sends to parenti in
an ECHO or a PIP is a superset of the union of the R
parameters in ECHOs and PIPS that i received (step EP1).

KSHEMKALYANI AND SINGHAL: A ONE-PHASE ALGORITHM TO DETECT DISTRIBUTED DEADLOCKS IN REPLICATED DATABASES 889

Lemma 5 states that if i was remotely reduced at node
k, then at local termination, i belongs to R, for every
ancestor j of k.

Lemma 5. reduce;+, =+ V,j E parent: U { k } when out j = 0,
i E Ri.

Proof. If i was remotely reduced at node k, then i is placed
in RA during procedure eual. The lemma follows from
Observation 3, the observation that the value of the I?
parameter on any PIP or ECHO received by , j is set-
added to R,, and the observation that an ECHO or PIP is
sent to parent, only after . j has received an ECHO or PIP

0

Lemma 6 states that if a node j that sent a PIP gets
reduced before local termination, the element j is contained
in R, for every ancestor i of . j at the time i locally terminates.
Lemma 6. (Node .I sent a PIP and then reduce,:) ==+Vi t

parent: U{j} at the time ouli = v), j E i&.
Proof. When node , j sends a PIP and out, # I, it sets

pip-sent, to true (case F2-8). In the other cases when , j
sends a PIP, the following holds: out, = I and reduce: =
false (steps F3-B, EP2.5). Note that Put, # 0 before
reduce; if j sent a PIP and then redu
at the time reduce:, j is added to R, (step E l or EP2.3)
and, henceforth, , j does not send PIPS. When out, = ffl, Rj
is sent to parentj in an ECHO (step EP2.4). When

receives the ECHO from ,j, the H parameter
contains j and is set-added to ha?,,, . Subsequently, when
autp.Tc711, = 0, parent, sends an ECHO/PIP to its parent,
and the R parameter on this message contains j
(Observation 3, steps EP2.4, EP2.5). Using an inductive
argument, the R parameter containing j is sent in ECHOs
and PIPs (steps EP2.4 and EP2.5) sent to nodes in
parent,:. Each i t parent; will have j in Ri at the time

0

Lemma 7 states that if i t Rj, then i was already reduced
at some node 1 before local termination (1 = i) or was
remotely reduced at somc node 1 t OUT/' U { j } .

Lemma 7. i E R, =+reducej, 1 E OUTj~ u{j} and reduce;

Proof. i may belong to Ri only under one of the following

from each node in OUT, (step EP2).

a t j = v) (step EPI).

happened before i was placed in R,.

conditions:

I ,

2.

If redi~cr! holds and , j = i = 1. This denotes local
reduction (step El) .
When ,f invokes procedure mal, i gets reduced,
i.e., reduce&, and j = 1. This is remote reduction
(step EP2.2).
Whenever a PIP or ECHO is received by j , i is
contained in the R set parameter on the received
message, and this R parameter is set-added to Rj
(step EP1).

If i t R,, then i got reduced at j (items 1 and 2 above)
or a successor k E OUT, sent j a PIP or ECHO containing
i in the R parameter (item 3 above). For item 3 above, we
show by an inductive argument that i got reduced at

3.

some node h E OUT: by items '1 or 2. Note that only
one PIP or ECHO is sent on a WFG edge (proved
independently in Theorem 3). Therefore, therc must
exist a finite sequence (j, k , . . . , h) of at most c nodes in
0U.T: where:

a all the nodes except I k added i to thcir local
variable R by item 3, and then sent an ECHO/PIP
whose R parameter contained j to the previous
node in the sequence.
h added i to RI, by items 1 or 2, and then sent an
ECHO/PIP'whose R parameter contained j to the
previous node in the sequence.

a

It follows that if i E H j , then in all cases, ~ed7rc4 ,
where 1 E Om;+ U{.?}, and reduce; happened before i
was placed in i$. From Lemma 4, note that
1 E parent: U{ i } . 0

Observation 4. !f node i belongs to the R parametev in some
ECHO or PIP received by j , then redvcc; zuhere k E OU7:.

Lemma 8 states that if node i sends a PIP (either before it
is locally reduced or because it is not reduced at local
termination), then at local termination at each ancestor node
j of i, [(z t Z,, where z.id = i) (0 (i t Rj)].

Lemma 8.

(i sends a PIP A reduce:) v -reduce: wlken out, = f f l
tj ~j t (parent: U { i }) w / L e n outj = 0,

[(z E Z,, where z.id = i) a (i E E,)].

Proof. (=+:) If i sends a PIP and red~rcej, then i is inserted in
Ri because pip.senti = true (steps El , EP2.3), and 12, is
sent to parenti in the R parameter in ECHO. From
Observation 3, i E Rj, 'dj E parent:. Z, does not contain
z, where z.id = i, at the time oulz = v) because redu~e: .
From Lemma 3, it follows that no node ,j has z t Zj,
where z.id = i .

