A Scalable Lock-free Stack Algorithm

%
Danny Hendler
School of Computer Science
Tel-Aviv University
Tel Aviv, Israel 69978

hendlerd@post.tau.ac.il

ABSTRACT

The literature describes two high performance concurrent
stack algorithms based on combining funnels and elimina-
tion trees. Unfortunately, the funnels are linearizable but
blocking, and the elimination trees are non-blocking but
not linearizable. Neither is used in practice since they per-
form well only at exceptionally high loads. The literature
also describes a simple lock-free linearizable stack algorithm
that works at low loads but does not scale as the load in-
creases. The question of designing a stack algorithm that
is non-blocking, linearizable, and scales well throughout the
concurrency range, has thus remained open.

This paper presents such a concurrent stack algorithm.
It is based on the following simple observation: that a sin-
gle elimination array used as a backoff scheme for a simple
lock-free stack is lock-free, linearizable, and scalable. As
our empirical results show, the resulting elimination-backoff
stack performs as well as the simple stack at low loads, and
increasingly outperforms all other methods (lock-based and
non-blocking) as concurrency increases. We believe its sim-
plicity and scalability make it a viable practical alterna-
tive to existing constructions for implementing concurrent
stacks.

Categories and Subject Descriptors

C.1.4.1 [Computer Systems Organization|: Processor
Architectures— Parallel Architectures, Distributed Architec-
tures; E.1.4.1 [Data]: Data Structures—lists, stacks and
queues

General Terms
Algorithms, theory, lock-freedom, scalability

1. INTRODUCTION

Shared stacks are widely used in parallel applications and
operating systems. As shown in [21], LIFO-based schedul-
ing not only reduces excessive task creation, but also pre-
vents threads from attempting to dequeue and execute a task
which depends on the results of other tasks. A concurrent

*This work was supported in part by a grant from Sun Mi-
crosystems.

SPAA'04 June 27-30, 2004, Barcelona, Spain.
Copyright 2004 Sun Microsystems, Inc. All rights reserved.
ACM 1-58113-840-7/04/0006.

Nir Shavit
Tel-Aviv University &
Sun Microsystems
Laboratories

shanir@sun.com

206

Lena Yerushalmi
School of Computer Science
Tel-Aviv University
Tel Aviv, Israel 69978

lenay@post.tau.ac.il

shared stack is a data structure that supports the usual push
and pop operations with linearizable LIFO semantics. Lin-
earizability [11] guarantees that operations appear atomic
and can be combined with other operations in a modular
way.

When threads running a parallel application on a shared
memory machine access the shared stack object simultane-
ously, a synchronization protocol must be used to ensure cor-
rectness. It is well known that concurrent access to a single
object by many threads can lead to a degradation in perfor-
mance [1, 9]. Therefore, in addition to correctness, synchro-
nization methods should offer efficiency in terms of scala-
bility and robustness in the face of scheduling constraints.
Scalability at high loads should not however come at the
price of good performance in the more common low con-
tention cases.

Unfortunately, the two known methods for parallelizing
shared stacks do not meet these criteria. The combining
funnels of Shavit and Zemach [20] are linearizable [11] LIFO
stacks that offer scalability through combining, but per-
form poorly at low loads because of the combining over-
head. They are also blocking and thus not robust in the
face of scheduling constraints [12]. The elimination trees of
Shavit and Touitou [17] are non-blocking and thus robust,
but the stack they provide is not linearizable, and it too
has large overheads that cause it to perform poorly at low
loads. On the other hand, the results of Michael and Scott
[15] show that the best known low load method, the simple
linearizable lock-free stack of Treiber [22], scales poorly due
to contention and an inherent sequential bottleneck.

This paper presents the elimination backoff stack, a new
concurrent stack algorithm that overcomes the combined
drawbacks of all the above methods. The algorithm is lin-
earizable and thus easy to modularly combine with other
algorithms, it is lock-free and hence robust, it is parallel
and hence scalable, and it utilizes its parallelization con-
struct adaptively, which allows it to perform well at low
loads. The elimination backoff stack is based on the fol-
lowing simple observation: that a single elimination array
[17], used as a backoff scheme for a lock-free stack [22], is
both lock-free and linearizable. The introduction of elim-
ination into the backoff process serves a dual purpose of
adding parallelism and reducing contention, which, as our
empirical results show, allows the elimination-backoff stack
to outperform all algorithms in the literature at both high
and low loads. We believe its simplicity and scalability make
it a viable practical alternative to existing constructions for
implementing concurrent stacks.

Lock-free

backoff to Stack

array

T re-try stack

HNEEEEEEEEEE
H_/

double or halve the range

Elimination
array

Figure 1: Schematic depiction of the elimination-
backoff cycle.

1.1 Background

Generally, algorithms for concurrent data structures fall
into two categories: blocking and non-blocking. There are
several lock-based concurrent stack implementations in the
literature. Typically, lock-based stack algorithms are ex-
pected to offer limited robustness as they are susceptible to
long delays and priority inversions [7].

Treiber [22] proposed the first non-blocking implementa-
tion of concurrent list-based stack. He represented the stack
as a singly-linked list with a top pointer and used compare-
and-swap (CAS) to modify the value of the top atomically.
No performance results were reported by Treiber for his non-
blocking stack. Michael and Scott in [15] compared Treiber’s
stack to an optimized non-blocking algorithm based on Her-
lihy’s general methodology [8], and to lock-based stacks.
They showed that Treiber’s algorithm yields the best overall
performance, and that the performance gap increases as the
amount of multiprogramming in the system increases. How-
ever, from their performance data it is clear that because of
its inherent sequential bottleneck, the Treiber stack offers
little scalability.

