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Abstract—Cloud computing represents an emerging approach
to on-demand computing. This paper proposes an extension to
a three-layered cloud computing architecture through the use of
strategy-trees. Managers at each layer of the cloud architecture,
representing a provider’s perspective, will utilize strategy-trees
to implement feedback loops to achieve sets of objectives over
defined horizons of time.

I. INTRODUCTION

Cloud computing [1–4] represents an emerging approach
to on-demand computing provided over the Internet that has
come into vogue due to both advances in virtualization [5]
techniques and the construction of numerous large commodity
data centers across the globe [2]. The emergence of the
cloud offers an opportunity for economies of scale previously
unavailable to small and medium size enterprises. Specifically,
an enterprise may now purchase resources as needed (scale-
up/scale-down) while not procuring or maintaining these re-
sources themselves. This also offers benefits to larger enter-
prises as well who may either harness the cloud and/or present
an outward facing cloud offering to others.

Presently, there are three types of cloud offerings available
in the marketplace: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS). IaaS
offers virtualized resources such as virtual machines (VM)
and storage space offered as different types of VM per unit
time and storage space per dollar. Amazon’s Elastic Compute
Cloud (EC2) [6] and Elastic Block Storage (EBS) [7] are
representative of this type of service. EC2 is also representative
of PaaS in which various containers are deployed withing a
VM (i.e., HTTP, application and database servers). Google
App Engine [8] can also be considered a PaaS offering. An
example of a SaaS offering would be Salesforce.com [9].

The intent to define an architecture based on the three
layers of the cloud’s current runtime (IaaS, PaaS and SaaS)
resulted in the architecture introduced in [10]. Decomposing
the cloud into these three layers also has the added benefit
of decoupling layer-specific problems from one another. For
example, where a IaaS provider may want to maximize the
number of VM instances (VMI)s (in order to increase revenue)
the PaaS provider may want to minimize the number of VMIs
purchased (to minimize its costs) [10]. In alternative cloud
architectures [3, 4] this becomes an extremely complicated
problem; however, in this fully decoupled, three-layered ar-
chitecture providers at each layer attempt to best achieve

their own objectives over defined time horizons. Specifically,
this architecture facilitates optimization according to business
objectives [11] at each layer.

While on one hand the perception of an infinite set of
resources to draw from is novel, the companies that will
succeed in the long term will have strategies for best utilizing
their (scarce) resources. This is true of providers at each layer
of the cloud. Multiple strategies may exist for achieving a set
of objectives (i.e., directive). The strategy-tree [12–14] is an
abstraction that encapsulates and relates multiple strategies for
achieving a set of objectives over a defined horizon of time.

This paper proposes the use of strategy-trees in managers
at each layer of the cloud architecture. Strategy-trees have
interesting properties with regards to temporal decomposition
of runtime management. They allow for assumptions about
performance to be methodically tested and utilized in decision
making over multiple granularities of time. Strategy-trees are
a good candidate for facilitating feedback loops for providers
at each layer of this architecture.

The remainder of this paper is structured as follows. Sec-
tion II will introduce the business driven cloud optimization
architecture. Section III will detail the proposed extensions to
this architecture most importantly the addition of strategy-trees
to the managers at each architectural layer. Section IV will
present a case study of an IaaS provider and explore aspects
of the design of its strategy-tree. Section V will offer some
closing thoughts.

II. ARCHITECTURE

The architecture, Figure 1, consists of three layers that
mirror the runtime environment (IaaS, PaaS and SaaS) of
the contemporary cloud. At each layer of the architecture
there are optimization loops to consider [10]. Specifically,
each provider (IaaS, PaaS and SaaS) and/or client will have
a set of objectives to achieve over various horizons of time.
Further, there will typically be a set of constraints impacting
the achievement of these objectives.

For example, a SaaS provider must meet its Service Level
Agreement (SLA) [15] obligations to clients while minimizing
the cost of its PaaS commitments. These obligations will
typically involve QoS issues; however, they may also involve
other types of issues (i.e., data residency) as well. Specifically,
certain laws require that all data about citizens residing in a



Fig. 1: Three-layered Cloud Architecture. Managers are defined that utilize strategy-trees to achieve a provider’s objectives.

particular country must not be moved abroad subject to certain
guarantees. This necessitates that all VMIs and storage remain
within a specified geographic locale. So, a SaaS provider
purchasing PaaS must be guaranteed that the IaaS layer is
instantiating VMIs and storage accordingly.