If 7 red7acei, then i adds z, where z.id = i, to Zt which
is sent to parenti only (Observation 1). i is not inserted in
Rj and is not sent in thc R parameter to any node. If i is
remotely reduced at j (j t porentl by Lemma 4), then
'dk t par& that lie between i and ,j, z E Z, and i 6 RI.
z E Z, because a precondition for reduce;. to occur is that
z belongs to Z,; from Lemma 1 and Observation 2, the
only way this can happen is that all nodes k receive z in
the Z parameter and pass it up the tree toward j . Also,
i 6 RA because i gets reduced only at j (Lemma 4); this
can happen only after ECHOs/PIPs containing z, where
z.id = i in the 2 parameter reach from i to j through k, at
which time .j adds i to Rj. If i E R,, it follows from
Lemma 7 that i is already reduced, a contradiction.

At j , z is removed from Z, and atomically added to
R, at local termination. For all nodes IL in parent: that
lie between j and the initiator, the z does not belong
to Z!, (see Observation 2) because: 1) the Z parameter in
no message from a node not on the DST path from j

890 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBERIDECEMBER 1999

to h contains z (Lemma 1); and 2) neither does the PIP/
ECHO from any node on the DST path between j and /L
because j removed z from Zi (Observation 1). Also, from
Lemma 5, i E l<ls for all such h. Hence, the RHS holds.
(e:) If z E Z,, where z.id = i, then z must have becn

locally inserted in Zi by i only (Lemma 3); this happens
whcn -reduce: at the time vuti = fl.

If i E I<?, then from Lemma 7, i was remotely reduccd
(v e d u c e : whcm outi = fl) or i was locally reduced. Note
that i f i did not send a PIP and was locally reduced, thcn
i is not inserted in Ri or in any Rj, It then follows that i
must have already sent a PIP if it was locally reduced.
The LHS follows. 0

Observation 5. For any i, the vnlne of X7 which is represented in
z.uc, zuhere z.id = i and z is in the parameter Z , progressively
strengthens us it ascends np the spanning tree in PIP nnd
ECHO messages.

Lemma 9. I f u nude i sends an ECHO or n PIP to node j , then
node i must hnve received U FLOOD from node .j.

Proof. Node i sends an ECHO or PIP to node j only in
these two cases:

on the receipt of a FLOOD from ,j if either case F1-
A, F2, or F3 holds, or
on the receipt of the last ECHO or PIP (steps
EP2.4, EP2.5), i sends an ECHO or a PIP to
pnrcn,li. parent; is initialized to j, so i must have
received a FLOOD from the parent (case F1-B).

In both the situations, i must have received a
FLOOD from j . 0

Observation 6 . l fnode i receives nn ECHO or U P I P froin node .j,
node i kus nlready sent n FLOOD to node .j nnd .f t m t , .
(Follows from Lemma 9 nnd case FI-B.)

Before proving that reduction is performed correctly, we
define a function h on the nodes in the WFG as follows:
First, view the predicate f z in disjunctive normal form
(DNF), where each disjunct z is of type P-out-of-Q [14].
OCJ'I;,, is the set of successors of ,i that are involved in
disjunct 2:. A disjunct :c at node i requires y,.% replies in
response to its yi,i requests, where 5 qi,,c, to unblock
node i. For every disjunct at any node 'i in a deadlock
(I), I <) , there are at least q2,1 ~ I , ; , : ~ + I outgning WFC edgcs
to other nodes in D.

/ k (i) + 0
M

if i is it lcal in WFG
if i isdeadlockod

/t,(ij indicates the shortest length over a sufficient
number of paths that have to be traversed by replies to
rcach i, so as to unblock i. If node i were to get unblocked
by receiving replies, at least one of them has to traverse a
pith of length h(i). However, this does not preclude node i
from getting unblocked by receiving a reply that has
traversed a path of length greater than /r(i). This is because
mure than the required number of nodes may send replies,
and these nodes need not lie on paths of length 5 h(i).

A node that is not deadlocked has a finite value of h
because it has a sufficient numbcr of edgcs to other nodes
which are not deadlockcd and there are sequences of replies
by which the node can get unblocked. A deadlocked node is
assigned a value of w for / I because there are no sequences
of replies by which the node can get unblocked. The length
of the shortest path traversed by a scrics of replies to
unblock a deadlocked node is w.

We now show that the algorithm pcrforms reduction
correctly.

Definition 5. A node in the WFG performs reduction if it gets
reduced and behaves ns follows:

I , nude i sends a PIP (ECHO) to all nodes other than
parenl, from which FLOOD is received before (after)
/ocd reduction. The Z parurneter is nn/I on the P I P
(ECHO) rnessuge.
node i sends nil ECHO (PIP) to pnrcnl,, when outi =

v) i f r e d u c e ~ (r e d i ~ c e) ~ ~) . The I3 and Z parameters ure
set to R, and Z7, respectively, wkcre:

Ri is set to:

2.

