
Resource Selection Based on Application Features
Rodrigo Grumiche, Patrı́cia Vilain, M. A. Dantas

Department of Informatics and Statistics
Federal University of Santa Catarina

Florianópolis - Santa Catarina - Brazil
Email: {grumiche,vilain,mario}@inf.ufsc.br

Abstract—Grid middlewares and meta-schedulers provide job
submission services for applications to be run on the computa-
tional resources of a grid. The resource selection mechanism on
the meta-schedulers is usually based on syntactic or semantic
descriptions from required hardware and software indicated by
users. However this approach requires that users have a good
knowledge about details of computational resources character-
istics and how these affects the user application. Applications
have some structural and behavioral features that restrict what
resources are able to run it. And those features also may affect the
performance of applications when running on resources, given
their characteristics. In this paper is proposed an alternative
heuristic approach for selecting resources in multi-cluster grid
environments, where users describe the application features while
the selection mechanism evaluates the levels of adequacy of
available resources. The GRADI middleware is utilized as a
testbed for evaluating improvements on the quality of experience
of the user, on the execution time of the application and on the
overall improvement on utilization of resources on the grid.

I. INTRODUCTION

Computational grids are a complex infrastructure built on
hardware and software that provides dependable, pervasive,
and inexpensive access to high-end computational capabilities
[1]. Grid middlewares are part of that infrastructure and they
are responsible for hiding the complexity and heterogeneity of
a grid environment from the user.

Grid middlewares [2] provide basic infrastructure services
that allow users to manually find a subset of computational
resources, select some of them based on their perception of
what resources characteristics are better to run their application
and finally submit a job to be run on those resources.

Meta-schedulers like VIOLA [3], CSF4 [4] and GridWay
[5] were developed to improve user experience in the task of
resource selection and job submission of applications to be
run on grid infrastructure. First the user writes a syntactical
description [6] of hardware and software requirements that
one or more resources has to comply to be a candidate
to run the user application. Then based on the user input,
the meta-scheduler searches for resources that matches the
specification, selects a subset of the matched resources based
on some criteria and finally submits the application job to the
selected resources. The issue with the syntactical description
of resources is that a grid computing environment is composed
of multiple Virtual Organizations, and each one may describe
resource characteristics in their own particular form. The usage
of ontologies for a semantic description of computational
resources as proposed by [7] and the usage of semantic

matching mechanism able to integrate different ontologies of
resource description used by different Virtual Organizations to
do resource selection [8] are solutions for this issue.

The usage of syntactic or semantic descriptions to select a
resource for the job scheduling on a grid requires that users
have a good knowledge about the details of computational
resources characteristics and how these details affect ability
to run applications. Further, an application has structural and
behavioral features that affect the ability and performance of
computation resource to run the application and that cannot
be directly represented by such descriptions.

In this paper we propose an alternative approach to the
problem of resource selection and job submission, based
on heuristics about structural and behavioral features of an
application and levels of adequacy to resource characteristics
on a multi-cluster grid environment. We utilize ontologies to
describe application features and fuzzy logic to define the
levels of adequacy of a resource to run an application based on
the application features and resource characteristics. So instead
of describing technical requirements that need to be met by
resources, the user describes application features. Then, the
co-reservation and/or co-allocation of resources is done by
applying the resource adequacy level heuristics to the given
application features.

The implementation of this approach is been integrated
with the GRADI middleware [9]. It is expected that the
approach will simplify the task of job submission and improve
application execution speed on a multi-cluster environment.
Offering a better quality of experience [10] to the users of the
grid.

II. RELATED WORK

The Intelligent Scheduling Service (ISS) [11] research work
is part of the Intelligent Application Oriented Scheduling for
HPC Grids (IANOS) and it aims to detect what kind of re-
sources are the best to run an application. The definition of the
best resources is based on a cost functional model that takes
as input different variables: historical application performance
execution on resources normalized as the division of CPU time
and communication times, performance requirements of the
user, electricity costs, communication costs, software licenses
and others [12]. However, it does not avoid the necessity of re-
source specification for a job submission, neither allows users
to explicitly inform the application features. To be effective,
it requires that a database of historical performance data of



applications is built and maintained for each available resource
on the grid. Instead of evaluating monetary costs of energy,
software licenses and communication, and maintaining his-
torical performance data of applications, our approach allows
users to select resources by identifying the application features
and then using heuristics to improve resource selection.