Similarly, a PaaS provider must meet its SLA obligations to
its clients while minimizing the cost of its IaaS commitments.
Consider the situation in which VMIs can be purchased more
cheaply from provider A than from provider B. It makes
sense for the PaaS provider to utilize these VMIs; however,
this must be permissible in accordance with the SLAs it
holds with its SaaS clients. Another consideration may be
degrees of redundancy. If a SaaS application is meant to
provide specific types of redundancy (i.e., failover, etc.) it may
make more sense for the PaaS provider to ensure that various
containers are not hosted on one machine or one rack (or in
one geographical location for that matter) by the IaaS provider.
Again this must be conveyed through contractual specification
in the SLA.

Finally, the IaaS provider must meet its SLA obligations
to its clients while best utilizing its hardware infrastructure.
While on the surface it may seem obvious that this is a packing
problem (i.e., pack the maximum number of instances onto
fewest hardware resources) in fact, it is more complicated.
Specifically, there are constraints with regards to VMI place-
ment to consider related to energy costs (i.e., jurisdictional
price differences and aspects of power management) further,
performance issues related to heavy loading of VMIs onto
individual hardware entities must be considered as well. Con-
straints may also exist relating to issues of contractual obliga-
tions to PaaS providers who need to ensure computation within
specific locales or provide guaranteed redundancy. One other
issue that IaaS providers must consider is the impact of tightly
packing hardware nodes such that performance bottlenecks

materialize. For example, work done [16] demonstrates that
on EC2, background load impacts I/O performance.

A layer-specific manager (there may be multiple managers
which behave as a single manager logically) representing the
provider’s interests is defined at each layer of the architecture.
The manager encapsulates an optimization-based control of its
particular domain. It utilizes sensors and actuators to monitor
and affect control. A model captures the dependencies between
actuators and objectives. There are multiple ways to express
these dependencies through formal linear, non-linear, queuing
models or as policy [17, 18] sets. A strategy may represent
one of many paths from sensors to actuators. Each actuator is
associated with various models.

Key to the optimization over time is feedback. A monitoring
infrastructure is required for each layer of the cloud. This
system must be scalable, and lightweight allowing for the
collection of metrics about performance which can be used by
the various stakeholders to perform optimizations at each layer.
Possible types of monitoring infrastructures exist ranging
from centralized [19] approaches to completely distributed
approaches [20].

Control is exerted through actuators. At the IaaS layer
a provider has control over things like VMI and storage
allocation and configuration. At the PaaS layer a provider has
control of things like how many and what type of VMI it
has ownership of, what containers and how many containers
it instantiates within a VMI and the configurations of the
containers it instantiates. At the SaaS layer a provider has
control over things like how many container instances are
running and configuration parameters for the software that is
run within the container.

III. FEEDBACK LOOPS WITH STRATEGY-TREES

The architecture presented in this section represents an
evolution of the architecture presented in [10]. The evolution



is concerned with adding strategic management capabilities to
providers at each layer of the architecture to better achieve
their business objectives over various time horizons.

Fig. 2: Strategy-trees as autonomic managers for cloud layers.

Fig. 3: Conceptual example of strategy-tree design. Notice that any
specific implementation may or may not use the selected temporal
granularities (although these are sensible choices in the context of a
cloud provider). Also, notice that a feedback loop is operational at
every DEC-element (i.e., OR Type Node) in the tree.

At each layer of the architecture there is a feedback loop,
Figure 2. Specifically, it is a model adaptive feedback loop
in which the system model, optimization law and parameters

change over time [10]. The feedback loop is attempting to
achieve a high-level goal. However, a goal may have multiple
decompositions resulting in different policy sets [21]. The
selection of a single pathway through the goal graph encapsu-
lates assumptions and biases that must be considered [14]. It
has been demonstrated [13] that there is not an optimal policy
set to handle all situations.