UkEoc,T, R purunzeter received 011 ECHO/I-'IP

U{;} if ((i hns sent n PIP) and (mlzice: when

U (nodes thuf i remotely reduces in proc. evali,

(u ~ . ~ ~ ~ ~ , ~ , z purarneter received in ECHOPIP

\{k I k is (remotely) reduced in procedure evall)
U(. Iz.id = i,z.uc = X i , nf, locul lerni~in~atio,~~}

from k

0Ul i = 64))

' . , 15 set to:

from k

if -reduce:. when ozil; = I

Observation 7. Node i does not send nny ECHOs nnless

Lemma 30. A m d c i for which h(i) < 00 performs reductiuii.
Proof. Wc prove the result by using induction on Ik(i).

reduce;,

Base case h(i) = 0: We show that a node i for which
h (i) = 0 pcrforms reduction by noting that its following
two properties satisfy Definition 5. 1) When such a node i
rcccives the first FLOOD, it executes case F1-A and
records itself as "active" (X , = 11.76~). redzicc; because i
has received a sufficient number of ECHOs, which is
zero (0) in this casc. Such a node returns an ECHO for
every FLOOD it receives (cases F1-A, F3-A). Cases F1-B,
F2, F3-B, E*, and El'* do not occur at this node. Hence, it
does not send any PIP. From Lemma 9, it follows that
ECHOs i t sends are unly in response to FLOODS. 2) By
stcps El'l and BP2, the parameters R and Z sent to
parenti are set per Definition 5. Therefore, a node for
which h(i) = 0 pcrforms reduction.
h(i) = 2 > 0: Assume that a node i with h(i) = 3:

performs reduction.

h(i) = 2; + 1: It necds to be shown that a nodc i with
h(i) = :c + 1 performs reduction. At the time node i
receives the first FLOOD, node i executes case F1-B and
records X , = f, (which evaluates to false because i is
blocked). By definition, there are a sufficient number

KSHEMKALYANI AND SINGHAL A ONE-PHASE ALGORITHM TO DETECT DlSl

of nodcs in OUT, to unblock i and these nodes have a
value of h that is 5 :L Such nodes perform reduction
by the induction hypothesis. Such a nodc, say
k t OUT,, gets reduced only in the following ways:

I ,

2.

3.
4.

rrd~ice; = true before k receives the FLOOD from
i (cases F2-A, F3-A).
pur in tk = i and reduce;: = tvue (case F1, step
PE2.4).
r.rducet during eval at i (step PE2.4).
reduce:+, j t OUT+, and the reduction of k is
learned by i through the R parameter in a
received ECHO or PIP. This scenario includes
the case where reduce; becomes t m e after k
receives a FLOOD from i, where i # purerith.
Note that j may or may not be an offspring of i .
reduce:,j 6 OUT:^,,? # i . In this case, the R para-
meter containing k sent in ECHOs or PIPs by j
does not reach i .
reduce!ih,j t OUT,' and thc II parameter con-
taining k sent in ECHOs or PIPs by j does not
reach i .
rerhrce; after receiving the FLOOD from i,
pnren,tt # i (casc F2-B) and the H paramctcr
containing k sent on ECHOs or PIPs by k does
not reach i.

Each node k that gcts reduced by cases 1 and 2 abovc
sends an ECHO to i . Each node k that gets reduced by
cases 3 and 4 above, gets reduced at node i and at a
successor of i, respectively.

If a sufficient number and combination of nodes k get
reduced by cases 14, then i gets locally reduced, and
behaves as follows: 1) After getting reduced, i sends an
ECHO only in response to every FLOOD (cases F1-A, F2-
A, F3-A, and step EP2.4 to respond to the FLOOD from
parent,) and does not send any PIP. Before i got reduced,
i ncver sent a ECHO (Observation 7) aiid i sent a PIP
only in response to every FLOOD (case F2-B), other than
the FLOOD from parenti. 2) By steps EP1 and EP2, the
parameters Hand Z scnt to paventi are set per Definition
5. Hence, i performs reduction.

Each node k that gets reduced by cases 5-7 above
sends a PIP to i in response to the FLOOD from i. If a
sufficient number and combination of nodes k do not gct
reduced by cases 1-4, then they will get reduced by cases
5-7, but Tredzicei. We show that i will be remotcly
reduced. Denote the set of nodes k by A. For cach node k
in A, identify the node 1 in piwenil where reduccf, and 1
added k to I?, (Lemmas 5 aiid 6). Denote this sct of nodes
1 as 13. Clearly, II exists-it is {init} in the degenerate
case. Let j be the common DST ancestor of i and the
nodes in R. Clearly, j exists-it is init in the degenerate
case. Then, R, contains all the elemcnts in A (Lemmas 5
and 6) which are sufficient to reduce i in procedure eval
at j , if i is not already in I?,.

