
Copyright 1994 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Near–Critical Path Analysis of Program Activity Graphs

Cedell Alexander, Donna Reese, and James Harden

NSF Engineering Research Center for Computational Field Simulation
Mississippi State University

Abstract
Program activity graphs can be constructed from time-

stamped traces of appropriate execution events. Informa-
tion about the activities on the k longest execution paths is
useful in the analysis of parallel program performance. In
this paper, four algorithms for finding the near–critical
paths of program activity graphs are presented and
compared, including an efficient new algorithm that uti-
lizes slack values calculated by the critical path method to
perform a best–first search in linear space. The worst–case
time and memory requirements of the new algorithm are in
O(ke) and O(k+e), where e is the number of edges in the
graph. Results confirming the efficiency of the algorithm
are presented for five application programs. A framework
for utilizing the near–critical path information is also de-
scribed. The framework includes both statistical summa-
ries and visualization capabilities.

Index Terms—Critical path, program activity graph,
instrumentation, parallel program performance analysis

I. Introduction
Developing efficient parallel programs has proved to be

a difficult task. Substantial research has been devoted to
many aspects of the problem; active work spans the com-
puter science spectrum from algorithmic techniques, pro-
gramming paradigms, advanced compilers, and operating
systems to architectures and interconnection networks.
Complex interactions at each of these levels have provided
motivation for a suite of performance measurement and
analysis tools.

Insight into a system’s dynamic behavior is a prerequi-
site for high–productivity optimization of parallel pro-
grams. Multiple tools, offering varying perspectives, may
be required to gain the necessary insight. The IPS Parallel
Program Measurement System [1] and the Pablo Perfor-
mance Analysis Environment [2] are two significant tool-
kits facilitating different viewpoints based on timestamped
probe descriptions of run–time events.

IPS provides a hierarchy of statistical information based
on a five layer model consisting of the whole program, ma-
chine, process, procedure, and primitive activity levels.

Critical path and phase behavior analysis techniques guide
the search for performance problems. Critical path analysis
focuses the optimization effort by identifying the activities
on the longest execution path; to improve the program’s
performance, the duration of activities on the critical
path(s) must be shortened.

Pablo is a visualization and sonification toolkit designed
to be a de facto standard via a philosophy of portability,
scalability, and extensibility. Custom performance analy-
sis environments are constructed by graphically intercon-
necting a set of analysis and display modules. The graphi-
cal programming model encourages experimental
exploration of the performance data.

The utility of critical path analysis can be extended when
information is available about the k longest paths [3]. Opti-
mization of specific critical path activities may provide
little overall performance improvement if the second, third,
etc., longest paths are of similar duration and consist of in-
dependent activities. Near–critical paths can be used to fur-
ther refine the analysis process by quantifying the benefit
of optimizing critical path activities. The focus of this pa-
per is on an efficient algorithm for determining the near–
critical paths of program activity graphs. Efficient algo-
rithms are important because program activity graphs can
be very large (hundreds of thousands of vertices).

Additionally, we present a framework for utilizing the
near–critical path information that encompasses both sta-
tistical summaries (patterned after IPS) and the visualiza-
tion capabilities of Pablo. Within the framework, guidance
is provided by a new performance debugging metric. The
Maximum Benefit Metric uses near–critical path data to
predict the maximum overall performance improvement
that may be realized by optimizing particular critical path
activities.

In Section II, critical path algorithms are reviewed to
provide the background needed for description of near–
critical path algorithms in Section III. Probe acquisition
and construction of program activity graphs are discussed
in Section IV. Algorithm performance results are presented
in Section V, and Section VI contains the proposed frame-
work for near–critical path analysis. The paper is con-
cluded in Section VII with a summary of key results and
plans for future research.

II. Critical path algorithms

A. Program activity graphs
Program activity graphs (PAGs) are a new application of

the activity on edge (AOE) networks that are often
employed for planning and scheduling purposes. A PAG is
an acyclic, directed multigraph representing the duration
and precedence relationships of program activities. The
edges represent execution activities, the weights of the
edges represent activity durations, and the vertices mark
activity boundaries. In AOE networks, outgoing activities
from a vertex cannot begin until all incoming activities
have completed.

Multigraphs are distinguished by multiple edges be-
tween a given pair of vertices. Although not all PAGs are
multigraphs, depending on the semantics of the target sys-
tem, generality requires that near–critical path algorithms
accommodate multigraphs. The biggest impact of the mul-
tigraph characteristic is on data structure selection. For ex-
ample, adjacency matrices are inappropriate data structures
for multigraphs.

B. Longest path algorithm
IPS employs a modified shortest path algorithm, based

on the diffusing computation paradigm [4], to find the path
with the longest execution duration. A diffusing computa-
tion on a graph begins at the root vertices and diffuses to all
descendant vertices. In the synchronous variation, a vertex
will not diffuse a computation to its descendants until all in-
coming computations are received. The asynchronous
variation diffuses the computation as soon as it receives any
new computation. The asynchronous variation trades effi-
ciency for concurrency, which is potentially attractive in a
parallel environment; however, the results of experiments
reported in [5] are not promising. A sequential version of
the synchronous algorithm is given below.

