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Abstract— Multi-homing at the transport layer is a mechanism 
that ties one transport layer association to several network 
interfaces at each communication host, which enabling the two 
end-nodes to exchange data over several network paths. Stream 
control transmission protocol (SCTP) supports multi-homing 
feature. We suggest Concurrent Multipath Communication-
SCTP (CMC-SCTP) which uses multi-homing as a base for 
simultaneous data transmission over multiple paths to increase 
end-to-end path throughput and network path failover. In this 
paper we identify the negative side effects of re-sequencing due to 
the use of CMC that must be managed in order to get the full 
performance of CMC’s parallel data transmission. To overcome 
this weakness we proposed new chunks and algorithms to 
eliminate these side effects. Sender maps a general transmission 
sequence number for each data packet to a dedicated sequence 
number for each path to controls the transmission status 
independently for each path. A control packet called status-
chunk informs the receiver about the path number of each 
transmitted data chunk and the status of transmitted data on 
each path. An OPNET simulation evaluates the performance of 
our CMC-SCTP protocol extension. 

Keywords-component; SCTP; Multi-homing; Load-Sharing; 
QoS; multipath communication; congestion control; transport layer 

I. INTRODUCTION 
New devices on the market now often can connect over 

more than one network interfaces (both wired and wireless). 
Multi-homed hosts (i.e. hosts that can be accessed under 
several IP addresses) along with networked technology and 
network devices are available and are getting more and more 
economical. 

In 1974 that Transport Control Protocol (TCP) was 
introduced, computer equipment and specially network devices 
were too expensive, and thus providing multi-home network 
node was beyond the research perspective  [1]. Multi-homing at 
the network transport layer is a mechanism that ties one 
transport layer association to several network interfaces at each 
communication host, which enabling the two end-nodes to 
exchange data over several network paths (a.k.a. Load-sharing 
). Therefore, supporting multi-homing for having concurrent 
multipath communication became an attractive part of network 
researches and technology finances. 

Several researchers have tried to apply simultaneously all 
available communication paths in order to transmit the user 
data on all available paths  [8] [9] [11]. They provide solutions 
for the problems of utilizing multiple paths. As long as the 
load-sharing operations are provided in the upper network 
layer (i.e. Application Layer), they would be more flexible in 
term of user application connectivity and developing 
environment, but they have to pass the cross layer connectivity 
and related overheads to provide the necessary paths and 
interfaces information for the upper layer applications. In the 
opposite direction, as long as the load-sharing mechanism is 
provided in the lower layers, its implementation will be more 
complicated but normally would be work faster. Transport 
layer is the lowest network layer which provides an end-to-end 
connection. Although transport layer multi-homing is an old 
idea for multipath load-sharing for having better flexibility at 
the time of network failure to control multi path 
communication issues, the general transport layer protocols 
TCP and User Datagram Protocol (UDP), cannot support 
multi-homing. Both UDP and TCP can use one network 
address in both end-to-end connected nodes  [2]  [3]. Two recent 
IETF transport layer protocols, the Stream Control 
Transmission Protocol (SCTP)  [4], and the Datagram 
Congestion Control Protocol (DCCP) essentially support multi-
homing at the transport layer[5]. 

Using SCTP, we investigate possible design for Concurrent 
Multi-path Communication (CMC-SCTP). Each interface of a 
multihomed node may have different round-trip-time. Sending 
packets on several paths will cause un-order arrival of data on 
the receiver side. Consequently, the receiver has to inform its 
correspondent node the un-arrived packets (i.e. packet on the 
fly). This force the receiver to send the unnecessary packet lost 
message and consequently triggering the fast retransmission 
data on the sender side. The CMC-SCTP aims to address the 
related problems. The needed algorithms and a new status 
chuck are introduced. Theses algorithms controls the unwanted 
traffic caused by unnecessary fast retransmission. The 
suggested status chuck is used to inform the receiver about the 
status of transmitted data on each path. 

During the time, paths quality may be changed especially 
for wireless networks. Therefore, a dynamic mechanism to 
monitor the communication paths in order to measure their 



quality parameters must be considered. The path selection 
method should choose the best possible paths.  Inserting any 
un-qualified (e.g. big round-trip-time) path will only enlarge 
the end-to-end communication latency time. In addition, we 
design a two-layer path selection method for two-side path 
selection, which specifies the source and destination addresses 
to send the data chunks on the proper paths. We study CMC-
SCTP at transport layer in a broad scheme. We think our 
mechanisms and related algorithms will introduce a base for 
multi-home-support in different transport protocols. This paper 
introduces and enhances transport layer mechanisms to use 
CMC-SCTP for the multi-home hosts to improve application 
throughput. 