5 .

6.

I .

Specifically, from Lemma 8,

[(z E z,,w1icrc z.id = i j 83 i E RI)] .

lRlBUTED DEADLOCKS IN REPLICATED DATABASES 891

If (z E Zl wherc z.id = ij, thcii i gets reduced at j . If
i t R,, then i was reduced somewhere along the branch
from i to j (Lemmas 4 and 7). This was due to the eager
dissemination of R on all PIPs and ECHOs. The residual
unblocking predicate Xi, represented as z, where
z.id = i , in the 2 parameter of ECHOs/PIPs was
trausmitted toward j up the spanning tree edges through
some combination of PIPS and ECHOs. This z.uc, where
z i d = i, may have been strengthened along thc way,
(and might have cvcn becomc true), whcn 11 at the
intermediate nodes became big enough to satisfy some
(or all) of z.uf: (Observation 5).

In addition to getting remotely reduced, i behaves
as follows: 1) i sends a PIP to only all nodes other than
parenti from which a FLOOD is received (cases F2-8,
F3-8) and never sends ECHOs (Observation 7). i sends
a PIP to parent, (step EP2.5). 2) By steps EPZ, EP2, the
parameters I1 and Z in thc PIP scnt to prcr'enti are sct
per Definition 5.

Hencc, a node whose h = z + 1 performs reduction. 0

Lemma 11. A node i f o r which h(i) = w does not get reduced.
Proof. By definition, all nodes whose h is m form a

deadlock (J),Kj in the WFG. For any node i t U , i
does not havc a sufficient number of edges to nodes in
OUT, \U to gct unblocked. When node i receivcs the
first FLOOD, X, = f j (which is false) and i propagates
FLOOD on its outward edges.

From casc F1-8 and Observation 6, node i may rcceive
at most one ECHO only on an outgoing WFG edge. All
the nodes in OUC \I) have their R < 00 and perform
reduction. Each node in OUT, \ D may scnd an ECHO on
its incoming edges but that is not sufficient to reduce i .

We show by contradiction that no nodc in D gets
reduced. Assume that i t J) is the first node in I1 to
get reduced (locally or remotely). If i was locally
reduced, then i received at least an ECHO from
another node in I) (contradicts the assumption, by
Observation 7) or at least one j t D belongs to R,,
implying by Lemma 7 and Observation 4 that ,j was
reduced before i got reduced (contradicts the assump-
tion). If ,i was remotely reduced at some k, at least one
j t D belongs to RA, implying by Lemma 7 and
Observation 4 that , j was reduced (cither local or
remote to j) before i was rcduced at k (contradicts thc
assumption). Reductio ad absurdum.

Thus, no i E D gets rcduced. 0

Theorem 1. The initiator declnres dendlock iff it is deadlocked.
Proof. Reduction of the WFG is performed correctly from

Lemmas 10 and 11. The order of reduction of nodes is
unpredictable because of unprcdictable message delays.
However from Holt's result [MI, the nodes can be
reduced in any order without changing the final out-
come. All deadlocked nodes are not reduced and all
othcr nodes are reduced.

(Sufficiency:) If the initiator declares deadlock, it is not
locally reduced (stcp EP2.5). The initiator cannot get
remotely reduced. Therefore, it is not reduced. From
Lemmas 10 and 11. it is deadlocked.

892 IEEE TRANSACTIONS ON KNOWLEDGE

(Necessity:) If the initiator is deadlocked, it is not
reduced (Lemma 11). So, on local termination, it declares
deadlock in step EP2.5. 0

5.1 Deadlock Resolution
If the initiator i finds that it is deadlocked, it can use 2, to
locally construct the topology of the deadlocked portion of
the WFG. It can then use various strategies to choose a
desirable set of nodes to abort to resolve the deadlock [MI.
The algorithm considerably facilitates efficient and fast
resolution of a dctected deadlock, whereas the other
algorithms [6], [7], [21], [28] require an additional round
of messages to collect the information that is needed to
resolve the deadlock.

6 PERFORMANCE
We analyze the time complexity, message complexity, size
of messages, and computational complexity for an invoca-
tion of the proposed deadlock detection algorithm on a
WFG (N, E) . The parameters used are d, the diameter of the
WFG, and e = 1731.

Theorem 2. The algoyithm terminates in 2d + 2 message hops.
Proof. The algorithm terminates when the initiator receives

a reply along each outgoing edge. Assume that each
message hop takes one time unit.

The FLOODs initiated by the initiator induce a
spanning tree in the WFG. When a node receives its
first FLOOD, it sends FLOODs immediately. Let
d,,,,, 5 d be the maximum distance of any node from
the initiator in the WFG. The latest time that a FLOOD
is in transit is d,,,,,. + 1 message hops.