A. Strategy-Trees

The strategy-tree was introduced to address these issues.
Specifically, a strategy-tree is an abstraction that encapsulates
and relates multiple strategies for achieving a set of objectives
over a defined horizon of time. A strategy-tree has been added
to managers at each layer of the architecture to facilitate
dynamic alternation among possible strategies for achieving
the provider’s objectives over time. Strategy-trees will be
used to facilitate feedback loops at each layer of the cloud
architecture.

A strategy-tree is composed of three types of nodes: Di-
rectives, AND and OR. The Directive type represents the
super-type for the other node types and encapsulates a set
of objectives to achieve over some horizon of time (epoch).
Further, every node in a strategy-tree has a quantum attribute
value which defines its temporal evaluation schedule (i.e.,
equivalent to the duration of the node’s epoch) in terms of
the management time unit (MTU). The MTU represents the
shortest interval on which monitoring is performed. Leaf nodes
of a strategy-tree are bound to policy sets. A policy can be
understood to represent “. . . any type of formal behavioural
guide” that is input to the system [22]. A policy set represents
a strategy for achieving a set of objectives.

For each node of a strategy-tree the administrator defines
a SAT-element (i.e., satisfaction element) which encapsulates
the evaluation of a set of objectives to be achieved. These SAT-
elements are evaluated once per epoch (based on the quantum
attribute value of the node). A second type of element, a DEC-
element (i.e., decision making element), is defined for OR
type nodes in the tree. Like SAT-elements, DEC-elements are
evaluated according to the node’s quantum attribute value. The
decision making defined within these DEC-elements analyzes
performance, effectiveness of the current approach and makes
a choice about whether to persist in using the current strategy
or to switch to an alternative.

A strategy-tree provides an infrastructure by which run-time
evaluation of the active strategy may be made at multiple
temporal granularities. Further, due to its temporal partitioning
it allows for different objectives to be evaluated on various
time scales to better achieve the root directive.

Performance models are used to capture dependencies
within a system. Under some conditions models can fail.
Further, models may have different degrees of efficacy under
varying conditions. Models must also be configured. Different
configurations may lead to quite different degrees of effective-
ness at runtime. Strategy-trees provide a framework through
which alternating among multiple models and/or configura-
tions of models can be performed as needed and as specified



explicitly in the DEC-elements. An aspect of these DEC-
elements (and SAT-elements) is that they may be changed at
runtime and thereby allow dynamic evolution of a particular
strategy-tree. Evolution may be made in response to poor
perceived performance of the strategy-tree as a whole based
on external analyses or on insights gained via observations
over time. As the cloud represents an incredibly dynamic and
always running environment this ability is potentially quite
useful.

Service providers have both global and local optimization
loops to consider. From the provider’s point of view asyn-
chronous actions (e.g., satisfying a request for the addition
and/or removal of resources, or recovering from a hardware
failure (i.e., single box, rack, disk, . . . ) must be handled as
they occur and so are more representative of local optimization
loops. The effectiveness of responding to the asynchronous
situations (i.e., local optimizations) can be utilized in decision
making at the global scale in terms of incorporating monitored
information about the resolutions of these situations into SAT-
and/or DEC-element evaluations.

IV. CASE STUDY

Consider the simplified case of a provider operating a single
data center and offering IaaS to a set of clients in our three-
layered cloud architecture. In order for a strategy-tree to be
utilized the middleware that controls the IaaS services must
be dynamically configurable (preferably through policy based
management (PBM)). Specifically, a strategy is equivalent to a
deployed policy set. Changes in policy set represent change in
active strategy. The general process of designing a strategy-tree
is presented in Figure 3. The following sections consider the
specific case of designing a strategy-tree for the IaaS provider
in this example.