Longest path algorithm
Q is a vertex queue
Activity edges are represented by descriptors <num,t,h,d>,
where num uniquely identifies the edge, t is the tail (preced-
ing) vertex, h is the head vertex, and d is the duration
D[v] contains the duration of the longest path from a root
vertex to vertex v
P[v] contains a pointer to the descriptor of the final edge on
the longest path to vertex v

for each vertex v in graph // initialization
D[v] := 0
Count[v] := in–degree of vertex v
if Count[v] = 0

insert v in Q // v is a root vertex
while Q is not empty

remove vertex t from head of Q
for each outgoing edge e from t

Count[h] := Count[h] – 1
if D[h] < (D[t] + d)

P[h] := address(e’s descriptor)
D[h] := D[t] + d

if Count[h] = 0
insert h at tail of Q

C. Critical path method
The critical path method is an operational research algo-

rithm for finding the longest path(s) through an AOE net-
work [6]. The critical path method calculates early start
and early finish times for each activity in a forward pass
through the network. Late start times, late finish times, and
slack values are calculated in a backward pass. The follow-
ing definitions will be used to explain the algorithm:

Critical path method notation
d(i): duration of activity i
ES(i): early start time of activity i
EF(i): early finish time of activity i, ES[i] + d(i)
LS(i): late start time of activity i
LF(i): late finish time of activity i, LS(i) + d(i)
TS(i): total slack of i, LS(i) – ES(i) := LF(i) – EF(i)
FS(i): free slack of i, ES(i’s immediate successors) – EF(i)

The early start time of an activity is the earliest possible
time the activity can begin. The late start time of an activity
is the latest time the activity can start without extending the
overall network completion time. The slack values are crit-
icality measures. The total slack of an activity is the
amount of time that it can be delayed without impacting the
overall completion time. Activities with zero total slack
are on a critical path. The free slack of an activity is the
amount of time the activity can be delayed without impact-
ing the early start time of any other activity. The total slack
values of activities on a path are not independent; delaying
an activity longer than its free slack reduces the slack of
subsequent activities. Fig. 1 shows the values calculated by
the critical path method for a simple example network.

0

1

2

3

4

d=20

d=15

d=10

d=5

d=10

d=5

[20;35]
[20;35]

TS = 0
FS = 0

[35;45]
[35;45]

TS = 0
FS = 0

[25;30]
[30;35]

TS = 5
FS = 5

Legend:
[ES;EF]
[LS;LF]

[20;25]
[25;30]

TS = 5
FS = 0

[0;20]
[0;20]

TS = 0
FS = 0

TS = 20
FS = 15

 [0;10]
[20;30]

Fig. 1. Critical path method example.

num=0

num=3

num=1

num=2

num=4

num=5

The forward pass of the critical path method considers
activities in topological order and the backward pass con-
siders activities in reverse topological order. A topological
ordering of activities is one in which no activity appears un-
til all of its predecessors have appeared. Adjacency lists are
an appropriate data structure for building a topological or-
dering [7]. An adjacency list for a vertex of a directed mul-
tigraph is a list of all outgoing edges. A count field contain-
ing the in–degree of the vertex is also maintained at the
head of each list. When a multigraph with e edges is repre-
sented as a set of adjacency lists, the time required to per-
form a topological sort is in O(e) [8] . Given a topological
ordering, the forward pass of the critical path method can
be performed in O(e) time. In fact, the forward pass can
even be performed in parallel with the topological ordering
[8]. The backward pass can also be performed in O(e) time.
For succinctness, a topological ordering is assumed in the
basic algorithm presented below.

Critical path method
A is an array of adjacency list heads
Adjacency list heads contain ES and LF fields specifying
the early start time of all outgoing edges and the late finish
time of all incoming edges for the associated vertex
Activity edges are represented by the 8–tuples
<num,t,h,d,EF,LS,TS,FS>
Forward pass algorithm:

for each vertex v // initialization
A[v].ES := 0
 A[v].LF := INFINITY

critical_path_duration := 0
for each activity edge e in topological order

EF := A[t].ES + d
A[h].ES := max(A[h].ES,EF)
critical_path_duration :=

 max(critical_path_duration,EF)
Backward pass algorithm:

for each leaf vertex v
A[v].LF := critical_path_duration

for each activity edge e in reverse topological order
LS := A[h].LF – d
A[t].LF := min(A[t].LF,LS)
TS := LS – A[t].ES
FS := A[h].ES – EF

D. Algorithm comparison
The longest path algorithm is more efficient than the

critical path method. However, the critical path method
produces more information; multiple critical paths are
identified and the slack criticality measures are provided.
Both algorithms have the same asymptotic time complex-
ity, in O(e). Selection of the most appropriate algorithm is
dependent upon application needs.

III. Near–critical path algorithms
A. Path enumeration algorithm

An algorithm for listing the k shortest paths between two
vertices, v1 and vn, of an acyclic digraph is described in [8].
The algorithm begins by finding the shortest path, p1, be-
tween the two vertices. If p1 contains m edges, denoted e1,

e2, e3, . . ., em, the second shortest path, p2, is the minimum
duration path in the set, P2, of shortest paths that differ from
p1 in one of m ways. To form P2, we find the shortest path
from v1 to vn subject to each of the following m constraints:
(1) the path includes e2, e3, . . ., em, but not e1, (2) the path
includes e3, . . ., em, but not e2, . . ., and (m) the path does
not include em. The third shortest path is the shortest path
in the set (P2 – {p2}) ∪ P3, where P3 is generated by further
partitioning of p2. Subsequent paths are found in a similar
manner. The algorithm could be easily modified to enu-
merate longest paths. For a multigraph containing n ver-
tices and e edges, the worst–case time and memory require-
ments are in O(kne) and O(kn2+e), respectively.