A node i in the spanning tree immediately replies
to its parent when it has received an ECHO or PIP
from each node in OUT,. FLOODs sent to nodes in
Or/?; \offspring, are immediately responded to by
ECHOs or PIPS. At d,,c,z, + 2 time units, each node i has
received an ECHO/PIP f rom each node in
OUT, \off ,~pringi. A node at distance d,,, will have
received all expected replies at time d,,,,,: + 2, and sends
a reply to its parent at distance d,,,,,,: ~ 1. By induction, a
node at depth z receives all expected replies by time
d,,,,,, -k 2 i- d,,,,, - z. The initiator which is at distance 0
receives all expected replies by time 2 d,,,,, + 2 and
terminates. 0

Observe that the initiator can detect it is not deadlocked
in fewer message hops as soon as it gets locally reduced. In
the best case, this is only two message hops.
Theorem 3. An invocation of the algorithm uses 2e messages.
Proof. A node sends exactly one FLOOD on each outgoing

edge once (case F1-B). Thus, e FLOODs are sent for an
invocation of the algorithm.

A FLOOD from i sent to a node in OFra \ o f f sfJringi
is responded to by a ECHO or a PIP (cases F2 and F3). A
FLOOD sent by i to a node in offsprin,g,, where
offspringi is a leaf node in the WFG is responded to
by an ECHO (case F1-A). A FLOOD sent by i to a node in

AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBERIDECEMBER 1999

o f f spr ing i , where o,f,fspringj is a nonleaf node in the
WFG is responded to by exactly one PII' or ECHO (step
EP2.5 or step EP2.4). Thus, there are exactly e I'IPs or
ECHOs, and the message complexity is exactly 2e. 0

Observe that PIP and ECHO messages are of variable
length, and may be larger than those in earlier algorithms
[6], [7], 1211, [28]. However, message headers are usually
large, so a slightly larger message body should not pose a
problem. We now analyze the size of PIPS and ECHOs. A
node . j cannot belong to any Ri if it does not send any PIPS
before it is locally reduced. In the best case, R, is @. Due to
eager dissemination of reduced node information, K can
contain any node in OTJT,'~ that sent a PIP before local
reduction or that was remotely reduced at some other node
in O U T 1 , Hence, in the worst case, Ri is the set of lOU7;' I
node identifiers. To analyze the sizc of /%, we use the P-out-
of-Q representation of generalized requests; as reviewed in
Section 1, the P-out-of-Q request model and the AND-OR
request model have equivalent expressive power and the
presented algorithm can be applied directly to both request
models. A P-out-of-Q formula when translated to the AND-
OR model can become exponentially large in Q. An AND-
OR formula can always he translated into a P-out-of-Q
formula, as shown in [19]. In the P-out-of-Q model, the
unblocking function X , at a node i requires the representa-
tion of IOUTjl node identifiers. In the best case, the residual
function of i at local terminalion can be true and Zi can be 1.
In the worst case, the local residual function can be Xi for
node i and 2, contains X , for every j in OUT;^, thus
requiring the representation of

IWT,l
j tOUTsl ll{ij

node identifiers. The size of a PIP or ECHO is the sum of the
estimates of the sizes of Ri and Z,. In the best case, this is
the representation of v); in the worst case, it is the
representation of

l O W + l + c lOU.r,l
j E o r f p { , j

node identifiers, with the added constraint that a node
identifier cannot appear in both Ri and 2,. Although no
empirical data on the size of WFGs or deadlocks is available
for the P-out-of-Q request model, for the single-request and
AND request models, it is argued in [3], [13] that most
deadlock cycles are of length 2 and WFGs are also relatively
small. We expect that for the P-out-of-Q request model, the
WFGs will not be significantly larger than those for the
AND request model. Hence, even in the worst case,
messages are expected to be small.

For the computational complexity at a node, we again
consider the equivalent P-out-of-Q representation of un-
blocking functions. We need to determine the computa-
tional complexity of procedure m a l , which is executed once
by each node i when it receives its last ECHO or PIP. For
each pass of the outer repent loop, at least one new node is
inserted in tempR. In the worst case, there will be 1,
executions of the Yepeat loop, where %, is the number of
nodes in the subtree of the WFG rooted at i . Within each

KSHEMKALYANI AND SINGHAL: A ONE-PHASE ALGORITHM TO DETECT DISTRIBUTED DEADLOCKS IN REPLICATED DATABASES 893

repent loop, at most l i Zs arc instantiated by the new
members of tem& and cvaluated; this can be done in
parallel in O(1) steps, and serially in O(t,) steps. Hence, in
the worst case, the processing at node i without any
parallclization is O(t:). In the best case, it is O(1) when
Itj = I or Zz = 0.