Shavit and Touitou [17] introduced elimination trees, scal-

able tree like data structures that behave “almost” like stacks.

Their elimination technique (which we will elaborate on
shortly as it is key to our new algorithm) allows highly dis-
tributed coupling and execution of operations with reverse
semantics like the pushes and pops on a stack. Elimination
trees are lock-free, but not linearizable. In a similar fash-
ion, Shavit and Zemach introduced combining funnels [20],
and used them to provide scalable stack implementations.
Combining funnels employ both combining [5, 6] and elimi-
nation [17] to provide scalability. They improve on elimina-
tion trees by being linerarizable, but unfortunately they are
blocking. As noted earlier, both [17] and [20] are directed
at high-end scalability, resulting in overheads which severely
hinder their performance under low loads.

The question of designing a practical lock-free linearizable
concurrent stack that will perform well at both high and low
loads has thus remained open.

207

1.2 The New Algorithm

Consider the following simple observation due to Shavit
and Touitou [17]: if a push followed by a pop are performed
on a stack, the data structure’s state does not change (sim-
ilarly for a pop followed by a push). This means that if one
can cause pairs of pushes and pops to meet and pair up in
separate locations, the threads can exchange values without
having to touch a centralized structure since they have any-
how “eliminated” each other’s effect on it. Elimination can
be implemented by using a collision array in which threads
pick random locations in order to try and collide. Pairs of
threads that “collide” in some location run through a lock-
free synchronization protocol, and all such disjoint collisions
can be performed in parallel. If a thread has not met an-
other in the selected location or if it met a thread with an
operation that cannot be eliminated (such as two push op-
erations), an alternative scheme must be used. In the elimi-
nation trees of [17], the idea is to build a tree of elimination
arrays and use the diffracting tree paradigm of Shavit and
Zemach [19] to deal with non-eliminated operations. How-
ever, as we noted, the overhead of such mechanisms is high,
and they are not linearizable.

The new idea (see Figure 1) in this paper is strikingly
simple: use a single elimination array as a backoff scheme
on a shared lock-free stack. If the threads fail on the stack,
they attempt to eliminate on the array, and if they fail in
eliminating, they attempt to access the stack again and so
on. The surprising result is that this structure is lineariz-
able: any operation on the shared stack can be linearized
at the access point, and any pair of eliminated operations
can be linearized when they met. Because it is a back-
off scheme, it delivers the same performance as the simple
stack at low loads. However, unlike the simple stack it scales
well as load increases because (1) the number of successful
eliminations grows, allowing many operations to complete in
parallel, and (2) contention on the head of the shared stack
is reduced beyond levels achievable by the best exponential
backoff schemes [1] since scores of backed off operations are
eliminated in the array and never re-attempt to access the
shared structure.

1.3 Performance

We compared our new elimination-backoff stack algorithm
to a lock-based implementation using Mellor-Crummey and
Scott’s MCS-lock [13] and to several non-blocking imple-
mentations: the linearizable Treiber [22] algorithm with and
without backoff and the elimination tree of Shavit and Touitou
[17]. Our comparisons were based on a collection of syn-
thetic microbenchmarks executed on a 14-node shared mem-
ory machine. Our results, presented in Section 4, show that
the elimination-backoff stack outperforms all three methods,
and specifically the two lock-free methods, exhibiting almost
three times the throughput at peak load. Unlike the other
methods, it maintains constant latency throughout the con-
currency range, and performs well also in experiments with
unequal ratios of pushs and pops.

The remainder of this paper is organized as follows. In
the next section we describe the new algorithm in depth.
In Section 3, we give the sketch of adaptive strategies we
used in our implementation. In Section 4, we present our
empirical results. Finally, in Section 5, we provide a proof
that our algorithm has the required properties of a stack, is
linearizable, and lock-free.

2. THE ELIMINATION BACKOFF STACK

2.1 Data Structures

We now present our elimination backoff stack algorithm.
Figure 2 specifies some type definitions and global variables.

struct Cell { struct Simple_Stack {
Cell *pnext; Cell *ptop;
void *pdata; };

};

struct ThreadInfo { Simple_Stack S;
u_int id; void **location;
char op; int *collision;
Cell cell;

int spin;

};

Figure 2: Types and Structures

Our central stack object follows Treiber [22] and is im-
plemented as a singly-linked list with a top pointer. The
elimination layer follows Shavit and Touitou and is built of
two arrays: a global location[l..n] array has an element
per thread p € {1..n}, holding the pointer to the ThreadInfo
structure, and a global collision[l..size] array, that holds
the ids of the threads trying to collide. Each ThreadInfo
record contains the thread id, the type of the operation to
be performed by the thread (push or pop), and the node for
the operation. The spin variable holds the amount of time
the thread should delay while waiting to collide.

2.2 Elimination Backoff Stack Code

We now provide the code of our algorithm. It is shown in
Figures 3 and 4. As can be seen from the code, first each
thread tries to perform its operation on the central stack
object (line P1). If this attempt fails, a thread goes through
the collision layer in the manner described below.

Initially, thread p announces its arrival at the collision
layer by writing its current information to the location ar-
ray (line S2). It then chooses the random location in the
collision array (line S3). Thread p reads into him the id
of the thread written at collision[pos] and tries to write
its own id in place (lines S4 and S5). If it fails, it retries
until success (lines S5 and S6).

After that, there are three main scenarios for thread ac-
tions, according to the information the thread has read.
They are illustrated in Figure 5. If p reads an id of the
existing thread ¢ (i.e., him!=EMPTY), p attempts to collide
with ¢. The collision is accomplished by p first executing a
read operation (line S8) to determine the type of the thread
being collided with. As two threads can collide only if they
have opposing operations, if q has the same operation as p,
p waits for another collision (line S18). If no other thread
collides with p during its waiting period, p clears its entry in
the location array and tries to perform its operation on the
central stack object. If p’s entry cannot be cleared, it follows
that p has been collided with, in which case p completes its
operation and returns.