A relevant contribution for the proposed approach is the
work of [13]. It deals with the issue of co-allocation of
resources on a homogeneous multi-cluster environment, based
on the saturation level of communication links that intercon-
nect the clusters. The co-allocation process uses a Maximum
Bandwidth Adjacent Strategy (MBAS) to select clusters with
the least communication saturation level to run a job. The
thresholds of the saturation levels are adjusted dynamically by
the Adaptive Threshold Control System (ATCS) [14] based on
the overall system state and the communication profile of the
application to be run as a job in multiple clusters, using fuzzy
logic. The ATCS evaluates two communication profiles which
are described by users: master-slave and all-to-all. The goal
here is to improve the co-allocation of resources instead of
resource selection, because the environment is homogeneous.
It is similar to our approach in taking a specific application
feature as a parameter for the ATCS co-allocation strategy:
the master-slave and all-to-all communication profile. What
we propose here is to tackle the resource selection problem by
making it based only on the application features. The selection
mechanism discussed on this paper is based on the fuzzy
control model proposed by [14].

Another important contribution is the work of [15] and [9]
on resource selection, co-reservation, co-allocation and the
development of the GRADI grid middleware. The GRADI
platform does semantic resource selection using ontologies,
co-reservation and co-allocation of computing resources on a
grid environment. It integrates the semantic description and
selection of resources using ontologies [7], integration of
multiple ontologies with the goal of resource selection by se-
mantic matching [16], co-allocation of resources applying the
strategies proposed by [14] and implements the co-reservation
approach proposed by [9]. Our selection mechanism is been
developed on the GRADI platform and utilizes its ontolog-
ical services. But its resource selection mechanism is based
on ontological description of computational resources. Our
approach extends the GRADI middleware by allowing the
resource selection to be done based on application features.

III. APPLICATION FEATURES

In [17] it is presented the concept of design patterns. The
design patterns are classified based on their goal: creational,
structural and behavioral. Creational patterns deal with object
instantiation; structural patterns deal with the composition of
the classes and objects; and the behavioral patterns character-
ize how the classes and objects communicate and distribute
responsibility. In [18] the Unified Modeling Language(UML)
diagrams are classified based on their features: structural and
behavioral. Structural features represent static features, while
behavioral features represent dynamics features.

Figure 1. Part of the application features ontology

The figure 1 shows part of our proposed ontology that
classifies application features in two groups, similar to the
design pattern and UML diagram classification:

• Structural: features emerging from the body of the appli-
cation.

• Behavioral: features emerging from the execution of the
application.

The structural features commonly restrict which resources
are able to run applications. For example, an application can
exist on a binary form that resulted from the compilation of
code written on a programming language to an Instruction Set
Architecture (ISA) to be run on a family of processors, or as
byte-code to be executed by some type of virtual machine. It
could also be a sequence of instruction lines to be executed by
an interpreter. It may depend on other applications or libraries,
and may be built to be executed on a specific operating system.

The behavioral features are those visible when the applica-
tion is executed, showing how they use the computational and
communication resources to solve some specific problem. The
parallelism and/or distributed capabilities of an application are
classified as behavioral features. They may restrict too what
resources are able to run the application. For example, parallel
applications are unable to use distributed resources to solve a
problem, but can use resources with multiple processors and
with shared memory architecture.

However, behavioral features may also define how efficient
a resource will be to execute the application. An example is the
granularity of distributed applications. This feature is defined
as the ratio between the amount of computational steps by the
amount of communication steps during the execution time.
Fined grained applications are those with higher number of
communication steps while coarse grained are the applications
with lesser communication steps. Distributed applications that
do very little or none communication are defined as embar-
rassing parallel.

Clusters on a grid multi-cluster environment may use of-the-
shelf interconnection technology as Gigabit Ethernet or use a
high performance and low latency interconnection technology
as Myrinet or Infiniband. Those cluster resource characteristics
can affect the performance of parallel and distributed applica-
tions based on their granularity as shown by [19] and [20].



Figure 2. Selection mechanism activity diagram

Finally, some behavioral features may have a structural
form. One example is the communication pattern of parallel
applications: Cartesian, 2D, 3D, Fat-Tree, hypercube and oth-
ers. However, we keep them classified as behavioral features.