Tablc 1 compares the pcrformance of the proposed
algorithm and thc algorithms in [6], 171, [21], [28] in terms of
the number of phases, time complexity, and messagc
complexity. The proposed algorithm peiforms better than
the algorithms in 161, [7], [21], [28]; it has a message
complexity of

(2 * tlrc ,number of ed.qes in tlic W F G)

and the worst-case time complexity of

(2 * tire diri,rrietev of h e W F G) -1- 2

hops. Also, thc proposed algorithm has information locally
available at the initiator to dctermine how to resolve a
detected deadlock; other algorithms incur extra time and
messagc overhead to achieve this. In addition, even if the
initiator is not deadlocked, Z j at the initiator contains
information on the residual function of cach node in the
WFG that could not be even remotely reduced.

We conjecture that the proposed algorithm is uptimal in
the number of messages and in time delay i f detection of
gencralized deadlocks is to be carried out undcr the
following framework

No node has complete knowlcdge of the topology of
the WFG or the system.
The deadlock detection is to be carried out in a
distributed manner.

This framework is similar to that in [6], [211, 1281. The
algorithm docs not introduce the latent message overhead
to acknowledge computation messages (in [71, every
computation messagc sent has to be individually acknowl-
edged; this greatly increases the messagc complexity) and
does not have latent delays (as in [7], where the algorithm
blocks until all previously sent computation messages are
acknowledgcd).

The informal argument to support our conjecture of
optimality is as folluws: The only way to identify the
WFG when the topology of neither the WFG nor the
system is known is to use the diffusion of messages
along the WFG edgcs (folklore). This takcs d + 1 time
units and e messages. Due to the following two reasons,
it is necessary that a node respond to every FLOOD
message it reccives:

I . If a node is in the indeterminate state when it
receives a sccond or subsequeut FLOOD message, it
must immediately respond to it (e.g., by a PIP) to
avoid deadlocking of the algorithm itself. Consider
an cxamplc given in Fig. 5. The thick edges define
the DST. If node 4 does not immcdiately respond to
the FLOOD messages from nodes 3 and 5, and node
5 does not immediately respond to the FLOOD
message from node 4, the algorithm is deadlocked.

Fig. 5. An example detection

2. If evaluation of the WFG topology for deadlock is to
be conducted in a distributed manner, each node
involved in the diffusion process must receive a
response to the diffusion messages from each of its
direct successor nodes so that it can decide about its
own reducibility. In turn, it must send a response
containing information about its reducibility status
to all nodes from which it rcceivcd a diffusion
(FLOOD) message.

Thus, at least e return messages are rcquired. Since
return messages sequentially travcrsc thc WFG, they take
d -1 1 time units to reach the initiator node. Thus, an
additional d + I time units and at least e mcssages are
required aftcr the diffusion of messages is over. Hence, we
conjecture that the time and the message complexity of 2 1 - 1
2 and 2e, respectively, are optimal.

7 DISCUSSION AND CONCLUSIONS

Handling Dynamic WFGs. The algorithm was prcsented for
a static WFG. In practice, nodes are making requcsts and
requests are being satisfied; therefore, a WFG is dynamic.
Consider an edge from i to j . Ay the time a FLOOD sent by L
reaches j, j has already replied to i . This edge is a phnntonl
edge. Treatment of phantom edges that arisc due to thc
dynamic nature of the WFG is described in [Zl]. When a node
j receives a FLOOD from a node a, ,I checks if this is a phantum
edge, i.e., is i @ [AT?? If so, then ,j immediately rcturns an
ECH0toi.Foraphantomedgefroinnodei tonodeJ,nodeiis
defined to perceive h(,j) as zero (0). Node j may still be a part
of the WFG, but pnrerktj # i and parmr; may perceive a
nonzcro value of h (j) . The message and the time complexitics
of the modified algorithm remain unchanged; however,
phantom edges are appropriately handlcd in the reachable
WFG during the diffusion of FLOOD messages.

Handling Concurrent Initiations. Due to the symmetric
nature of the algorithm, multiple nodes may initiate the
deadlock detection concurrently and a particular node
may initiate it multiple times. Sequence numbers and
initiator-ids distinguish between different instances of the
algorithm. An optimization on the number of messages
can be performed by maintaining a timestamp-based

894 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBERIDECEMBER 1099

priority order (in all invocations of the algorithm and
suppressing lower priority algorithms.

In summary, we presented an efficient algorithm for
detecting deadlocks in replicated databases. Replicated
databases offer increased fault-tolerance and better respon-
siveness but require quorum algorithms to serialize con-
current read and write operations from different
transactions for concurrency control [t], [4l, [51, [12l.
Replicated databases that use quorum-consensus algo-
rithms are prone to deadlocks because transactions which
are waiting for a quorum to be satisfied may be involved in
an indefinite wait. Requests in replicated databases are 1’-
out-of-Q or AND-OR type requests arid the resulting
deadlocks are generalized deadlocks. The presented algo-
rithm to detect generalized deadlocks is based on the
principle of diffusion compntatioii and performs reduction
of a distributed WFG to detect a deadlock. Deadlock
detection is performed by echoing the diffusion computa-
tion messages a t terminating nodes and reducing the graph
when an appropriate condition at a node in the echo phase
is found. If sufficient information to decide the reducibility
of a node is not available at that node, the algorithm
optimizes the performance by attempting the reduction
later in a lazy manner.