A. Define the Root Directive

A directive encapsulates a set of objectives to be achieved
over some time interval. Strategy-trees attempt to coordi-
nate among multiple strategies over various time intervals to
achieve a root directive. In order to construct a strategy-tree for
this particular IaaS provider a root directive must be defined
over some horizon of time. Since most businesses operate on a
schedule of annual reports supplemented by quarterly reports
it seems like a reasonable horizon of time to consider is one
year. For this example, the set of objectives to achieve will
be:
• Increase revenue by 5% per annum
• Reduce cost by 2% per annum

B. Policy Sets

Aspects of IaaS middleware that we feel might be dy-
namically configurable include (but are not limited to) the
following:
• Queuing system used to accept requests from clients (e.g.,

FIFO or some form of prioritized queuing, admission
control)

• Placement algorithm used for assigning VMIs to the
hardware infrastructure (e.g., random placement, least
loaded rack/machine, placement in relation to other VMIs
purchased by a single client)

• Defragmentation of infrastructure (i.e., how often are
VMIs replaced in an organized fashion onto the physical
hardware and how often is this performed). This may also
involve migrations (i.e., what triggers a migration).

• Power management (i.e., what machines, racks are on/off)
• Resource allocation in periods of plenty (i.e., are extra

resource given to clients while less than some percentage
of physical infrastructure is in use)

• Resource allocation in periods of contention (i.e., are
certain configurations treated as more important)

• Threshold setting (i.e., acceptable load on a single phys-
ical machine, limits on inter-instance bandwidth, . . . )

• Whether hints are pushed to the client with regards to
running out of resources (i.e., suggesting purchasing more
VMIs, or releasing VMIs) and to what degree

• Recovery algorithms for handling various forms of fail-
ures (e.g., machine failures, rack failures, does a priority
get imposed for more important clients, etc.)

C. Economic Model Underpinning Strategies

Consider the simplified case of a provider operating a single
data center and offering IaaS to a set of clients (i.e., PaaS
provider in our three-layered cloud architecture). Changes
in policy set represent a change in the active strategy. An
overview is provided in Figure 3 of how a strategy-tree might
be designed for the general case (i.e., any service provider).
Notice in the figure that there are potentially numerous strate-
gies (we only show two).

For this example, the provider only offers three VMI
configurations: C0, C1 and C2. These classes are ordered
C0 >> C1 >> C2 in terms of revenue generation to the
provider. Clients may purchase as many of a single type of
VMI per request. Leases are automatically renewed hourly.
The client must explicitly terminate instances. An SLA exists
between the provider and each client which encapsulates
guarantees about the VMI being provided and its expected
performance. Further, the SLA contains clauses which define
penalties should performance be degraded or non-available 1.

The hourly revenue stream may be computed as follows:

r =
∑

s∈SLA

(w0 ∗ c0 + w1 ∗ c1 + w2 ∗ c2) (1)

Where the coefficients w0, w1, w2 denote the weight coeffi-
cients on the numbers of VMIs of a particular class. Specifi-
cally, ci denotes the number of VMIs belonging to class Ci.
The hourly total cost may be computed as follows:

t = m+ v (2)

1This is an extremely simplified example in order to introduce concepts
about strategy-tree design. In a more realistic example a data center would
charge for ingress bandwidth, egress bandwidth, block storage, . . .



Where cost t is proportional to the wear on the machines m
being used (i.e., fixed-costs, power, wear and tear, . . . ) and the
penalties v charged during the hour for SLA violations. The
hourly profit may be computed as follows:

p = r − t (3)

D. Design of a Strategy-Tree

It has become apparent that a methodical approach to
designing strategy-trees would be quite useful. This has led
to the the approach presented here which utilizes a systematic
breakdown of (i) time and (ii) emphasised objectives as
presented in Figure 3.

For example, consider the strategy-tree presented in Fig-
ure 3. Traversing down the tree from root to leaf it is partioned
temporally (i.e, yearly down to hourly). Similarly, traversing
left to right, it is partitioned in terms of which objective is most
emphasized 2. Specifically, the left-most strategy presented in
Figure 3, is focused on increasing revenue generation (to the
exclusion of any consideration for cost reduction). Similarly,
the right-most strategy is myopically focused on cost reduction
(to the exclusion of any consideration for revenue generation).

In a strategy which emphasizes revenue generation singu-
larly, the focus may be on servicing clients quickly, focusing
more on those clients who are paying larger sums of money
(i.e., purchasing VMIs of C0 or many VMIs of C2). Perhaps,
a strategy like this would involve monthly defragmenting of
the data center’s hardware resources. However, should this not
be effective, this would be realized at the monthly evaluation
of strategy effectiveness and perhaps an alternative strategy
would be selected by the DEC-element in which a bi-weekly
de-fragmentation regiment is followed instead.