IV. SELECTION MECHANISM

An ontology was build to describe application structural
and behavioral features. Users describe application features by
identifying what concepts of the ontology match which appli-
cation features. This ontology extends the reference resource
description ontology proposed by [8] in order to express more
information about the computational resources.

For those features that do not have levels of adequacy
to computational resources, but restrict what resources are
able to run the application, auxiliary ontologies are utilized
to establish a direct map between the concept and attributes
representing an application feature and the concept and at-
tributes representing a resource characteristic. One example
of such directly mapped features is the operating system the
application was build to run upon and the actual operating
system of the resource.

For the features that have levels of adequacy to computa-
tional resource characteristics, a fuzzy model based on [13] is
utilized to compute the level of adequacy of a resource to run
the application.

The proposed resource selection mechanism based on ap-
plication features is described by the activity diagram shown
in Figure 2. According to this diagram the selection is carried

out in four steps. In the first step, the mechanism reads the
application features provided by the user and utilizes the
mapping table to build an ontological resource specification.

In the second step, the ontological resource specification
that was generated in the first step is utilized to find a subset
of resources by means of the semantic resource selection
proposed by [8].

In the third step, a fuzzy model is applied to obtain the
level of adequacy of each one of the selected resources on
the second step. This model is based on the proposal of [14]
and works as follows: first, it takes as input the application
features and the resource characteristics that are related by
some level of adequacy. This input is translated into linguistic
variables with linguistic values by means of a fuzzyfication
mechanism. Next, an inference process occurs using a fuzzy
rule base to obtain the level of adequacy of the resource. A
sample of the rules is shown in listing 1. Currently all the
rules have the same weighting factor, i.e., they have the same
level of relevance. After, the result of the inference process is
defuzzified to an adequacy number in the interval of 0 to 100.
Where 0 represents the lowest level of adequacy and the 100
represents the higher level of adequacy. This defuzzification
process takes in account the result of each rule and applies the
Center of Gravity (GOC) strategy for translation. The fuzzy
model is implemented using Fuzzy Control Language (FCL).

RULE 1 : IF a p p l i c a t i o n G r a n u l a r i t y IS
e m b a r a s s i n g P a r a l l e l AND

r e s o u r c e I n t e r c o n n e c t L a t e n c y IS s m a l l THEN
adequacy IS low ;

RULE 2 : IF a p p l i c a t i o n G r a n u l a r i t y IS
e m b a r a s s i n g P a r a l l e l AND

r e s o u r c e I n t e r c o n n e c t L a t e n c y IS medium THEN
adequacy IS medium ;

RULE 3 : IF a p p l i c a t i o n G r a n u l a r i t y IS
e m b a r a s s i n g P a r a l l e l AND

r e s o u r c e I n t e r c o n n e c t L a t e n c y IS h igh THEN
adequacy IS h igh ;

Listing 1. Sample of the fuzzy rule base written in FCL

Finally, in the fourth step, the resource with a higher value
of adequacy level is selected as the best candidate to run the
application.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a proposal to enhance the
resource selection mechanism in a multi-cluster grid envi-
ronment based on application features. The goal is to make
the meta-scheduler aware of application features. According
to our proposal, users are not required to specify resources
characteristics to submit applications to run on a grid. Instead,
application features are specified so that the meta-scheduler
is able to find and select the resources with better levels
of adequacy between their characteristics and the application
features. In other words, it tries to select the best suited
resource for the application.

With applications running on suited resources, it is expected
a reduction on their execution time. Consequently, there would



be an improvement on job execution throughput of resources,
causing an overall optimization on resource usage and job
execution throughput of the grid. The evaluation of those
improvements by the proposed selection mechanism utilizes
the GRADI Middleware and the GridSim as a testbed.

In our future research we plan to evaluate the usage of
Semantic Web Rule Language(SWRL) [21] as a replacement
to the mapping between application features and resource
characteristics. The rules would be written to map classes and
properties from application feature ontologies to classes and
properties of the resource description ontologies. The Pellet
[22] reasoner would be utilized to perform resource description
queries based on application features, replacing the first step
of the proposed resource selection mechanism.

REFERENCES

[1] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations,” JHPC, vol. 15, no. 3, p. 200,
2001.

[2] R. G. Silva et al., “Grid computing middleware survey,” Proceedings of
the 7th International Information and Telecommunication Technologies
Symposium, 2008.