B. Longest path algorithm extension
A more straightforward approach is to simply extend the

previously described longest path algorithm to find the k
longest paths. To adapt the algorithm, we employ an array,
A, of adjacency lists and augment the list heads with an
array, PD, that contains k path_descriptor records of the
form <duration,edge_p,index>. The duration field con-
tains the duration of a preceding path from a root vertex, the
edge_p field contains a pointer to the descriptor of the in-
coming edge on the path, and the index field contains the
index of the corresponding record in the PD array of the im-
mediately preceding vertex. Each PD array is ordered
based on the duration fields. Conceptually, when an edge
is evaluated, a new PD array is formed to extend the paths
from the tail vertex to the head vertex. This new array is
then merged with the existing PD array at the head vertex.
The result represents the longest paths that have been found
to the head vertex. After all edges have been evaluated, the
PD arrays of leaf vertices are merged, and the result repre-
sents the longest paths in the graph. An algorithm for un-
raveling the paths is given below.
Path traversal algorithm
i := 0
for each path_descriptor record in final PD array (up to k)

i := i + 1
pd := address(PD[i])
j := 0
while pd–>edge_p–>t is not a root vertex

j := j + 1
P[j] := pd–>edge_p–>num
pd := address(A[pd–>edge_p–>t].PD[pd–>index])

P[j], . . ., P[1] contain numbers of edges on
 i’th longest path

Since the time complexity of a PD array merge is in O(k)
and a merge must be performed for each edge, the time re-
quirement of the extended longest path algorithm is in
O(ke). The storage requirements are in O(kn+e), since a
PD array must be maintained at each vertex and a descrip-
tor is required to represent each edge.

C. Branch–and–bound algorithm
Brute–force depth–first searches can solve either the

shortest or longest path problem in linear space; however,
the time complexity is exponential [9]. Branch–and–bound
(BnB) is a technique that may significantly improve the ef-

ficiency of depth–first searches by eliminating unproduc-
tive search paths [10]. BnB may be readily applied to the
shortest path problem, but is not directly applicable to the
longest path problem. In this section, we show how the
slack values calculated by the critical path method can be
used to transform the longest paths problem of finding
near–critical paths into a shortest paths problem, and there-
by enable utilization of BnB. We begin with a few defini-
tions:
Near–critical path notation
nc%: near–criticality percentage, paths whose durations

are within this percentage of the critical path duration
are near–critical

min_ncp_duration: minimum duration of a near–critical
path, critical_path_duration � ((100 – nc%) � .01)

FS_sum: sum of free slack on all preceding edges of path
max_path_duration: maximum potential duration of the

current path at any edge of a depth–first search,
critical_path_duration – (FS_sum + TS)

max_ncp_slack: maximum slack of a near–critical path,
critical_path_duration – min_ncp_duration
To find the critical and near–critical paths, depth–first

searches are started at the root vertices. A search is termi-
nated when either a leaf vertex is reached or
max_path_duration is less than min_ncp_duration. If a leaf
vertex is reached, then a critical or near–critical path has
been found. The recursive algorithm, which assumes the
critical path method data structures, is given below.
Branch–and–bound algorithm
FS_sum := 0
depth := 0
for each root vertex r

for each edge e from r to a descendant vertex v
traverseEdge(e.num,r,v,e.TS,e.FS)

procedure traverseEdge(num,t,h,ts,fs)
// num is edge number, t is tail vertex, h is head vertex,
// ts is total slack, and fs is free slack

if (FS_sum + ts)
�

 max_ncp_slack
depth := depth + 1
P[depth] := num
if h is a leaf vertex

if FS_sum = 0 // a critical path has been found
else // a near–critical path has been found
path_duration :=
 (critical_path_duration – (FS_sum + ts))
1st depth entries in P contain #’s of edges on path

else
FS_sum := FS_sum + fs
for each edge e from h to a descendant vertex v

traverseEdge(e.num,h,v,e.TS,e.FS)
FS_sum := FS_sum – fs
depth := depth – 1
return

The performance of the algorithm is highly dependent
upon the input PAG. In the best case, the time complexity
is in O(1). If we optimistically assume that only one edge
exists between any two vertices and that no vertex has more
than two outgoing edges (which appear to be reasonable as-
sumptions for PAGs based on our experiences and the re-

sults reported in [11]), the worst–case complexity, based on
the number of edges that must be examined, is in O(1.62n).
When the critical path method is also included in the analy-
sis, the best–case and worst–case time complexities are in
O(e) and O(1.62n+e), respectively.

D. Best–first search algorithm
The slack values provided by the critical path method

can also be used as the basis for a best–first search (BFS)
algorithm that traverses the k longest near–critical paths in
order of nonincreasing duration. The algorithm begins by
evaluating all outgoing edges from root vertices. The edge
with minimum total slack is selected. The critical path
method guarantees that at least one of these edges will be
on a critical path and have zero total slack. Once a path has
been selected, traversal is an iterative process of following
the edges with minimum total slack at each descendant ver-
tex. When a leaf vertex is reached, the next longest path is
selected for traversal.

Traditionally, the applicability of BFS has been limited
by an exponential memory requirement [12]. The memory
is needed to save the state of all partially explored paths so
that optimal selections can be made. Slack values provide
the information needed to overcome this limitation. Since
slack is a global criticality measure, storage can be
constrained to maintaining state for the k longest near–criti-
cal paths that have been found. To maintain this state in-
formation, partial paths encountered during near–critical
path traversal must be evaluated. Partial paths are formed
by edges that are not on the current near–critical path. Par-
tial path evaluation is based on the cost function (FS_sum
+ TS), and state is maintained for the minimum cost near–
critical paths.

