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Abstract— This paper presents the description of a formal
mathematical and computing method of Discrete Wavelet Trans-
form (DWT) combined with auto-correlation power spectrum.
Detail segments (high-pass) of the first and second scale level
of DWT (“lifting scheme”) are convoluted using auto-correlation
to achieve a more precise identification of cardiopathies which
can be detected and represented for automated analysis due to
power spectra differences. This study shows how ECG signals
of normal and some cardiac pathologies can be compared to
verify the applicability of the described method and improve its
usability in ambulatorial clinic and other applicability for mobile
monitoring.

I. INTRODUCTION

Importance of biometric signal monitoring has increased
recently for securing patient lives through detection of emer-
gencies and abrupt changes in patient conditions. Some cardiac
problems can occur during normal daily activities and may not
be present or disappear when the patient is hospitalized. For
this reason cardiac patients are particularly dependent on long-
term monitoring equipment and on-line electrocardiogram
(ECG) data transmission that can provide information for
preventive diagnosis in advance.

There are several equipments commercialized for cardiac
patient monitoring but its clinical use still lacks solution of
technical issues. Rhee et al. [1] state that “long-term, ambula-
tory monitoring systems have not yet reached a technical level
that is widely accepted by both clinicians and patients.” Holter
[2] has developed and tested an ambulatorial ECG monitoring.
Although it has gained increasing popularity, it still has not
precision and T-wave changes still do not have fidelity even
after some new improvement, for it must be able to detect
heart signals as a motion equipment and on an environment
with various disturbances [3].

The main problem with Holters ECG signal assessment is
the great amount of interference and the poor quality of the
signal for a real time analysis. In this paper we present a

new method for the study of ECG signals, using the Wavelet
concept of multiresolution analysis (MRA) [4], [5].

A. Mathematical Background

MRA with a scaling function φ is a set of subspaces V in
L2[−∞,+∞]:

· · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·
that has the following properties:

1) Density or ∩jVj is dense in L2[−∞,+∞].
2) Separation or ∩jVj = 0.
3) Scaling or f(t) ∈ Vj ⇐⇒ f(2t) ∈ Vj+1 for all integers

j and arbitrary functions f .
4) Orthonormality or funtions φ(t − k), for k =

0,±1,±2, . . . are orthonormal basis of V0.
The simplest way to obtain a wavelet representation, where

we can fix the level of time and of the frequency localizations,
is to construct a function called “mother wavelet” such as:

ψa,b(t) =
1√
a
ψ

(

t− b

a

)

, (1)

where a > 0, b ∈ < and ψ is a fixed function well localized
in time and frequency domain [6].

The space of this function is a Hilbert space in L2(R). The
scalar product of two functions f and g in a Hilbert space
is defined as < f, g >=

∫

f(t)g(t)dt, so we can write a
continuous wavelet transform of a function f ∈ L2(R), as:

Wf(a, b) =< f, ψa,b >=
1√
a

∫

f(t)ψ

(

t− b

a

)

dt. (2)

In equation 2, ψa,b plays the same role as eiwt in the
definition of the Fourier transform [7].

The convolution of a set of sampled data with wavelet
orthonormal basis coefficients can yield two sets of data since
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Fig. 1. The piramid algorithm of the forward Fast Wavelet Transform (FWT)
and the repeated convolution of the sampled data with the wavelet coefficients
Low-Pass (LP) and High-Pass (HP) filters.

they act as Finite Impulse Response (FIR) filters. Actually,
wavelet coefficients can be used as low-pass and high-pass
filters of complementary bandwidth. Like a FIR filter the
recursive convolution can be writen as

yk =

∞
∑

t=−∞

c(k−t) · xt

where yk is the output of a set of inputs xk convolved with
c(k−t).

The new set of data can be splited in two sets: the low-pass
and the high-pass segments. The low-pass segment can be used
as a new input and can be convolved again. Notice that each
time the process occurs, the low-pass set is decimated of a
factor of 2 and the operation can be repeated until the sample
interval is reached. So, if we want a 4 levels operation we will
have to have 24 samples at least (see figure 1).

Since the high-pass set represents the detail coefficients for
each level, the low-pass represents the data aproximation in
that level, obviously with some loss of information. In order
to analyze how much it changes in each level, comparison with
other orthonormal basis can be done there is, each low-pass
level can be transformed using another base to acquaint the
frequency decimation.

The goal of this paper is to show that power spectrum of
detail coefficients for each level can be used as an associate
orthonormal basis to compare frequency spectra for each level.
This procedure can differenciate normal ECG signals from
ECG of cardiac pathologies, with more sensibility even when
raw signals are used as input.

II. METHODS

Data samples were downloaded from PhysioNet [8] at
Universidade de S. Paulo (http://physionet.incor.
usp.br/physiobank/database/) and were converted
to data using Waveform Database (WFDB) software (http:
//physionet.incor.usp.br/physiotools/wfdb.
shtml).

Sampled data were convolved with the scalling filters using
“lifting method” coefficients (described below) as a quadrature
mirror filter pair (complementary Low-Pass and High-Pass).
The result yields two sets of data which are desampled by a
factor of 2. Resulting sets of data are the high-pass filtered data
(detail coefficients for this scale level) and the low-pass filtered
data (aproximation coefficients at the scale level). The opera-
tion was repeated using the low-pass data as input for another

level of transformation. Each level detail was used to obtain the
power spectra where analysis were performed. The first 2 level
high-pass samples were transformed using auto-correlation
method to obtain the power spectra for frequency analysis
and comparison. Through windowing methods, frames of the
signal were used to compare normal and abnormal ECG signal
data.