If q does have a complementary operation, p tries to elim-
inate by performing two CAS operations on the location
array. The first clears p’s entry, assuring no other thread
will collide with it during its collision attempt (this elim-
inates race conditions). The second attempts to mark ¢’s

208

void StackOp(ThreadInfo* pInfo) {
P1: if (TryPerformStackOp(p)==FALSE)
P2: LesOP(p);

P3: return;

}

void LesOP(ThreadInfo *p) {

S1: while (1) {

S2: location[mypid]=p;

S3: pos=GetPosition(p);

S4: him=collision[pos];

S6: while(!CAS(&collision[pos],him,mypid))

S6: him=collision[pos];
S7: if (him!=EMPTY) {
S8: g=location[him];
89: if (q!=NULL&&q->id==him&&q->op!=p->op) {
S10: if (CAS(&location[mypid],p,NULL)) {
S11: if (TryCollision(p,q)==TRUE)
S12: return;
S13: else
S14: goto stack;

}
S15: else {
S16: FinishCollision(p) ;
S17: return;

}

}
}

S18: delay(p->spin);
S19: if (!'CAS(&location([mypid]l,p,NULL)) {

520: FinishCollision(p);
S21: return;
}
stack:
522: if (TryPerformStackOp(p)==TRUE)
return;
}
}

boolean TryPerformStackOp(ThreadInfoxp){
Cell *phead,*pnext;
Ti: if (p->op==PUSH) {

T2: phead=S.ptop;
T3: p—>cell.pnext=phead;
T4: if (CAS(&S.ptop,phead,&p->cell))
T5: return TRUE;
T6: else
T7: return FALSE;

}
T8: if (p->op==P0OP) {
T9: phead=S.ptop;
T10: if (phead==NULL) {
T11: p—>cell=EMPTY;
T12: return TRUE;

}

T13: pnext=phead->pnext;
T14: if (CAS(&S.ptop,phead,pnext)) {

T15: p—>cell=%phead;
T16: return TRUE;

}
T17: else {
T18: p->cell=EMPTY;
T19: return FALSE;

}
}

void FinishCollision(ProcessInfo *p) {
Fi: if (p->op==POP_OP) {

F2: p->pcell=location[mypid]->pcell;
F3: location[mypid]=NULL;

}
}

Figure 3: Elimination Backoff Stack Code - part

void TryCollision(ThreadInfo*p,ThreadInfo *q) {

Cl: if(p->op==PUSH) {
C2: if (CAS(&location[him],q,p))
C3: return TRUE;
C4: else
C5: return FALSE;

}
C6: if(p->op==P0OP) {
C7: if (CAS(&location[him],q,NULL)){
C8: p—>cell=g->cell;
C9: location[mypid]=NULL;
C10: return TRUE

}

Ci1: else
C12: return FALSE;

}
¥

Figure 4: Elimination Backoff Stack Code - part 2

PUSH POP PUSH PUSH PUSH

L[1e] |]|

[18[T]
v

Stack
Object

Stack
Object

Stack
Object

Figure 5: Collision scenarios

entry as “collided with p”. If both CAS operations succeed,
the collision is successful. Therefore p can return (in case of
a pop operation it stores the value of the popped cell).

If the first CAS fails, it follows that some other thread
r has already managed to collide with p. In that case the
thread p acts as in case of a successful collision, mentioned
above. If the first CAS succeeds but the second fails, then
the thread with whom p is trying to collide is no longer
available for collision. In that case, p tries to perform the
operation on the central stack object, returns in case of suc-
cess, and repeatedly goes through the collision layer in case
of failure.

2.3 Memory Management and ABA Issues

In our implementation we use a very simple memory man-
agement mechanism - a pool of cells available for restricted
use (similar to the pool introduced in [22]). When a thread
needs a cell to perform a push operation on a stack, it re-
moves a cell from the pool and uses it. When a thread
pops a cell from the stack, it returns the cell to the pool.
Note that the cells are returned only by threads that per-
formed pop operations, thus insuring correctness in lines C8
and F2. Without this assumption we would need to copy
the contents of the cell and not just its address. Though
outside the scope of this paper, we note that one can use
techniques such as those of Trieber [22], or more general
techniques such as SMR [14] or ROP [10], to detect when a
cell in the pool can be reused.

209

As our algorithm is based on the compare-and-swap (CAS)
operation, it must deal with the “ABA problem” [4]. If a
thread reads the top of the stack, computes a new value,
and then attempts a CAS on the top of the stack, the CAS
may succeed when it should not, if between the read and the
CAS some other thread(s) change the value to the previous
one again. The simplest and most common ABA-prevention
mechanism is to include a tag with the target memory lo-
cation such that both are manipulated together atomically,
and the tag is incremented with updates of the target loca-
tion [4]. The CAS operation is sufficient for such manipula-
tion, as most current architectures that support CAS (Intel
x86, Sun SPARC) support their operation on aligned 64-bit
blocks. One can also use general techniques to eliminate
ABA issues through memory managements such as SMR
[14] or ROP [10].

3. ADAPTATIVE ELIMINATION BACKOFF

The classical approach to handling load is backoff, and
specifically exponential backoff [1]. In a regular backoff
scheme, once contention in detected on the central stack,
threads back off in time. Here, threads will back off in both
time and space, in an attempt to both reduce the load on
the centralized data structure and to increase the probabil-
ity of concurrent colliding. Our backoff parameters are thus
the width of the collision layer, and the delay at the layer.