We proved the correctness of the algorithm. The
algorithm detects all deadlocks in a finite time and if it
reports a deadlock, the deadlock exists in the system. The
algorithm performs considerably better than the existing
algorithms to detect generalized deadlocks in distributed
systems. It has a message complexity of 21, messages and
the worst-case time complcxity of 2 d + 2 hops. We con-
jectured that the algorithm is optimal in time and message
complexity to detect generalized deadlocks if no node has
complete knowledge of the topology of the WFG or of the
system and the deadlock detection is to be carried out in a
distributed manner.

The presented algorithm is applicable to detecting
deadlocks in other domains such as resource allocation in
distributed operating systems, store-and-forward commu-
nication networks, and communicating processes, where
gcncralized deadlocks occur, as well as to traditional
domains where single request, AND request, and OR
request deadlocks occur.

ACKNOWLEDGMENTS
A preliminary version of this algorithm appears in ”Dis-
tributed Detection of Generalized Deadlocks,’’ by Ajay D.
Kshemkalyani and Mukesh Singhal, presented at the 17th
IEEE International Conference on Distributed Computing
Systems (pages 545-553) that was held in May ‘1997.

REFERENCES
[l] D. Barbara, H. Garcia-Mdina, and A. Spauster, “lncrcasing

Availability Under Mutual Exclusion Constraints with Dynamic
Vote Reassignment,” ACM Tmns. Conipiiter Systcnis, vol. 7, no. 4,
pp. 394-426, Nov. 1989.
C. Beeri and R. Obermarck, “A Resource Class lndepcndcnt
Deadlock DetectLon Algurilhm,” Technical lleport No. RJ-3077,
1BM Research Laboratory, San Jose, Calif., 1983.
P.A. Bemstein, V. Iladrilacos, and N. Goodman, Cuncurreiic!,
Conlrol m d Recoiw!, in Dafnbnse Systems. Addison-Wcslcy, 1987.

[2]

[3]

[41 B. Bhargava and A. Held, ”Efficient Availability Mechanisms in
Distributed Database Systems,” Proc. Int’l Con/ hformufion and
Kiioruicdge Mnringonciil, pp. 645-654, Nov. 1Y93.
B. Bhargava and A. Hclal, “Pcrformancc Evaluation of Quorum
Consensus Replication Method,” Proc. Ini’l Cuiif. Computer
I’eifoormnnce orid Dq,cndiibilil!l S y n p , pp. 165.172, Apr. 1995.
G. Bracha and S. Toucg, ”Distributed Dcadlock Detection,”
Dislribiittd Com}miing, vol. 2, pp. 127-138, 1987.
J. Brzezinski, J.M. Hclary, M. Raynal, and M. Singhal, “Deadlock
Models and Generalized Algorithm for Distributed Deadlock
Detection,” 1. Pninllei iind Distribirh~i Co,,ipuling, vol. 31, no. 2,

K.M. Chandy, J. Misra, end L.M. Haas, “Distributed Deadlock
Dctrction,” ACM Tmns. Coiiipiillcr Sjlsieiws, vol. 1, nn. 2, pp. 144-

pp. 112-’125, Uec. 1YY5.

~~

156,1Y83.
E.W. Dijkstra and C.S. Scholten, “Termination Detection fnr
Diffusine Comuutatians.” liibirnintion Procrssinp I.efirrs. vol. 11.

[Y]
“ L . ,

no. 1, pp. 1-4, Aug. 1980.
[I O] D.K. Gifford, ”Weighted Voting for Replicated Data,” Proc.

Sevmtii ACM Syr?rp. Operuli!ig Sysfciris Principles, pp. 150-162,

[Ill V.G. Gligor and S.H. Shattock, ”On Deadlock Detection in
Distributed Systems,” IEEE Trmis. SoJIwnrr Eng., vol. 6, no. 5,
pp. 435-440, 1980.

1121 K. Goldman and N. Lynch, ”Quorum Co&nsus in Nested
Transaction Systems,” ACM ‘Trans. Unlobnse S!/sleiris, vol. 19, no. 4,
pp. 537-585, Dec. 1994.

[I31 J.N. Gray, P. Homan, H.F. Knrtli, and R.L. Ohermarck, “A
Strawman Analysis of tlic Probability of Waiting and Deadlock
in B Distributed System,” Tccluiical Report No. 3066, 1BM
Research Laboratory, San Josc, Calif., 1981

[I41 1. Hcrrnan atid K.M. Chandy, ”A Distributed Procedure tu Detect
AND/OR Dcadlocks,” Tcchnical Report No. TR-LCS-8301, Univ.
of Texas, Austin, Feb. 1983.