This paper is organized as follows: Section II describes in 
detail CMC-SCTP design. Section III specifies the receiver 
side control algorithms. Section IV provides a performance 
study for CMC-SCTP. Finally, Section V concludes the paper. 

II. SCTP BASICS AND RELATED WORKS 
SCTP was introduced to be an all-purpose transport 

protocol for message-oriented communications. SCTP is a 
novel transport layer network protocol, which supports multi-
homing and is the lowest and nearest layer to the network layer 
(i.e. IP) which has the most accurate information about internet 
addresses and path connections. SCTP is a Connection-
Orientated Protocol and has in common many characteristics 
with TCP. Two communication end-points must establish a 
“connection”, which is known as Association in SCTP. It has 
been formed using a 4-way handshake, which protects the 
communication against the Denial-of-Service (DoS) 
attacks  [6]. SCTP puts messages and control information into 
different chunks (data chunks and control chunks). A message 
can be fragmented over a number of data chunks, which 
bundled into SCTP packets. Between all-available paths, one 
will be chose as a primary path (the fastest one). Standard 
SCTP uses primary path for data transmission. Other paths will 
be used either when primary path fails or retransmissions lose 
data packets. Chunks can be a control or a data chunk. For the 
purposes of reliability and congestion control, each data chunk 
in an association is assigned a unique transmission sequence 
number (TSN) for the entire DATA stream (used in 
fragmentation for reassembly). A selective ACK chunk called 
SACK is used in SCTP. Receiver uses SACK chunks to inform 
the last received TSN and the group of missed data chuck as 
gaps  [4]. SCTP’s congestion control algorithms like TCP are 
based on RFC2581. Like TCP, SCTP uses three congestion 
control variables: receiver’s advertised window (rwnd), 
sender’s congestion window (cwnd), and sender’s slow start 
threshold (ssthresh). According to  [7], SCTP congestion 
control engages with the following problems; 1) Well-
organized recovery after a packet loss is only possible if SCTP 
generates the optional Gap Ack Blocks in SACK chunks. 2) 
The SCTP fast retransmit method is open to being mistakenly 
triggered multiple times leading to under-utilization of the 
network during recovery and duplicate retransmissions of the 
lost packet. 3) The SCTP fast retransmit procedure must wait 
for half a window of data to be acknowledged before 
retransmitting a lost packet yielding a slow response to packet 
loss.  These problems will be increased when all paths are 

aggregated and used simultaneously. The retransmission 
performance of the standard SCTP was studied in  [11]. The 
authors explained retransmission through another path is not 
always beneficial regarding throughput of the standard SCTP. 

The authors of  [8] introduced Concurrent Multi-path 
Transfer mechanism based on SCTP for simultaneous 
transmission and tried to solve the problems related to 
congestion control by introducing three algorithms: (1) 
avoiding unnecessary fast retransmissions; (2) delaying 
selective acknowledgements appropriately; (3) allowing faster 
updates of the congestion window. These algorithms could not 
properly control the both-side path selection and unnecessary 
SACK transmissions at the receiver side. Another method is a 
bandwidth aggregation technique that is called LS-SCTP, 
introduces a new data chunk which carries a path identifier 
(PID) and path sequence number (PSN) for all transmitted data 
chunks on the different paths [9]. Based on our knowledge the 
previous solutions have no control on the both-side multi-path 
transmission control. Because, those solutions do not provide 
the necessary sender path information to the receiver side. The 
authors did not clearly address the control of unwanted 
retransmission packet due to different path delay. Moreover, 
their method raises some new security issues relate to data 
transmission at the time of path changeover. 

III. CONCURRENT-MULTIPATH-COMMUNICATION SCTP 
(CMC-SCTP) 

The SCTP association operations divided in two parts, 
controlling the connection paths (Control-Path) and controlling 
the communicated data over these paths (Data Path).  Figure 1.  
shows a general view of the standard SCTP and its extended 
modules architecture. The Light gray boxes are the global 
SCTP modules and the standard SCTP association modules 
which are adopted for multipath communication. We added 
some new modules to the standard SCTP association modules 
to provide our new protocol CMC-SCTP. Our new extended 
modules are shown with gray color in the blow figure. 

As you can see in the  Figure 1. , the standard SCTP 
Control-Path has two base modules, SCTP controller and Path-
Management. We extend the standard SCTP Path-Management 
module with two new modules; Multipath Status Controller 
and Multipath Rout Management to provide the path 
management functionality for multipath communication 
scenarios separately.   