The elimination backoff stack has a simple structure that
naturally fits with a localized adaptive policy for setting pa-
rameters similar to the strategy used by Shavit and Zemach
for combining funnels in [20]. Decisions on parameters are
made locally by each thread, and the collision layer does
not actually grow or shrink. Instead, each thread indepen-
dently chooses a subrange of the collision layer it will map
into, centered around the middle of the array, and limited
by the maximal array width. It is possible for threads to
have different ideas about the collision layer’s width, and
particulary bad scenarios might lead to bad performance,
but as we will show, the overall performance is superior to
that of exponential backoff schemes [1]. Our policy is to first
attempt to access the central stack object, and only if that
fails to back off to the elimination array. This allows us,
in case of low loads, to avoid the collision array altogether,
thus achieving the latency of a simple stack (in comparison,
[20] are at best three times slower than a simple stack).

One way of adaptively changing the width of the colli-
sion layer is the following. Each thread t keeps a value,
0<factor<1, by which it multiplies the collision layer width
to choose the interval into which it will randomly map to try
and collide (e.g. if factor=0.5 only half the width is used).
When t fails to collide because it did not encounter another
thread, it increments a private counter. When the counter
exceeds some limit, factor is halved, and the counter is being
reset to its initial value. If, on the other hand, ¢t encountered
some other thread u, performing an opposite operation-type,
but fails to collide with it (the most probable reason being
that some other thread v succeeded in colliding with u before
t), the counter is being decremented, and when it reaches 0,
factor is doubled, and the counter is being reset to its initial
value.

The second part of our strategy is the dynamic update
of the delay time for attempting to collide in the array, a
technique used by Shavit and Zemach for diffracting trees
in [18, 19]. One way of doing that is the following. Each

repeat
op:=random(push, pop)
perform op
w:=random(0. .workload)
wait w millisecs
until 500000 operations performed

Figure 6: Produce-Consume benchmark

thread ¢ keeps a value spin which holds the amount of time
that ¢ should delay while waiting to be collided. The spin
value may change within a predetermined range. When ¢
successfully collides, it increments a local counter. When
the counter exceeds some limit, ¢ doubles spin. If ¢ fails to
collide, it decrements the local counter. When the counter
decreases bellow some limit, spin is halved. This localized
version of exponential backoff serves a dual role: it increases
the chance of successful eliminations, and it plays the role
of a backoff mechanism on the central stack structure.

There are obviously other conceivable ways of adaptively
updating these parameters, and this is a subject for further
research.

4. PERFORMANCE

We evaluated the performance of our elimination-backoff
stack algorithm relative to other known methods by run-
ning a collection of synthetic benchmarks on a 14 node Sun
Enterprise™ E6500, an SMP machine formed from 7 boards
of two 400MHz UltraSparc™ processors, connected by a
crossbar UPA switch, and running Solaris 9. Our C code
was compiled by a Sun cc compiler 5.3, with flags -x05
-xarch=v8plusa.

4.1 The Benchmarked Algorithms

We compared our stack implementation to the lock-free
but non-linearizable elimination tree of Shavit and Touitou
[17] and to two linearizable methods: a serial stack protected
by MCS lock [13], and a non-blocking implementation due
to Treiber [22].

e MCS A serial stack protected by an MCS-queue-lock
[13]. Each processor locks the top of the stack, changes
it according to the type of the operation, and then
unlocks it. The lock code was taken directly from the
article.

e Treiber Our implementation of Treiber’s non-blocking
stack followed the code given in [22]. We added to it
exponential backoff scheme, as introduced in [2].

e ETree An elimination tree [17] based stack. Its pa-
rameters were chosen so as to optimize its performance,
based on empirical testing.

4.2 The Produce-Consume Benchmark

In the produce-consume benchmark each thread alter-
nately performs a push or pop operation and then waits for
a period or time, whose length is chosen uniformly at ran-
dom from the range: [0...workload]. The waiting period
simulates the local work that is typically done by threads in
real applications between stack operations (see Figure 6). In
all our experiments the stack was initialized as sufficiently
filled to prevent it from becoming empty during the run.

210

Throughput

8000 ~
c 7000 +
2 6000
S5
2 S 5000
2 & 4000 |
o2 Treiber with backoff
o o 3000
oo
£ 2000 +]
2 Treiber
z 1000 -

0 T
1 2 4 8 14 32
Threads
Latency
1900 -
—e— New algorithm

1700 o e
_ —a— Treiber with backoff
2 1500 - MCS
§ 1300 1 —s¢—Treiber
% . 1100 + —x—ETree
L o
? 'E 900 +
g “g’ 700 4

500

_——§————§——— %
300 : : :

T T
1 2 4 8
Threads

14 32

Figure 7: Throughput and latency of different stack
implementations with varying number of threads.
Each thread performs 50% pushs, 50% pops.

4.3 Measuring the performance of benchmarked

algorithms

We ran the produce-consume benchmark specified above
varying the number of threads and measuring latency, the
average amount of time spent per operation, and throughput,
the number of operations per second. We compute through-
put and latency by measuring the total time required to
perform the specific amount of operations by each thread.
We refer to the longest time as the time needed to complete
the specified amount of work.

To counteract transient startup effects, we synchronized
the start of the threads (i.e., no thread can start before all
other threads finished their initialization phase). Each data
point is the average of three runs, with the results varying
by at most 1.4% throughout all our benchmarks.