With regards to a cost reducing strategy perhaps an en-
ergy aware placement algorithm is in use. However, should
numerous SLA violations be occurring due to an increase in
client VMI requests and this is detected at the hourly interval
a switch might be made to an admission control policy and
the energy efficient placement algorithm might be disabled for
some period of time (e.g., three hours or some period without
a violation cost above some threshold being detected).

Once a set of strategies have been defined and rationales
for altering among them determined at various temporal
granularities, the SAT- and DEC-elements must be generated,
edited and deployed. This process requires coding the logic
within SAT- and DEC-elements to (i) evaluate the assumptions
at various temporal granularities and (ii) decide between
various strategies (i.e., based on feedback loops). This and
the algorithm for evaluating the strategy-tree is covered fully
in [12–14].

V. DISCUSSION AND FURTHER WORK

A strategy is defined to achieve a set of objectives under
a set of assumptions. Multiple strategies may be defined to

2This progression across the permutations may omit some possibilities and
add others but the idea is to move across the set of objectives in an orderly
manner.

achieve the same directive. Designing strategies is a non-trivial
task. A strategy-tree allows the administrator’s assumptions to
be tested at different temporal granularities from short intervals
at the leaf nodes to longer temporal intervals traversing up
the tree. This temporal decomposition is useful in that it
allows a more comprehensive understanding of the system to
be constructed facilitating more informed decision making at
the various DEC-elements (with regards to alternating among
strategies).

Determining when to evaluate assumptions, which assump-
tions to evaluate and when to make decisions are all currently
open questions (and likely unique to particular strategies).
Deciding how to alternate among the defined strategies is
a further complicating aspect. Attempting to gain insights
into these aspects of strategy and strategy-tree design is an
important area of future research.

Regardless of whether a strategy-tree is being used, strate-
gies must be defined and their effectiveness evaluated in order
to improve the performance of large systems in general. The
strategy-tree allows for assumptions underpinning these de-
ployed policy sets to be tested at runtime at multiple temporal
granularities and to construct a history which can then facil-
itate more effective alterations among policy sets at runtime
(based on observed performance, and future prediction).

A provider has little control over the behaviour and expec-
tations of its clients. Further, the pattern of client requests is
not necessarily predictable beyond certain general characteri-
zations. However, it is expected that either through extensive
experimentation and/or simulation [23] the provider will be
able to classify general types of workloads and likely to
detect them algorithmically (to some degree based on pattern
detection and trends analysis over time). While in general, the
objectives are to increase revenue while limiting costs over the
year, the strategy-tree designer must have determined various
configurations of the system to best meet these objectives in
various contexts.

Logically, metric values are written to a management
database (MDB); however, the scale of the cloud may make
using a centralized data store difficult (in terms of single
point of failure, bottleneck, etc.) so it may be prudent for
this to be implemented in a more distributed manner than
previously (likely through various aggregation algorithms and
gossip protocols). The hierarchical nature of a strategy-tree
makes it a good fit for various aggregating approaches for
data collection. Specifically, SAT-elements could be defined to
evaluate periodically on a all active hypervisors and over time
this could be aggregated so that a rack level understanding
would be achieved.

Business objectives must be met over various horizons of
time. This is a fact of business and not a unique problem
of the cloud. Optimizations must be performed on both local
and global scales [10]. An example of a local optimization
might be adding an application to a the cloud while an
example of a global optimization might be some periodically
occurring maintenance phase where all applications are re-
deployed optimally [10]. We feel that optimization will play



an important role in the long-term viability of the cloud.
While the work presented in this paper is at an early stage

we are optimistic about its benefits. This paper has provided an
overview of a three-layered cloud architecture augmented by
the addition of strategy-trees which facilitate the achievement
of objectives over defined time horizons for managers repre-
senting providers’ perspectives at each architectural layer. We
have begun experimenting with a cloud simulator [23] and
are also in the process of building a private PBM-aware cloud
at York University. Re-engineering of the StrategyTreeEditor
for use on various clouds (i.e., ours, Amazon, Google) is also
ongoing.
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