In the Data-Path section of SCTP association in  Figure 1. , 
we extend the flow control and congestion control of standard 
SCTP to support multipath flow/congestion control. Since we 
aimed to transmit data over the all available communication 
paths, we also add a Traffic-Partitioning-Module to provide the 
load-sharing over the several paths. Traffic-Partitioning-
Module uses the previously standard SCTP bundle/unbundle 
module plus our enhanced Splitting Module to support the 
needed tasks for partitioning the traffics over the several 
available active paths. 

 CMC-SCTP is a method for multi-path data transmission 
that uses the available paths for a synchronous transmission of 
data chunks. In order to inform the correspondent receiver node 



about the status of data on each communication path we 
introduced a new chunk, called status-chunk (see section A). 

CMC-SCTP maintains separately Congestion Control and 
Flow Control on each path to keep the both sides fair load-
sharing integration. 

 

Figure 1.  Standard SCTP and its Extended Modules Architecture 

All data chunks in the standard SCTP are sent only on the 
primary path, but CMC-SCTP is able to communicate through 
all active interfaces between the two end-nodes in parallel. 
Communicating over multi-paths normally engages with 
unnecessary fast retransmission by the sender, and sending 
unnecessary selective acknowledgement (SACKS) by the 
receiver. This happens because different paths may have 
different flight time delays (i.e. RTT= 2*flight time) and cause 
a different order of received packets other than what they have 
been sent by the sender. A user messages may be divided into 
several data chunks and transmitted through several SCTP 
packets over the all available communication paths. Before any 
group of data chunks are sent on any path in a specified period 
of time, the status information of data chunks (i.e. Path 
Identifier, TSN, and the related flags) will be sent through our 
new chunk called Status-Chunk over the primary path. This 
status information helps the receiver to distinguish the range of 
transmitted data on each specific path in order to prevent the 
incorrect Gap report in the selective acknowledgement chunk. 
Sender sends the status-chunk on the primary path before any 
transmitted data chunk, to announce the path number before the 
arrival of data chunk in the receiver side. Primary path is 
supposed to be the best and fastest path (see  Figure 2. ). In case 
the primary path’s RTT value is not too different to the other 
sender paths RTT, or several status chuck losses, the status-
chunk of the transmitted data chunks can be transferred on the 
other communicated path.  

Receiver establishes a dynamics status table to store the 
sender status information. The receiver inserts a new row in its 
status table for each received status-chunk on the primary path 
(see Table 1).  The status-chunk informs the receiver about the 
specific path on which the data chunks (TSNs) was transmitted. 
The receiver uses this stored information to control and prevent 
sending unnecessary incorrect Gap reports toward the sender. 
In other words, receiver node with the help of status table does 
not report a TSN as a Gap when it is on the fly and has not 
been lost on the transmitted path. A timer will set for each 

transferred data, and then data chunks whose time enumerator 
reach the specified timeout, would be marked as a Gap and will 
be informed to be retransmitted.  

 
Figure 2.   CMC-SCTP Message Diagram for Data and Status Chunk 

 

Like Sync-attack in traditional TCP protocol, a possible 
malicious attacker may disuse the receiver’s status table as a 
Denial-of-Service attack against any victim receiver node 
anywhere on the network. There are some solutions to prevent 
this kind of attacks; one may use these algorithms for the 
communication parties, which know each other due to a 
previous reason. The other solution may build based on a credit 
base algorithm, which starts to use CMC-SCTP algorithm after 
some data exchange. In fact, the receiver starts to make the 
status table if the sender acquired enough credit by the amount 
of data exchange in each association. Status will be kept only 
when at least one data chunk is exchanged. C. Vogt in  [10] 
addresses the same related problem annihilation for Mobile IP6 
protocol.  

All status-chunks and possible retransmitted data chunks 
should be exchanged on the primary path to minimize the 
status update delay as well as head-of-line-blocking 
problems  [13]. If sender did not receive any acknowledgement 
for any status-chunk after a specified time (e.g. 200ms 
according to the standard SCTP), it will retransmitted again on 
the primary path. The maximum delay time for any chunk 
acknowledgement, may be configured by the CMC-SCTP 
implementer. The maximum delay may be lower than 500 ms 
but must not be increased above 500 ms (according to the 
standard SCTP). 