4.4 Empirical Results

Figure 7 shows the results of a benchmark in which half a
million operations were performed by every working thread,
with each thread performing 50% pushs and 50% pops on
average. Figure 9 provides a detailed view of the three best
performers. From Figure 7 it can be seen that our results for
known structures generally conform with those of [15, 16],
and that Treiber’s algorithm with added exponential backoff
is the best among known techniques. It can also be seen that
the new algorithm provides superior scalable performance at
all tested concurrency levels. The throughput gap between
our algorithm and Treiber’s algorithm with backoff grows
as concurrency increases, and at 32 threads the new algo-
rithm is almost three times faster. Such a significant gap in
performance can be explained by reviewing the difference in
latency for the two algorithms.

Table 1 shows latency measured on a single dedicated pro-

Throughput

6000 4 —e—EBS
5 !]
2 5000 - —m— Treiber with backoff
g —a—MCS
T = 4000 4 —x—Treiber
T c —%—ETree
S S 3000 -
5 &
o 2000 +
Q
E
E 1000 -
z

0
1 2 4 8 14 32
Threads
Latency

1900 1 _4— New algorithm
g 1700 1 _gTreiber with backoff
2 < 15004 4 wmcs
E, .% 1300 4 ——Treiber
% $ 1100 1 —x—ETRee
28 900
g 700 -
< 500 1

300 T
1 2 4 8 14 32
Threads

Figure 8: Throughput and latency under varying
distribution of operations: 25% push, 75%pop

cessor. The new algorithm and Treiber’s algorithm with
backoff have about the same latency, and outperform all oth-
ers. The reason the new algorithm achieves this good per-
formance is due to the fact that elimination backoff (unlike
the elimination used in structures such as combining funnels
and elimination trees) is used only as a backoff scheme and
introduces no overhead. The gap of the two algorithms with
respect to MCS and ETree is mainly due to the fact that a
push or a pop in our algorithm and in Treiber’s algorithm
typically needs to access only two cache lines in the data
structure, while a lock-based algorithm has the overhead of
accessing lock variables as well. The ETree has an overhead
of travelling through the tree.

As Figure 9 shows, as the level of concurrency increases,
the latency of Treiber’s algorithm grows since the head of
the stack, even with contention removed, is a sequential
bottleneck. On the other hand, the new algorithm has in-
creased rate of successful collisions on the elimination array
as concurrency increases. As Table 2 shows, the fraction of
successfully eliminated operations increases from only 11%
for two threads up to 43% for 32 threads. The increased
elimination level means that increasing numbers of threads
complete their operations quickly and in parallel, keeping
latency fixed and increasing overall throughput.

We also tested the robustness of the algorithms under
workloads with an imbalanced distribution of push and pop
operations. Such imbalanced workloads are not favorable
for the new algorithm because of the smaller chance of suc-
cessful collision. From Figure 8 it can be sees that the new
algorithm still scales, but at a slower rate. The slope of the
latency curve for our algorithm is 0.13 usec per thread, while
the slope of the latency curve for Treiber’s algorithm is 0.3

211

Table 1: Latency on a single processor (no con-
tention).
New algorithm 370
Treiber with backoff | 380
MCS 546
Treiber 380
ETree 6850

Table 2: Fraction of successfully eliminated opera-
tions per concurrency level

2 threads | 11%
4 threads | 24%
8 threads | 32%
14 threads | 37%
32 threads | 43%

usec per thread, explaining the difference in throughput as
concurrency increases.

In Figure 10 we compare the various methods as access
patterns become sparse and the load decreases. Under low
load, when workload = 1000, all the algorithms (except the
elimination tree) maintain an almost constant latency as the
level of concurrency increases because of the low contention.
The decrease in the latency of elimination tree w.r.t. the
case of workload = 0 is smaller, because of the lower levels
of elimination. In contrast, the adverse effect of the sparse
access pattern on our algorithm’s latency is small, because
our algorithm uses the collision layer only as a backup if it
failed to access the central stack object, and the rate of such
failures is low when the overall load is low.

To further test the effectiveness of our policy of using
elimination as a backoff scheme, we measured the fraction
of operations that failed on their first attempt to change
the top of the stack. As seen in Figure 11, this fraction
is low under low loads (as can be expected) and grows to-
gether with load, and, perhaps unexpectedly, is lower than
in Trieber’s algorithm. This is a result of using the collision
layer as the backoff mechanism in the new algorithm as op-
posed to regular backoff, since in the new algorithm some of
the failed threads are eliminated and do not interfere with
the attempts of newly arrived threads to modify the stack.
These results further justify the choice of elimination as a
backoff scheme.

To study the behavior of our adaptation strategy we con-
ducted a series of experiments to hand-pick the “optimized
parameter set” for each level of concurrency. We then com-
pared the performance of elimination backoff with an adap-
tive strategy to an optimized elimination backoff stack. These
results are summarized in Figure 12. Comparing the latency
of the best set of parameters to those achieved using adap-
tation we see that adaptive strategy is about 2.5% - 4%
slower.

From these results we conclude that our adaptation tech-
niques appear to work reasonably well. Based on the above
benchmarks, we conclude that for the concurrency range we
tested, elimination backoff is the algorithm of choice for im-
plementing linearizable stacks.

Latency
600
550 4

500 MCs

450 +

¢ New alaorithm *

400 -

350 -

Average latency per
operation

300 -
250 -

200

14 32

4 8
Threads

Figure 9: Detailed graph of latency with threads
performing 50% pushs, 50% pops.

Latency
1900 -
EJ_ 1700 -| —e— New algorithm
2 1500 -{ —=— Treiber with backoff
§ ,g 1300 | —a—MCS
88 1100 | —x—ETree
o &
23 900
o 700
< 500 4 A
300 :
1 2 4 8 14 32
Threads
Figure 10: Workload=1000
40
35 4
@ 30 Treiber
2 25 -
8
S 204 New algorithm
g 15 -
=
& 101
5 |
0
2 4 8 14 32
Threads
Figure 11: Fraction of failures on first attempt
Latenc
400 - y
g 390
>
© c
S 2 380 - New algorithm
g
[) [
a 370 A
o
)
2 360 - Best new algorithm
350
1 2 4 8 14 32
Threads
Figure 12: Comparison of algorithm latency

achieved by hand-picked parameters with that
achieved by using an adaptive strategy

212

5. CORRECTNESS PROOF

This section contains a formal proof that our algorithm is
a lock-free linearizable implementation of a stack. For lack
of space, proofs of a few lemmata are omitted and would
appear in the full paper.