[3] O. Wäldrich, P. Wieder, and W. Ziegler, “A meta-scheduling service
for co-allocating arbitrary types of resources,” in Parallel Processing
and Applied Mathematics, ser. Lecture Notes in Computer Science,
R. Wyrzykowski et al., Eds. Springer Berlin / Heidelberg, 2006,
vol. 3911, pp. 782–791, 10.1007/11752578 94. [Online]. Available:
http://dx.doi.org/10.1007/11752578 94

[4] W. Xiaohui et al., “Csf4: A wsrf compliant meta-scheduler,” in In Proc.
of World Congress in Computer Science Computer Engineering, and
Applied Computing, 2006, pp. 61–67.

[5] E. Huedo, R. S. Montero, and I. M. Llorente, “A framework for adaptive
execution in grids,” Softw. Pract. Exper., vol. 34, no. 7, pp. 631–651,
2004.

[6] A. Anjomshoaa et al., Job Submission Description Language (JSDL)
Specification, Version 1.0, Global Grid Form, november 2005.

[7] A. Pernas and M. Dantas, “Using ontology for description of grid
resources,” may. 2005, pp. 223 – 229.

[8] A. Silva and M. Dantas, “A selector of grid resources based on the
semantic integration of multiple ontologies,” oct. 2007, pp. 143 –150.

[9] D. Janson et al., “Dynamic resource matching for multi-clusters based
on an ontology-fuzzy approach,” in High Performance Computing
Systems and Applications, ser. Lecture Notes in Computer Science,
D. Mewhort et al., Eds. Springer Berlin / Heidelberg, 2010,
vol. 5976, pp. 241–250, 10.1007/978-3-642-12659-8 18. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-12659-8 18

[10] L. Alben, “Quality of experience: defining the criteria for effective
interaction design,” interactions, vol. 3, no. 3, pp. 11–15, 1996.

[11] R. Gruber et al., “Towards an Intelligent Grid Scheduling
System,” in GRMW?2005, vol. 3911/2006. Berlin: Springer
Berlin / Heidelberg, 2006, pp. 751–757. [Online]. Available:
http://ppam.pcz.pl/ppam2005/workshops.htm

[12] ——, “Integration of grid cost model into iss/viola meta-scheduler
environment,” in Euro-Par’06: Proceedings of the CoreGRID 2006,
UNICORE Summit 2006, Petascale Computational Biology and Bioin-
formatics conference on Parallel processing. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 215–224.

[13] J. Qin and M. A. Bauer, “Job co-allocation strategies for multiple high
performance computing clusters,” Cluster Computing, vol. 12, no. 3, pp.
323–340, 2009.

[14] ——, “An evaluation of communication factors on an adaptive control
strategy for job co-allocation in multiple hpc clusters,” in ICPADS ’09:
Proceedings of the 2009 15th International Conference on Parallel and
Distributed Systems. Washington, DC, USA: IEEE Computer Society,
2009, pp. 391–398.

[15] D. Janson et al., “Toward resource management in multi-cluster grid
configurations through an ontology-fuzzy approach,” in GCA, H. R.
Arabnia and G. A. Gravvanis, Eds. CSREA Press, 2009, pp. 10–16.

[16] A. Silva and M. Dantas, “An efficient approach for resource set-matching
in grid computing configurations,” may. 2006, pp. 5 – 5.

[17] E. Gamma et al., Design patterns: elements of reusable object-oriented
software. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995.

[18] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Lan-
guage user guide. Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc., 1999.

[19] L. Pinto, R. Mendonca, and M. Dantas, “Impact of interconnection net-
works and application granularity to compound cluster environments,”
jul. 2008, pp. 468 –473.

[20] J. Ploski et al., “Grid-based deployment and performance measurement
of the weather research & forecasting model,” Future Generation
Computer Systems, vol. 25, no. 3, pp. 346 – 350, 2009. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V06-
4SJ2WPN-3/2/a08248530ec9ecc99547247b9ae3b94f

[21] I. Horrocks et al., “Swrl: A semantic web rule language combining owl
and ruleml,” W3C Member Submission, World Wide Web Consortium,
Tech. Rep., May 2004.

[22] E. Sirin et al., “Pellet: A practical owl-dl reasoner,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 5, no. 2,
pp. 51 – 53, 2007, software Engineering and the Semantic Web. [On-
line]. Available: http://www.sciencedirect.com/science/article/B758F-
4NF7Y7R-2/2/684715cf5485269b827d65332803523c