The standard SCTP does not isolate the flow and 
Congestion Control mechanisms, as it was designed to deal 
with a single path and both mechanisms use the same 
transmission sequence number. CMC-SCTP Flow Control is 
on each path basis to ensure fair integration with other traffic 
on the receiver side paths, and SCTP Congestion Control 
performs on each path separately, in order to ensure fair 
integration with other traffic on sender side paths. The Round 
Trip Time (RTT), congestion window size (cwnd), slow-start 
threshold (ssthresh), retransmission time out (RTO), etc. is 
applied as Congestion Control variables for each path 
separately. All the sender interfaces provide an independent 
congestion window size, which is equivalent to the combined 
of the cwnd from the all paths included in the association 
which are applied for CMC-SCTP. In addition, The 
HEARTBEAT chunks allow CMC-SCTP to monitor the reach-
ability of idle destination addresses periodically. If the sender 
does not receive a HEARTBEAT-Ack chunk on any path, then 
it determines that the destination address is not available. In 
addition, CMC-SCTP monitors the status of the available paths 



and as their status changes, i.e. new paths become active or 
existing paths break, it updates the active paths list (Dynamic 
Address Reconfiguration). When path failure increases, an 
association throughput will eliminate it from the active paths 
list. If the average loss rate and delay increase on any path to a 
given threshold, it will be inactivated. When the inactive path 
is recovered, it will be inserted to the active paths list and the 
sender starts to use it again in CMC-SCTP communication 
mode. 

A. CMC-SCTP Status Chunk 
In a multipath communication mode each path may has 

different transmission delay time, a receiver cannot detect 
whether the un-received data are missed or they are still on the 
fly on the other paths. Sender sends CMC-SCTP status-chunk 
to prevent the insertion of unnecessary Gap block in the 
receiver’s selective acknowledgements (SACK) messages. The 
format of CMC-status-chunk is shown in  Figure 3. . Status-
chunk caries all the TSN ranges which are sent over one or 
many packets via the all communication paths in a specific 
time period. There are five new parameters in our status chunk. 
The latest Cumulative TSN Ack that the sender received 
through the received SACK is inserted within Cumulative TSN 
parameter in the related status chunk. TSN Start (TS) Block is 
containing the start offset of the TSNs range, which was sent 
on a given path in a specific period in any transmission. TSN 
End (TE) Block also is containing the end offset of the TSNs 
range, which was sent on a given path in a specific period in 
any transmission. In fact, Cumulative TSN plus each of these 
values will generate the start and end TSN value of this 
transferred block in this path (i.e. TS-TE range). In addition, 
CMC-SCTP continues to internally use Status-chunk Sequence 
Number (SCSN) parameter to assure sequenced delivery of the 
status chunks within an association. In order to inform the 
transmission path used for each packet transmission, the end 
point use Path Identifier (PI) parameter which is contains the 
transmission path identifier. 

Figure 3.  CMC-SCTP Status Chunk 

Type Reserved Length 
Status Chunk Sequence Number(SCSN) 

Cumulative TSN 

TSN Start (TS) Block  #1 TSN End (TE) Block  #1 Reserved 

TSN Start (TS) Block  #2 TSN End (TE) Block  #2 Reserved 

..... 

TSN Start (TS) Block  #N TSN End (TE) Block  #N Reserved 

 Path Identifier(PI) 

Optional/variable parameter 

According to our traffic-partitioning module, a specific data 
range (i.e. TS-TE range) has to be sent on a specific path. This 
data may be formed as one or more data chunks and can be fed 
in one or more SCTP packets. Receiver replays an 
Acknowledgment in response to each status-chunk. The status-
chunk-Ack is very simple and only contains a header chunk and 
the status-chunk sequence number, which copied from the 
received status-chunk to show the transmitted Ack belongs to 
which received status-chunk. All other settings will follow the 

standard SCTP stated in  [4]. Since the status-chunk is only sent 
on the primary path, the Ack chunk must be replied on the 
primary path as well. CMC-SCTP acknowledges all the chunks 
on the same received path. Receiver must immediacy reply the 
related Ack of each status-chunk. In order to decrease the 
waiting time on the receiver side because of status-chunk loss, 
the sender after 2*RTT delay (i.e. on primary path), upon the 
receipt of any SACK on any path, retransmits the status chunk. 
This will be done for 4 consecutive retransmissions and then 
the primary path will be supposed to be inactive and will be 
removed and will be changed. 

B. 7BTraffic-Partitioning Module 
Optimal traffic partitioning specifies the amount of data 

percentage which should be assigned and dispatched over each 
communication path. The following equation calculates the 
data Division Factor (DFi) that should be sent on each path:  

i

n

i
iii DFPathWeightPathWeightctorDivisionFaPath == ∑

=1

  (B.1) 

Suppose the Message Length (ML) is the length of the 
given message which should be sent to the correspondent party, 
therefore: 

ML*DF1 ML*DF2 … ML*DFn 
Figure 4.  Message Dividing parts 

1, 2, .., n are adopted to the number of active paths. 
Summation of the all above pieces will produce the whole 
message, in fact:  

(ML*DF1) + (ML*DF2) + …(ML*DFn) = ML (B.2) 

 There are different possible ways for delegating the user 
data on different paths. The following methods can be used for 
different scenarios or policies.  