A. Lifting Method

The “lifting scheme” is a powerful method to design wavelet
transforms first proposed by Win Sweldens [9]. Sweldens and
Daubechies proved in [10] that this method allows to recover
classical wavelet transform using a translation invariant dis-
cretisation of a plane.

The lifting scheme can be represented as in figure 2 as a
chain of split/predict steps, where the even elements from one
step become the input for the next step.
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Fig. 2. Split representation of the “lifting scheme”. Means and differences
are represented by letters “m” and “d” respectively.

One limitation of this method is the fact that it does not
use any invariance propriety so it is not easy to get some
convergence or some asymptotic algorithm of the cascade
filter. This limitation can be supplied by auto-correlation,
cross-correlation or a Fourier algorithm that can result in better
information about the Wavelet function.

B. Auto-correlation and Power Spectrum

The convolution of two functions f and g (cross-
correlation) correlates the signal f at some time i with a
second function g at earlier times i− j. From the convolution
h(t) of two functions

hi = f �∗ g =

∫

∞

−∞

f(i)g(i− j)dj (3)

it can be stated the correlation function Corr[f.g] where,

Corr[f, g] ≡
∫

∞

−∞

f [u]g[t− u]du (4)

Auto-correlation ρi of a periodic sequence {a}i=N−1
i=0 is

defined as:

ρi =

j=N−1
∑

j=0

aj · aj+i (5)



For a continuous function f(x), there is an auto-correlation
function Rf(x) defined as:

Rf(x) = lim
T→∞

∫ T

−T

f(x) · f(x+ t)dt (6)

there is, the auto-correlation of a complex function is the cross-
correlation of f(x) with itself.

In order to supply the limitation of the “lifting scheme” and
generate the power spectrum of the windowed data, an auto-
correlation method was choosen. It was taken 50% overlaped
windows of 1024 samples from all data signal and convoluted
by auto-correlation to yield a power spectrum.

C. Computational Methods

Auto-correlation power spectra were calculated using corre-
lation method (cspect) using SciLab 3.0 (Consortium Scilab,
INRIA, ENPC, see http://scilabsoft.inria.fr/),
runing on FreeBSD. Shell scripts to carry on automated tasks
and Scilab programs were developed in our lab and are not
documented yet, but can be solicited to authors by email.

III. RESULTS

This section presents some results samples yielded by
the signals analised using the method described previously.
Authors have tested more than 53 archives of normal and
pathological ECG signals. Each of them were windowed,
overlaped and transformed, and presented very similar results.
Some ECG signals presents visible changes for abnormal
conditions, but in other cases do not. In those last cases power
spectra of disease signals are similar to normal spectrum.
Some cases of a slight supraventricular arrhythmia (SVA) can
exemplify this. Its power spectrum can be analogous to normal
conditions and can not be distinguished between the biological
variation.

Figure 3 shows power spectra (auto-correlation) of ECG
signal of normal (3(a)), supraventricular arrhythmia (3(b)) and
malignant ventricular arrhythmia (3(c)).

Figure 4 shows power spectra of first level high-pass for the
“lifting” wavelet of normal (4(a)), supraventricular arrhythmia
(4(b)) and malignant ventricular arrhythmia (4(c)).

Figure 5 shows power spectra of second level high-pass
for the “lifting” wavelet of normal (5(a)), supraventricular
arrhythmia (5(b)) and malignant ventricular arrhythmia (5(c)).

Figure 6 shows a comparison of normal (6(a)), SVA (6(b))
and MVA (6(c)) spectra, where each scale shows frequency
details. Power spectrum of the ECG signal is represented in
gray. The two scale levels are represented in black; continuous
for the first level and dash-lined for the second.

These samples represent only one window of the signal on
the scale of interest (first and second levels of the Wavelet
Transform), and other tests yielded similar results.

A. Discussion

This study has compared ECG signals of normal and some
cardic pathologies. Since these experiments try to verify the
applicability of the described computational method and its

formal mathematical description, there is no improved analysis
of results at pathological point of view.

Some authors [11] describe a normalized-value method that
may be promising in classifying arrhythmias using a variability
index that allows data to be assessed for any moment or during
long time intervals. Laguna [12], [13] presented a threshold
based detector of waveform limits, which locates each heart
beat using a differentiated and low-pass filtered ECG signal
as input.

There are many studies in this area, specially on Holter’s
ECG data because it is not precise and difficult to recognize
some slight changes related to normal biometric samples. But
there are still few results that can improve its usability in am-
bulatorial clinic and other applicability to mobile monitoring
through wireless networks.

In our research we found some cases where normal biolog-
ical variation can not be distinguished from abnormal case,
specially when it is not so emphasized. Although it can be
detected by a professional accurate examination, automated
analysis can not be achieved with precision.

IV. CONCLUSION

This paper shows that auto-correlation of high-pass segment
of transformed ECG signals using Wavelets “lifting method”
can evidence parts of interest of these signals which can be
used in future research for applicability to wireless monitoring
of cardiac patients.

Authors believe that Wavelet transformed signal can help
to improve usability for clinical diagnosis and applicability in
wireless monitoring, even so it is necessary more research in
this field.

Choosing the finest resolution is the next step. The finest
resolution must be determined based on the smallest scale on
which any effects of interest can be detected and represented.
Only after that it will be possible to apply it to new information
technologies (e.g. wireless monitoring).

This method can be applied to other biometrical signals
where differences from normal conditions are difficult to find.
From clinical point of view, this kind of work can help to
guarantee safe and secure patients life.
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arrhythmia.
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Fig. 5. Power spectra from high-pass segment of second level Wavelet Transform: (a) normal ECG, (b) supraventricular arrhythmia and (c) malignant
ventricular arrhythmia.
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