To minimize path evaluation overhead, path costs are
maintained in a max–heap data structure (see [13] for a dis-
cussion of heaps). This allows direct access to the maxi-
mum cost partial path and a new (lower) maximum can be
established in logarithmic time. To minimize the overhead
of selecting the next longest path, path costs are also main-
tained in a min–heap. When the max–heap is modified by
sifting down a new entry, the associated min–heap entry is
percolated up to maintain the integrity of the dual heaps.
Thus, the minimum cost partial path is always available at
the top of the min–heap. Advanced data structures such as
min–max heaps [14] and deaps [15] can provide similar
double–ended functionality without duplicating the stor-
age. We opted to trade a 17% increase in the storage com-
ponent dependent upon k for the simplicity and lower over-
head of traditional heaps.

Path state information is preserved in path_descriptor
records. Pointers to the descriptors of edges on near–criti-
cal paths are recorded in path_entry records. Paths consist
of two segments. The first segment of a path contains edges
shared with the (parent) near–critical path that was being
traversed when the partial path was formed. These edges
begin at a root vertex. When a partial path is formed, in-
formation about the preceding segment is saved in the
path_descriptor. This information includes a count indi-

cating the number of edges on the first path segment,
path_1_cnt, and a pointer to the path_descriptor of the par-
ent path, path_1_p. The second path segment consists of
a linked–list of path_entry records. The first path_entry re-
cord for the second path segment, path_2, is also contained
in the path_descriptor. The second path segment is
constructed during near–critical path traversal and termi-
nates at a leaf vertex.

 A pointer to the path_entry record corresponding to the
minimum cost path from each vertex is maintained in the
associated adjacency list head. This longest_path pointer
is saved at the first visit to each vertex. The longest_path
pointers allow additional path_entry record sharing. If,
during near–critical path traversal, a vertex is reached that
has already been visited by an earlier traversal, then all
succeeding edges are shared with the earlier path. In such
a case, no further path_entry records are allocated; instead,
the longest_path pointer is used as a link to the existing
path_entry records. Duplicate path_entry records are re-
quired only when the same edge begins the second segment
of near–critical paths, which can occur a maximum of k/2
times. Therefore, the worst–case memory requirement for
the algorithm is in O(k+e). Fig. 2 provides an illustration
of the path description data structures for the graph in
Fig. 1.

(0,3,4,5)
path 2

next
edge_p

n
path_1_cnt = 0

path_1_p

path_descriptor 1 next
edge_p
num 2

next
edge_p
num 3

path_1_cnt = 1
path_1_p

path_descriptor 2

next
edge_p
num 1

path_1_cnt = 0
path_1_p

path_descriptor 1

path_entry
next

edge_p
num 5

(1,4,5)
path 3

next
edge_p
num 4

path_2

cost=0

cost=5

cost=20

num 0

Legend:
path i

(edge numbers)

path 1
(0,2,5)

Fig. 2. BFS path description data structures.

Pseudo–code for the algorithm, assuming the aug-
mented critical path method data structures, is given below.

Best–first search algorithm
Sort adjacency lists so that entries have nondecreasing total
slack values (to expedite traversals)
path_cnt := 0 // incremented when paths are evaluated
complete_paths := 0
FS_sum := 0
for each root vertex v

effective_out_degree := 0
for each outgoing edge from v

evaluatePath(edge,effective_out_degree)
effective_out_degree := effective_out_degree + 1

while (path_cnt – complete_paths)
�

 0
Remove path_descriptor of next longest path from
root of min–heap
traversePath(path_descriptor)
complete_paths := complete_paths + 1

procedure traversePath(path_descriptor)
Record edges on first path segment in edge_num_buf
by following parent path_descriptor chain
Initialize FS_sum from path_descriptor
path_entry_p := address(path_descriptor.path_2)
edge_p := path_entry_p–>edge_p
path_complete := FALSE
while path_complete

�
TRUE

if edge_p–>t has not been visited
A[edge_p–>t].longest_path := path_entry_p

if edge_p–>h is a leaf vertex
path_complete := TRUE

else
if edge_p–>h has already been visited

path_entry_p–>next :=
 A[edge_p–>h].longest_path // set link to edges
Traverse remainder of path to record edges #’s and
evaluate partial paths, but do not allocate additional

 path_entry records
path_complete := TRUE

else
FS_sum := FS_sum + edge_p–>FS
edge_p :=
 address(min cost outgoing edge from edge_p–>h)
effective_out_degree := 1
for all but minimum cost outgoing edge
 evaluatePath(edge,effective_out_degree)

effective_out_degree := effective_out_degree + 1
path_entry_p–>next :=
 address(allocated path_entry)
path_entry_p–>edge_p := edge_p // insert edge
Store edge_p–>num in edge_num_buf

path_duration :=
 critical_path_duration – path_descriptor.cost
Output path (using contents of edge_num_buf)
return

macro evaluatePath(edge,effective_out_degree)
// edge is descriptor of leading edge on second path segment

Evaluate cost of partial path, (FS_sum + edge.TS),
relative to max_ncp_slack & costs of previous paths
if path is among k longest near–critical paths found

initialize path_descriptor record & update heaps
else

A[edge.t].out_degree :=
 effective_out_degree // reduce effective out–degree
terminate path evaluation loop

Factors related to sorting the adjacency lists, traversing
the paths, and maintaining the heaps must be considered for
a worst–case performance analysis. If the maximum out–
degree is bounded by a constant upper limit, the time re-
quired for the sort is in O(n). In the worst case, the number
of edges that will have to be examined during each of the
k near–critical path traversals is in O(e), yielding a term in
O(ke). The worst–case requirement associated with the
heaps is in O(klg(k)+elg(k)); the first term is due to
construction/maintenance of the min–heap, and the second
term is due to maintenance of the max–heap. The max–
heap is built, in O(k) time, when the k’th near–critical path
is identified; thereafter, insertion of a new partial path re-
quires ejection of an existing partial path entry. When a
partial path is ejected, no further paths with the same lead-

ing edge on the second path segment will be inserted, which
implies that the maximum number of replacements is in
O(e). If lg(k)

�
 e, the worst–case time complexity of the

algorithm is in O(ke).
Another BFS algorithm for finding the k longest paths of

acyclic digraphs was described in [16] and subsequently re-
vised in [17]. The algorithms were developed in the context
of semiconductor timing analysis and would need to be mo-
dified for use with multigraphs. The worst–case time and
memory complexities of the revised algorithm are in
O(kelg(e)) and O(ke), respectively.