Our model for multithreaded computation follows [11],
though for brevity and accessibility we will use operational
style arguments. In our proof we will ignore issues relating to
the ABA problem typical of implementations using the CAS
operation. As described earlier (Section 2.3), there are sev-
eral standard techniques for overcoming the ABA problem
[10, 14]. A concurrent stack is a data structure whose oper-
ations are linearizable [11] to those of the sequential stack
as defined in [3]. The following is a sequential specification
of a stack object.

DEFINITION 5.1. A stack S is an object that supports two
types of operations on it: push and pop. The state of a
stack is a sequence of items S = (vo,...,vx). The stack is
initially empty. The push and pop operations induce the
following state transitions of the sequence S = (vo, ..., VL),
with appropriate return values:

® push(vnew), changes S to be (vo, ..., Vi, Unew)

e pop(), if S is not empty, changes S to be (vo, ..., Vk—1)
and returns vi; if S is empty, it returns empty and S
remains unchanged.

We note that a set is a relaxation of a stack that does not
require LIFO ordering. We begin by proving that our al-
gorithm implements a concurrent set, without considering a
linearization order. We then prove that our stack implemen-
tation is linearizable to the sequential stack specification of
Definition 5.1. Finally we prove that our implementation is
lock-free.

5.1 Correct Set Semantics

‘We now prove that our algorithm has correct set seman-
tics, i.e. that pop operations can only pop items that were
previously pushed, and that items pushed by push opera-
tions are not duplicated. This is formalized in the following
definition .

DEFINITION 5.2. A stack algorithm has correct set se-
mantics if the following requirements are met for all stack
operations:

1. Let Op be a pop operation that returns an item i, then
i was previously pushed by a push operation.

2. Let Op be a push operation that pushed an item i to
the stack, then there is at most a single pop operation
that returns i.

We call any operation that complies with the above require-
ment a correct set operation.

LEMMA 5.1. Operations that modify the central stack ob-
ject are correct set operations.

PRrROOF. Follows from the correctness of Treiber’s algo-
rithm [22]. O

'For simplicity we assume all items are unique, but the proof
can easily be modified to work without this assumption.

In the following, we prove that operations that exchange
their values through collisions are also correct set operations,
thus we show that our algorithm has correct set semantics.
We first need the following definitions.

DEFINITION 5.3. We say that two operations op1 and opz
have collided if they have exchanged their values and have
not modified the central stack object; we say that each of
op1, op2 is a colliding operation.

DEFINITION 5.4. We say that a colliding operation op is
active if it executes a successful CAS in lines C2 or C7. We
say that a colliding operation is passive if op fails in the CAS
of line S10 or S19.

DEFINITION 5.5. A state s of the algorithm in an n-thread
system is a vector of size n, with entry i, 1 < i < n, rep-
resenting the state of thread i. The state of thread i in s
consists of the values of thread i’s data structures and of the
value of thread i’th program-counter.

DEFINITION 5.6. Let op be an operation performed by thread

t. We say that op is trying to collide at state s, if, in s,
the value of t’s program counter is pointing at a statement
of one of the following procedures: LesOP, TryCollision,
FinishCollision. Otherwise, we say that op is not trying
to collide at s.

We next prove that operations can only collide with op-
erations of the opposite type. First we need the following
technical lemma.

LEMMA 5.2. Ewvery colliding operation op is either active
or passive, but not both.

PRrROOF. Clearly from the code, a colliding operation is
active and/or passive. We have to show that it cannot be
both. Suppose that the operation op is passive, then op fails
the CAS of line S10 or that of line S19; clearly from the code,
op then calls FinishCollision and exits, therefore op cannot
play an active-collider role after playing a passive-collider
role. Suppose now that op is active. From definition 5.4, it
executes a successful CAS in lines C2 or C7. It is clear from
the code that in this case op returns TRUE from TryColli-
sion and does not reach line S10 or S19 afterwards (it returns
in line S12). So op cannot play a passive-collider role after
playing an active-collider role. []

LEMMA 5.3. Operations can only collide with operations
of the opposite type: an operation that performs a push can
only collide with operations that perform a pop, and vice
versa.

PROOF. Let us consider some operation, op, that col-
lides. From the code, in order to successfully collide, op
must either succeed in performing TryCollision or execute
FinishCollision. We now examine both cases.

e TryCollision can succeed only in case of a successful
CAS in line C2 (for a push operation) or in line C7
(for a pop operation). Such a CAS changes the value
of the other thread’s cell in the location array, thus ex-
changing values with it and returns without modifying
the central stack object. From the code, before calling
TryCollision op has to execute line S9, thus verifying
that it collides with an operation of the opposite type.

e If op is a passive colliding-operation, then op performs
FinishCollision, which implies that op failed in reset-
ting its entry in the location array (in line S10 or s19).
Let opl be the operation that has caused op’s failure
by writing to its entry. From the code, opl must have
succeeded in TryCollision, thus, it has verified in line
S9 that its type is opposite to that of op.

O

The proofs of the following three technical lemmata are
omitted for lack of space.

LEMMA 5.4. An operation terminates without modifying
the central stack object, if and only if it collides with another
operation.