[IS] G.S. I l u and C.V. Ramatnoorthy, “Protocols for Dcadlock
Detection in Distributed Database Systcms,” I
Eng., vol. 8, no. 6, pp. 554-557, Nov. 1982.

[I 61 C.A.R. Kosre, ”Communicating Sequential Processes,” C o m n .

[I71 M. Hofii, “On Timeout for Global Deadlock Dctcctioii in
Decentralized Database Systcms,” i i fo,mntion Procrssiiiy I.rtters,
vol. 51. no. 6. uu. 295-302. 1994.

ACM, ~ 0 1 . 2 1 , ,IO. 8, pp. 666.677, A U ~ . 1 9 7 ~ .

Cuarpiiiihg S I I I V P ~ , vol. 19, no. 4, pp. 303-328, Dcc. 1987.
[20] A.[). Kshemkalyani and M. Singhal, “Characterization and

Carrcctness of Distributed Deadlock Detection and Resolution,”
1. Piiriiliel and Distribuicd Cnnipirtiizg vol. 22, no. 1, pp. 44~59,
July 1994.

[21] A.D. Kshcmkalyani and M. Singhal, “Efficient Detection and
Resolution of Gcncralized Distributed Deadlocks,” IEEE ‘ h i s .
Softitore Eng., vol. 20, no. 1, pp. 43-55, Jan. 1994.

[22] A.D. I<shcmkalynni and M. Singhal, “Invariant-Based Verikation
of a Distributcd Deadlock Detcctiun Algorithm,” IEEE Trms.
Soffmiirr Eiig., vol. 17, 110. 8, pp. 789.799, Aug. 1991.

[23] A.D. Kshemkvlyani and M. Singhal, ”Correct Two-Phasc and
One-Phase Deadlock Deteclkm Algorithms for Distributcd Sys-
tcms,” Pmc. Second I E E E Syrnp. Pnrnllei niid Distribiifed Processing,
pp. 126-129, Dcc. 1990.

1241 D.A. Menasce and R.R. Muntz. ”Lockine and Deadlock Dctcction . .
in Distributed Databases,” IEf% Trmis. Sdflium‘c Eng., vol. 5, no. 3,
pp. 195-202, 1979.

[XI R. Mukkemala, “Storage Elkient and Secure Replicated Dis-
tributed Databases,” 1EE.E l m m K,iowicd,ye “nil Dnln Eiig., vol. 6,
no. 2, pp. 337-341, Junc 1994.

[26] M. Singhal, ”Dcadlock Detection in Distributed Systems,”
Computer, vol. 22, no. 11, pp. 37-48, Nov. 1989.

[27] G. Vossen and S.S. Wung, ”Correct and Ijlficient Deadlock
Detcction and Resolution in Distributed Database Systems,” Pmc.
Fif th IEEE Irrt’l Conf. Doin Ens., pp. 287-294, 1989.

[28] J. Wmg, S. Huang, and N. Chen, ”A Distributed Algorithm for
Dctccting Gcneralized Deadlocks,” technical report, Dept. of
Comvuter Science. National Tsine-Nu.? Univ.. 1990.

KSHEMKALYANI AND SINGHAL: A ONE-PHASE ALGORITHM TO DETECT DISTRIBUTED DEADLOCKS IN REPLICATED DATABASES 895

Ajay D. Kshemkalyanl received a BTech
degree in computer science and engineenng
from the Indian Institute of Technology, Mumbai,
in 1987: and a PhD degree in computer and
information science from Ohio State University
in 1991. He has been an assistant professor in
the Electrical Engineering and Computer
Science Department at the University of Illinois
at Chicago since 1998. From 1991 to 1997, he
worked at iBM Research Triangle Park in

Mukesh Singhal received a bachelor of en-
gineering degree in electronics and communica-
tion engineering (with high distinction) from the
University of Roorkee, Roorkee, India, in 1980;
and a PhD degree in computer science from the
University 01 Maryland, College Park, in May
1986. He is presently an associate professor in
the Computer and Information Science Depart-
ment at Ohio State University, Columbus. His
current research interests include operating

computer networks and distributed systems. His current research systems, database systems, distributed systems, mobile computing,
interests are in distributed computing, computer networking, and high-speed networks, computer security, and performance modeling. He
operating systems, He is a member of the ACM and a senior member has published over 100 refereed alticles in these areas. He has
of the IEEE. coauthored two books entitled Readings in Distributed Computing

Systems (IEEE Computer Society Press, 1993) and Advanced
Concepts in Operating Systems (McGraw-Hill, 1994). He is currently
the program director of the Operating Systems and Compilers Program
at the National Science Foundation