E. Algorithm comparison
Asymptotic upper bounds on the worst–case time and

memory requirements for the four near–critical path algo-
rithms are summarized in Table I.

TABLE I
Worst–case complexities of
near–critical path algorithms

Algorithm Enumeration Longest
Paths

BnB BFS

Time O(kne) O(ke) O(1.62n+e) O(ke)

Memory O(kn2+e) O(kn+e) O(e) O(k+e)

One advantage of the path enumeration algorithm is the
capability to incrementally explore the next longest path
until sufficient data is available. The BFS algorithm can be
used similarly, but is constrained to a maximum of k paths.
This capability is potentially useful in an interactive perfor-
mance analysis environment. The utility of the extended
longest path algorithm is limited by memory requirements;
however, parallel implementations may be able to exploit
the increased granularity. Uncertainty differentiates the
BnB and BFS algorithms. With BnB, the uncertainty is
associated with algorithm execution time; with BFS, the
uncertainty is associated with the near–criticality percent-
age of the k’th longest path. The BFS algorithm represents
a good compromise between efficiency and functionality
for the analysis of program activity graphs. The signifi-
cance of the BFS algorithm is in the combination of time
and memory requirements. For the problem of finding the
k longest paths of acyclic, directed multigraphs, the algo-
rithm is worst–case asymptotically optimal in terms of both
execution time and memory usage (see [18] for the proof).

IV. Probe acquisition and PAG construction
A. MSPARC multicomputer

The traces used in this study were collected with the
instrumentation facilities of the MSPARC multicomputer
[19]. The MSPARC is an 8–node multicomputer based on
Sun SPARCstation 2 processing boards. The nodes are or-
ganized as a mesh, and the interconnection is via wormhole
routers. Each node is equipped with an intelligent perfor-
mance monitor adapter that provides an interface to a sepa-
rate data collection network.

B. Object–Oriented Fortran environment
The Object–Oriented Fortran (OOF) programming en-

vironment [20] is used to develop parallel applications for
the MSPARC multicomputer. OOF was developed to pro-
vide a parallel environment familiar to applications engi-
neers that would support some level of data encapsulation
and be portable across a range of MIMD architectures.
OOF provides extensions to standard Fortran77 that sup-
port declaration of object classes with their associated data
and methods. Specific instances of these object classes
may then be created dynamically at run time. Objects can
be created on different processors to support parallel execu-
tion. Messages are passed between objects using a remote
procedure call type syntax, but execution of the invoking
object continues immediately after the message is sent.
This technique isolates the user from the underlying mes-
sage passing primitives. OOF is currently implemented on
networks of workstations, the Intel iPSC/860 and Delta, the
Silicon Graphics Power Iris, and the MSPARC multicom-
puter.

C. MSPARC instrumentation system
Hardware, software, and hybrid measurement systems

have been used to record event traces. Hardware instru-
mentation is unobtrusive and delivers useful low–level in-
formation, but is costly and provides information with lim-
ited context. Software instrumentation is simple and
flexible, but can perturb the execution characteristics of the
program being measured. Hybrid measurement systems
combine software with hardware support and provide an at-
tractive compromise [21]. The MSPARC instrumentation
system implements a hybrid approach. Special hardware
on the performance monitor adapter collects and time-
stamps information written by software probes from the
OOF environment. All processing of probes is done by the
instrumentation processor, so the only obtrusiveness comes
from the actual writing of the probe data. This overhead has
been measured to be approximately two microseconds per
probe. Table II shows the types of probes that are imple-
mented on the MSPARC.

The MSPARC instrumentation system offers two modes
of operation: performance data may be viewed via a suite
of real–time graphical displays, or recorded to disk for post-
mortem analysis. A global timestamp clock shared by the
performance monitor adapters allows for a total ordering of
events collected from all nodes. Recorded probes are con-
verted to the Pablo Self–Defining Data Format (SDDF) for
the purpose of PAG generation.

D. Construction of program activity graphs
The primary probes of interest in PAG generation are op-

erator execution, message send, end send, message receive
and receive overhead. PAGs contain one root vertex for
each node involved in the program execution. All vertices
have a single child except those that mark the beginning of
a remote message send, which have two children. One
child is associated with the following event on the same
node, and the other child marks the beginning of the

associated operator execution on the destination node. The
duration of the edge to the remote node is the difference be-
tween the end of message reception time at the destination
node and the start of message transmission time at the
source node, and thus takes into account effects such as net-
work congestion.

To construct PAGs, several types of probes must be
matched. For example, each message send must be
matched with the corresponding message receive on the
destination node, and each message receive must be
matched with the corresponding operator execution that re-
sults from the message receipt. The graph construction pro-
gram matches corresponding events by managing three
types of event queues. The first is the operator execution
list. There is one operator execution list per node, and each
is ordered by time. The second type of list is the message
receive list. Two different types of message receive lists are
kept. The first type of list is used to match message receives
with the corresponding operator executions; therefore, one
list for each node is kept in order by timestamp. The second
type of receive list is used to match message sends and mes-
sage receives; to reduce the complexity of searching for
matching message receives, a separate list is maintained for
each source–destination pair. The third type of event queue
contains all receive overhead, message send, and end send
events. Again, there is one such list per node, and the lists
are ordered by timestamp. Each of the lists can be
constructed in linear time as the probes from the MSPARC
are in order by time for a particular node and type of event.