LEMMA 5.5. For every thread p and in any state s, if p is
not trying to collide in s, then it holds in s that the element
corresponding to p in the location array is NULL.

LEMMA 5.6. Let op be a push operation by some thread
p; if location[p] # NULL, then op is trying to push the
value location[p]->cell.pdata.

In the next three lemmata, we show that push and pop op-
erations are paired correctly during collisions.

LEMMA 5.7. Every passive collider collides with ezxactly
one active collider.

PROOF. Assume by contradiction that some passive col-
lider, op1, collides with multiple other operations, and let
op2, ops be the last two operations that succeed in collid-
ing with op1. We denote the element written by op:1 to the
location array by lop,. We consider the following two pos-
sibilities.

e Assume op; is a passive-collider performing a pop op-
eration. From Lemma 5.3, both op2, ops are push op-
erations. From Lemma 5.2, op; cannot be both active
and passive. Thus op: exchanges values only in line
F2, with the last operation that has written to its en-
try in the location array. As both opz and ops are
active colliders performing a push, both succeed in the
CAS of line C2. As ops succeeds in colliding with opq
after opz does, the ¢ parameter used in the CAS of
ops at line C2 must be the value written by op2 in its
successful CAS of line C2. This is impossible, because
in line S9 ops verifies that ¢ is of type pop, but ops is
performing a push.

e Otherwise, assume op; is a passive-collider perform-
ing a push operation. From Lemma 5.3, both op2, ops
perform a pop operation. Thus it must be that both
op2 and ops succeed in the CAS of line C7. This im-
plies that both succeed in writing NULL to the entry
of opi’s thread in the location array. This, however,
implies that the ¢ parameter used by ops in line C7 is
NULL, which is impossible since in this case ops would
have failed the check in line S9.

O

LEMMA 5.8. Every active collider op1 collides with ex-
actly one passive collider.

PRrROOF. The proof is by contradiction. Assume that an
active-collider, op1, collides with two operations op2 and ops.
From Lemma 5.3, both op2 and ops are passive, hence both
op2 and ops have failed while executing CAS in lines S10
or S19. It follows that op; must have written its value to
the location array twice. From the code, this is impossible,
because op; can perform such a write only in line C2 or C9,
and it exits immediately after. [

LEMMA 5.9. Ewvery colliding operation op participates in
ezxactly one collision with an operation of the opposite type.

PRrROOF. Follows from Lemmata 5.2, 5.7 and 5.8. [

We now prove that, when colliding, opposite operations
exchange values in a proper way.

LEMMA 5.10. If a pop operation collides, it obtains the
value of the single push operation it collided with.

PROOF. Let op1, op2 respectively denote the pop opera-
tion and the push operation that collided with it. Also, let
p1 and p2 respectively denote the threads that perform op:
and op2. We denote the entry corresponding to pi in the
location array as lp,. We denote the entry corresponding
to p2 in the location array as lp,. Assume that op; is a
passive collider, then from Lemma 5.9 it collides with a sin-
gle active push collider, op2. As op1 succeeds in colliding, it
obtains in line F2 the cell that was written to its entry in
the location array by opa.

Assume that op; is a an active collider, then from Lemma
5.9 it collides with a single passive push collider, op2. As
op1 succeeds in colliding, it succeeds in the CAS of line C7
and thus returns the cell that was written by opa. [

LEMMA 5.11. If a push operation collides, its value is ob-
tained by the single pop operation it collided with.

PROOF. Symmetric to the proof of Lemma 5.10. [J

We can now finally prove that our algorithm has correct
set semantics.

THEOREM 5.12. The elimination-backoff stack has cor-
rect set semantics.

PrOOF. From Lemma 5.1, all operations that modify the
central stack object are correct set operations. From Lem-
mata 5.10 and 5.11, all colliding operations are correct set
operations. Thus, all operations on the elimination-backoff
stack are correct set operations and so, from Definition 5.2,
the elimination-backoff stack has correct set semantics. []

5.2 Linearizability

Given a sequential specification of a stack, we provide
specific linearization points mapping operations in our con-
current implementation to sequential operations so that the
histories meet the specification. Specifically, we choose the
following linearization points for all operations, except for
passive-colliders:

e Lines T4, C2 (for a push operation)
e Lines T10, T14, C7 (for a pop operation)

For a passive-collider operation, we set the linearization
point to be at the time of linearization of the matching

214

active-collider operation, and the push colliding-operation
is linearized before the pop colliding-operation.

Each push or pop operation consists of a while loop that
repeatedly attempts to complete the operation. An iteration
is successful if its attempt succeeds, in which case the oper-
ation returns at that iteration; otherwise, another iteration
is performed . Each completed operation has exactly one
successful attempt (its last attempt), and the linearization
of the operation occurs in that attempt. In other words, the
operations are linearized in the aforementioned lineaniraza-
tion points only in case of a successful CAS, which can only
be performed in the last iteration of the while loop.

We note that, from definition 5.1, a successful collision
does not change the state of the central stack object. It
follows that at any point of time, the state of the stack is
determined solely by the state of its central stack object.

To prove that the aforementioned lines are correct lin-
earization points of our algorithm, we need to prove that
these are correct linearization points for the two types of op-
erations: operations that complete by modifying the central
stack object, and operations that exchange values through
collisions.

LEMMA 5.13. For operations that do not collide, we can
choose the following linearization points:

e Line T4 (for a push operation)

e Line T10 (in case of empty stack) or line T14 (for a
pop operation)

PRroOOF. Follows directly from the linearizability of Treiber’s
algorithm [22]. [

We still have to prove that the linearization points for
collider-operations are consistent, both with one another,
and with non-colliding operations. We need the following
technical lemma, whose proof is omitted for lack of space.

LEMMA 5.14. Let op1, op2, be a colliding operations-pair,
and assume w.l.o.g. that opi is the active-collider and opa
1s the passive collider, then the linearization point of op1 (as
defined above) is within the time interval of opz.

LEMMA 5.15. The following are legal linearization points
for collider-operations.

e An active-collider, op1, is linearized at either line C2
(in case of a push operation) or at line C7 (in case of
a pop operation,).

o A passive-collider, op2, is linearized at the lineariza-
tion time of the active-collider it collided with. If op2
is a push operation, it is linearized immediately before
op1, otherwise it is linearized immediately after op:.

PrOOF. To simplify the proof and avoid the need for
backward simulation style arguments, we consider only com-
plete execution histories, that is, ones in which all abstract
operations have completed, so we can look “back” at the
execution and say for each operation where it happened.

We first note that according to Lemma 5.14, the lineariza-
tion point of the passive-collider is well-defined (it is obvi-
ously well-defined for the active-collider). We need to prove
the correct LIFO ordering between two linearized collided
operations.

As we linearize the passive-collider in the linearization
point of its counterpart active-collider, no other operations
can be linearized between op: and opz; as the push oper-
ation is linearized just before the pop operation, this is a
legal LIFO matching that cannot interfere with the LIFO
matching of other collider-pairs or that of non-collider oper-
ations. Finally, from Lemma 5.10, the pop operation indeed
obtains the value of the operation it collided with. [

THEOREM 5.16. The elimination-backoff stack is a cor-
rect linearizable implementation of a stack object.

PrOOF. Immediate from Lemmata 5.13, 5.15 []

5.3 Lock Freedom

THEOREM 5.17. The elimination-backoff stack algorithm
is lock-free.

PROOF. Let op be some operation. We show that in every
iteration made by op, some operation performs its lineariza-
tion point, thus the system as a whole makes progress. If
op manages to collide, then op’s linearization has occued,
and op does not iterate anymore before returning. Other-
wise, op calls TryPerformStackOp; if TryPerformStackOp
returns TRUE, op immediately returns, and its lineariza-
tion has occured; if, on the other hand, TryPerformStackOp
returns FALSE, this implies that the CAS performed by it
has failed, and the only possible reason for the failure of the
CAS by op is the success of a CAS on phead by some other
operation, thus whenever op completes a full iteration, some
operation is linearized. [

6. REFERENCES

[1] A. Agarwal and M. Cherian. Adaptive backoff
synchronization techniques. In Proceedings of the 16th
Symposium on Computer Architecture, pages 41-55,
June 1989.
T. E. Anderson. The performance of spin lock
alternatives for shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems,
1(1):6-16, January 1990.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edition.
MIT Press, Cambridge, Massachusetts, 2002.
I. Corporation. IBM System/370 Extended
Architecture, Principles of Operation. IBM
Publication No. SA22-7085, 1983.
R. Goodman and M. K. V. P. J. Woest. Efficient
synchronisation primitives for large-scale
cache-coherent multiprocessors. In Proceedings of the
Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS-III, pages 64—75, 1989.
A. Gottleib, B. D. Lubachevsky, and L. Rudolph.
Efficient techniques for coordinating sequential
processors. ACM TOPLAS, 5(2):164-189, April 1983.
M. Greenwald. Non-Blocking Synchronization and
System Design. PhD thesis, Stanford University
Technical Report STAN-CS-TR~99-1624, Palo Alto,
CA, 8 1999.
M. Herlihy. A methodology for implementing highly
concurrent data objects. ACM Transactions on
Programming Languages and Systems, 15(5):745-770,
November 1993.

215

[9] M. Herlihy, B.-H. Lim, and N. Shavit. Scalable
concurrent counting. ACM Transactions on Computer
Systems, 13(4):343-364, 1995.

M. Herlihy, V. Luchangco, and M. Moir. The
repeat-offender problem, a mechanism for supporting
dynamic-sized,lock-free data structures. Technical
Report TR-2002-112, Sun Microsystems, September
2002.

M. P. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463-492, 1990.

B.-H. Lim and A. Agarwal. Waiting algorithms for
synchronization in large-scale multiprocessors. ACM
Transactions on Computer Systems, 11(3):253-294,
august 1993.

J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer
Systems (TOCS), 9(1):21-65, 1991.

M. M. Michael. Safe memory reclamation for dynamic
lock-free objects using atomic reads and writes. In
Proceedings of the twenty-first annual symposium on
Principles of distributed computing, pages 21-30.
ACM Press, 2002.

M. M. Michael and M. L. Scott. Nonblocking
algorithms and preemption-safe locking on
multiprogrammed shared — memory multiprocessors.
Journal of Parallel and Distributed Computing,
51(1):1-26, 1998.

M. Scott and W. Schrerer. User-level spin locks for
large commercial applications. In SOSP,
Work-in-progress talk, 2001.

N. Shavit and D. Touitou. Elimination trees and the
construction of pools and stacks. Theory of Computing
Systems, (30):645-670, 1997.

N. Shavit, E. Upfal, and A. Zemach. A steady state
analysis of diffracting trees. Theory of Computing
Systems, 31(4):403-423, 1998.

N. Shavit and A. Zemach. Diffracting trees. ACM
Transactions on Computer Systems, 14(4):385-428,
1996.

N. Shavit and A. Zemach. Combining funnels: A
dynamic approach to software combining. Journal of
Parallel and Distributed Computing, (60):1355-1387,
2000.

K. Taura, S. Matsuoka, and A. Yonezawa. An efficient
implementation scheme of concurrent object-oriented
languages on stock multicomputers. In Principles
Practice of Parallel Programming, pages 218-228,
1993.

R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ 5118, IBM Almaden
Research Center, April 1986.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