Once the event queues have been built, the message re-
ceives and operator executions on each node are matched
and numbered so that subsequently, when a message send
is encountered, the numbers of its children vertices are
known. The graph is then generated by processing the oper-
ator execution lists and inserting message send and receive
overhead events as they occur in time. This construction
process can also be accomplished in linear time with one
pass through the event lists. Edge information is output as
it is generated. A sample PAG for a two node case is shown
in Fig. 3.

Fig. 3. Sample program activity graph.

Operator Execution

Send Overhead

Operator Execution

Receive Overhead
Message Send

Operator Execution

Receive Overhead

TABLE II
MSPARC probe types

Probe Type Meaning

Program Start Start of program execution

Object Creation Creation of an object

Operator Execution Indicates start/end times for method execution

Message Send Beginning of message transmission, identifies
operator to be invoked as result of the message

Message Receive Completion of message reception, the message
is then queued for the destination object

Idle Time Beginning and end of idle periods for a node

Object Destruction Destroy command executed for specified object

Program End End of program execution on all nodes

Receive Overhead Indicates start and end times for execution of
asynchronous message receive routine

Send End Completion of message transmission overhead
at source node

V. Algorithm performance results
A. Application programs

Five application programs were traced: a Quicksort of
1000 integers (QSORT), two of the NAS parallel bench-
marks [22], and two computational field simulation (CFS)
codes. The NAS benchmarks were the Embarrassingly Par-
allel kernel and the Pentadiagonal Solver application. The
CFS codes were Julianne [23] and Turbomachinery [24],
both of which are mature applications. All of the traces are
from 8–node executions.

The Embarrassingly Parallel (EP) kernel provides an es-
timate of the upper achievable limits for floating–point per-
formance. Minimal communication is involved. The ker-
nel generates pairs of Gaussian random deviates and tallies
the number of pairs in successive square annuli.

The Pentadiagonal Solver (SP) application produces
solutions for coupled non–linear partial differential equa-
tions. In each pseudo–time stepping iteration, xi, eta and
zeta directional sweeps are performed. The xi–directional
sweep requires communication among different objects.
Twenty–five iterations of the SP application were traced.

 The Julianne (JUL) code solves inviscid fluid dynamics
problems using an implicit finite–volume scheme (first, se-
cond or third order) with ROE averaged flux computation,
either local or minimum time stepping, and numerical jaco-
bians. Parallelization is achieved via domain decomposi-
tion and passing the Q variables across block boundaries af-
ter each iteration. The results shown here are from 100
iterations of a run on a m6c onera wing with a grid size of
49x9x9.

The Turbomachinery (TURBO) code solves for the un-
steady flow about turbomachines using the three–dimen-
sional time–dependent Euler equations. This application
also uses domain decomposition for parallelization; how-

ever, the decomposition is complicated by the fact that
there is relative motion between domains and therefore, the
communication pattern changes throughout execution,
leading to dynamic decisions about the distribution of data
between iterations. Two hundred iterations of the TURBO
code were traced.

Table III summarizes the application–related statistics.
Note that the programs provide a broad range of execution
times and communication characteristics, as well as
marked variations in the number of edges and vertices in the
PAGs.

TABLE III
Application–related statistics

Program Execution
Time (s)

No. of
Edges

No. of
Vertices

Probes/
Second

CPcom
a

QSORT 0.274 1097 953 5,945 84.3%

EP 8.170 198 175 34 0.3%

SP 14.838 138,854 115,909 12,276 57.6%

JUL 382.939 20,203 18,567 65 2.7%

TURBO 1,822.800 261,776 243,447 210 1.5%
aPercent of critical path duration devoted to communication.

B. Performance data
The BnB and BFS algorithms were implemented in the

C programming language and compiled by the Sun C com-
piler at optimization level 4. Reported algorithm perfor-
mance results are from experiments conducted on a
SPARCstation 2. The SPARCstation was equipped with 16
Mbytes of memory and running SunOS 4.1.3. No other user
jobs were active during the tests.

To quantify the effectiveness of the BnB technique, the
pruning percentage performance metric was defined to be
the percentage of edges that are not examined due to BnB.
Pruning percentages for Quicksort and EP are plotted in
Fig. 4. Although the BnB algorithm is clearly effective in
pruning the searches, large numbers of near–critical paths
were found, leading to long execution times. Fig. 5 shows
how the number of near–critical paths dramatically in-
creases as a function of near–criticality percentage for the
QSORT PAG, which is relatively small. The situation is
even worse for larger, more realistic PAGs. For example,
the BnB algorithm was executed on a Cray Y–MP using the
SP PAG and a near–criticality percentage of 1, and the pro-
gram was terminated without completing after 24 hours of
CPU time. Another experiment with the QSORT PAG
showed comparable performance for the BnB and BFS al-
gorithms when finding the same number of near–critical
paths. The key is to know the appropriate near–criticality
percentage. The BFS algorithm eliminates this uncertainty.

The graph in Fig. 6 shows the relationship between
execution time of the BFS algorithm and the number of
near–critical paths found. This graph is plotted on a log–
log scale because of the disparity in the times for the differ-
ent applications. The similar shape of the curves is signifi-

cant; a simple execution time model of the form c1e+c2ke
was able to predict the algorithm’s performance within
~25%. The first term in the model represents the time to
read the input multigraph and perform the critical path
method, the second term represents the BFS, and the
constants are implementation dependent. The near–criti-
cality percentage associated with the 100,000’th longest
path was 99.99% for the SP, JUL, and TURBO PAGs.

0

20

40

60

80

100

0 10 20 30 40 50
Near–Criticality Percentage

Fig. 4. Effectiveness of BnB technique.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100
Near–Criticality Percentage

Fig. 5. Near–critical path explosion.

No
. N

ea
r–

Cr
itic

al
 P

at
hs

 (M
)

Pr
un

in
g

Pe
rc

en
ta

ge

x QSORT

+ EP

x QSORT

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

10 100 1000 10000 100000

x QSORT
+ JUL

� SP
� TURBO

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Near–Critical Paths Found

Fig. 6. Execution time of BFS algorithm.

VI. Near–critical path analysis framework
The output from the near–critical path programs consists

of a list of all the critical and near–critical paths found.
Each path consists of a duration and an edge list. This in-
formation by itself is not meaningful to the user as the rela-
tionships between the edges listed and program activities is
not known. In any case, a list of all the program activities
on the near–critical paths would probably contain too much
information to be useful. Near–critical path analysis will
attempt to provide both guidance via hierarchical summa-
ries expressed in terms of logical events within the applica-
tion program, and capabilities flexible enough to support
detailed exploration of small–scale behavior.

At the highest level, only the critical paths are analyzed.
Classical metrics such as computation and communication
percentages are provided. Activities may be viewed from
a processor perspective or broken down by operator. Near–
critical path activity classes are represented by a new per-
formance metric that considers contributions across all
found paths. The availability of near–critical path data per-
mits prediction of the maximum performance improve-
ment that may be achieved by optimizing a particular criti-
cal path activity. But more importantly, the broader
perspective allows guidance to be offered regarding the rel-
ative merits of tuning specific activities.

The goal of performance debugging metrics is to rank
the importance of improving specific program activities.
The Critical Path Metric (CPM) ranks activities according
to the magnitude of their durations on the critical path. The
Maximum Benefit Metric (MBM) is an extension of the Crit-
ical Path Metric that includes the synergistic effects of com-
mon activities on near–critical paths. The Maximum Bene-
fit Metric for activity i over the k longest paths is computed
as follows:

MBMk(i) = min(d(i)j + (dcp – dj)) for j = 1 to k,
where

d(i)j = aggregate duration of activity i on j’th longest path,
dcp = duration of the critical path, and
dj = duration of the j’th longest path.
Fig. 7 contains a simple example that illustrates how op-

timizing the largest component on the critical path may not
yield the most overall improvement. The MBMs for the

Fig. 7. Example of MBM calculation.

d(D)=30

d(E)=15

d(A)=10

d(B)=40

d(A)=10

d(C)=15

Critical Path Activities: A,B,A,C

Near–Critical Path Activities: D,E,A,C
Duration:

Duration:

Activity
i

MBM2 (i)CPM(i)

A

B

C

20

40

15

10

 5

15

75

70

computation and communication components of the five
benchmark applications are plotted in Fig. 8 and Fig. 9. The
metrics are expressed as percentages of the critical path
duration. Near–critical path data clearly reveals additional
performance characteristics. Several of these applications
show that little additional information is gained by using
more than 100 near–critical paths.

The computation to communication ratio can be used to
assess the appropriateness of the application decomposi-
tion. A high communications contribution to the critical
path could indicate an inappropriate, or too finely grained
decomposition. Near–critical path data can also be used as
an architecture evaluation tool. A high communications
contribution on all critical and near–critical paths can indi-
cate that increased interconnection network performance
would result in improved application performance.

The availability of PAGs facilitates speculation about
the effects of reducing the time associated with a particular
activity. The availability of near–critical path data facili-

0

50

100

QSORT
EP

SP
JUL TURBO

1

10

100

1000

10,000

100,000

0

50

100

QSORT
EP SP JUL TURBO

1

10

100

1000

10,000

100,000

M
ax

im
um

 B
en

ef
it

M
et

ric

No. of Paths

M
ax

im
um

 B
en

ef
it

M
et

ric

No. of Paths

Fig. 8. Computation MBMs.

Fig. 9. Communication MBMs.

tates selection of the most promising activities for what if
scenarios. The envisioned environment supports rapid ex-
perimentation by allowing the durations of selected PAG
activities to be adjusted. The potential effects are then
quickly ascertained via near–critical path analysis of the
modified PAG. While near–critical path guidance is based
on a limited number of paths, what if scenarios extend the
analysis to all execution paths.

Visualization complements the statistical perspective by
revealing the dynamics of when performance determining
activities occurred. Rather than attempt the impossible task
of predicting and satisfying all potential visualization
needs, we have opted to simply output Pablo SDDF records
corresponding to critical and near–critical path activities.
The records contain event and node identifiers, event spe-
cific descriptors, timestamps, and counts indicating the
number of critical and near–critical path occurrences. In
this manner, the full capabilities of the Pablo environment
may be invoked to explore critical and near–critical path
activities from the most appropriate perspectives.

VII. Conclusion
As the availability of parallel computing resources be-

comes more common, the practical importance of effective
program optimization techniques increases. Consequently,
the suite of available performance analysis tools is evolv-
ing, and algorithmic advances are an important component
of the emerging solutions. In this paper, we have described
an efficient new algorithm for finding the k longest paths of
directed, acyclic multigraphs. The algorithm utilizes slack
values calculated by the critical path method to perform a
best–first search in linear space, and for a specific k, the
time complexity of the algorithm is also linear in the prob-
lem size. The algorithm can be used in conjunction with
program activity graphs constructed from timestamped
traces to identify the activities on the k longest execution
paths. This information forms the basis for a new addition
to the suite of available performance analysis tools by offer-
ing a broader perspective for focusing optimization efforts.
Experiments with five parallel applications have verified
the efficiency and practicality of the algorithm.

We have also described a framework for near–critical
path analysis of program activity graphs that builds upon
the foundation of existing performance analysis tools.
Near–critical path data complements proven techniques by
providing additional insight into the dynamic behavior of
the system. Further research is needed to validate and re-
fine the proposed framework through actual experience.
Our plans include development of a parallel near–critical
path algorithm as a case study.

References
[1] B. P. Miller and C.–Q. Yang, “IPS: An interactive and auto-

matic performance measurement tool for parallel and distrib-
uted programs,” in Proc. 7th Int. Conf. Distrib. Computing
Syst., IEEE Comput. Soc., Sept. 21–25, 1987, pp. 482–489.

[2] D. A. Reed et al., “The Pablo performance analysis environ-
ment,” Tech. Rep., Dep. of Comput. Sci., Univ. of Illinois,
Nov. 1992.

[3] B. P. Miller et al., “IPS–2: The second generation of a parallel
program measurement system,” IEEE Trans. Parallel Distrib.
Syst., vol. 1, no. 2, pp. 206–217, Apr. 1990.

[4] E. W. Dijkstra and C. S. Scholten, “Termination detection for
diffusing computations,” Inform. Processing Lett., vol. 11,
no. 1, pp. 1–4, Aug. 1980.

[5] C. Q. Yang and B. P. Miller, “Performance measurement of
parallel and distributed programs: A structural and automatic
approach,” IEEE Trans. Software Eng., vol. 15, no. 12, pp.
1615–1629, Dec. 1989.

[6] J. D. Wiest and F. K. Levy, A Management Guide to PERT/
CPM. Englewood Cliffs, NJ: Prentice–Hall, 1977.

[7] J. E. Hopcroft and R. E. Tarjan, “Efficient algorithms for
graph manipulation,” Commun. ACM, vol. 16, no. 6, pp.
372–378, Jan. 1973.

[8] E. Horowitz and S. Sahni, Fundamentals of Data Structures,
Rockville, MD: Computer Science Press, 1983.

[9] E. Rich, Artificial Intelligence. New York: McGraw–Hill,
1983.

[10] W. Zhang and R. E. Korf, “An average–case analysis of
branch–and–bound with applications: Summary of results,”
in Proc. 10th Nat. Conf. AI, AAAI Press, July 12–16, 1992,
pp. 545–550.

[11] C.–Q. Yang and B. P. Miller, “Critical path analysis for the
execution of parallel and distributed programs,” in Proc. 8th
Int. Conf. Distrib. Computing Syst., IEEE Comput. Soc., June
1988, pp. 366–375.

[12] R. E. Korf, “Linear–space best–first search: Summary of re-
sults,” in Proc. 10th Nat. Conf. AI, AAAI Press, July 12–16,
1992, pp. 533–538.

[13] G. Brassard and P. Bratley, Algorithmics Theory and Practice.
Englewood Cliffs, NJ: Prentice–Hall, 1988.

[14] M.D. Atkinson, J.–R. Sack, N. Santoro, and T. Strothotte,
“Min–max heaps and generalized priority queues,” Commun.
ACM, vol. 29, no. 10, pp. 996–1000, Oct. 1986.

[15] S. Carlsson, “Deap – A double–ended heap to implement
double–ended priority queues,” Inform. Processing Lett., vol.
26, no. 1, pp. 33–36, Sept. 15, 1987.

[16] S.H. Yen, D. H. Du, and S. Ghanta, “Efficient algorithms for
extracting the k most critical paths in timing analysis,” in
Proc. 26th ACM/IEEE Design Automation Conf., June
25–29, 1989, pp. 649–654.

[17] Y.–C. Ju and R. A. Saleh, “Incremental techniques for the
identification of statically sensitizable critical paths,” in Proc.
28th ACM/IEEE Design Automation Conf., June 17–21,
1991, pp. 541–546.

[18] C. A. Alexander, “Near–critical path algorithms for program
activity graphs,” Ph.D. dissertation, Dept. of Comput. Engr.,
Mississippi State Univ., May 1994.

[19] J. C. Harden et al., ”A performance monitor for the MSPARC
multicomputer,” in Proc. IEEE Southeastcon’92, Apr. 12–15,
1992, pp. 724–729.

[20] D. Reese and E. Luke, ”Object oriented fortran for develop-
ment of portable parallel programs,” in Proc. 3rd IEEE Symp.
Parallel and Distrib. Syst., Dec. 2–5, 1991, pp. 608–615.

[21] A. Mink, R. Carpenter, G. Nacht, and J. Roberts, “Multipro-
cessor performance measurement instrumentation,” IEEE
Computer, pp. 63–75, Sept. 1990.

[22] D. Bailey, J. Barton, T. Lasinski, and H. Simon, ed., “The
NAS parallel benchmarks,” Tech. Rep. RNR–91–002, NASA
Ames Research Center, Aug. 1991.

[23] D. L. Whitfield and J. M. Janus, “Three dimensional unsteady
euler equations solutions using flux vector splitting,” 17th
Fluid Dynamics, Plasma Dynamics, and Lasers Conf., AIAA
paper no. 84–1552, June 25–27, 1984.

[24] G. J. Henley and J. M. Janus, “Parallelization and convergence
of a 3D implicit unsteady turbomachinery flow code,” in
Proc. 5th SIAM Conf. Parallel Processing for Scientific Com-
puting, March 25–27, 1991, pp. 238–245.