• Splitting module: receives each message from association 
buffer and split the messages in regards to the different 
paths’ factors (e.g. RTT, bandwidth and etc.). Splitting 
module may unnecessarily fragment a message. If part of a 
message in any path is lost or delayed, the rest of the 
message will be faced head-of-line-blocking problem. 
Therefore, a proper policy should be adopted for 
retransmission of the lost data in this method. 

• Multi-Level Priority Queues (MLPQ): configures a 
multiple priority-queues based on different class of paths. 
Each class gets a priority based on the path quality factors. 
As long as the higher priority queue has space, data will be 
transmitted on this path and data will not deliver to the 
lower priorities class of path. 

•  Round Robin: this packet distribution method forms only 
one packet (i.e. which can have the maximum of the path 
MTU) for each network path in each round-period. If an 
interface sender-buffer is full, it will skip to the next 
interface. Of course, the round robin circulation will start 
with higher priority interface to the lower one. Moreover, 
the round-robin will be reconfigured each time a SACK 
message or control message is received, which may be an 
announcement of new sender buffer size.   



IV. STATUS-CHUNK HANDLING 
We use Path Sequence Number (PSN) to facilitate their 

operation instead of using TSN. Accordingly, although the 
receiver provides the Cumulative TSN Ack Point but it is not 
used directly by sender in CMC-SCTP anymore. In fact, the 
Cumulative PSN Ack Point is used indirectly for each path 
according to the received Cumulative TSN Ack Point (i.e. for 
each path and not for whole association). The association 
follows the standard rules stated in  [4] for TSN, whereas each 
path uses the PSN concept likewise. The Cumulative PSN Ack 
Point represents the sender’s view of the highest PSN that has 
been received so far from a path at the receiver. It is worth 
noting that since sender uses a standard data chunk therefore, it 
sends TSN on toward its correspondent but has a map of TSN 
and PSN for each path locally.  

  

Figure 5.  CMC-SCTP packet Load-sharing 

 Figure 5.  displays an example to show our status-chunk 
behavior which is sent to the receiver on the primary path (Pp).  
In this example, four ranges of TSNs over the three paths have 
been sent. Table 1 shows our dynamic status table on the 
receiver, which is regulated based on  Figure 5. . Each row will 
be added upon the arrival of each status-chunk on the receiver 
side. Table 1 assumes the related data chunks have not yet 
arrived to the receiver node. In case they arrive before their 
status-chunk, they will be buffered until the receipt of the 
related status chunk. This buffer will be kept only for a 
specified period of time (i.e. till the expected received time). 

The CMC-SCTP receiver uses the algorithm to detect whether 
the delayed packets are on the fly via the other path or they 
have been lost. On a single path, the transmission and 
receiving sequence on both sides are usually the same. Of 
course except for any changes on the intermediate routing 
table in a short period or packet loss). This rationale is used to 
form our unnecessary retransmission control algorithm to 
eliminate the incorrect Gap in a SACK chunk.  The first part 
of this algorithm updates the status table upon the receipt of 
any packet (see  Figure 6. ). 

The unnecessary retransmission control algorithm uses two 
variables to check a data chunks reception on a specific path. 
They are one-bit flags and are called Internal Flag (IF) and 
General Flag (GF). The “IF” flag will be set over the related 
given status table row after the receipt of any data chunks 
between TS and TE. The “GF” flag will set on the related 
given status table row after the receipt of all data chunks 
between TS and TE.  Figure 6.  has two steps: the first step 
checks whether a CMC-status-chunk is received before or after 
its related data chunk. The second step checks whether a part or 
whole of the TSNs are received in TS-TE range. 

Table 1: Status table 
TS TE PI IF GF 
T1 Ti 1 0 0 

Ti+1 Tj 2 0 0 
Tj+1 Tk 3 0 0 
Tk+1 Tt 1 0 0 

  

 

 Figure 7.  shows the second part of the unnecessary 
retransmission control algorithm which prevents the incorrect 
Gap report toward the sender. Based on Congestion Control, if 
a TSN arrives to the receiver after an un-arrived TSN on the 
same path, it indicates this un-arrived TSN is lost and can be 
marked for its retransmission. Therefore, for a range of TSNs 
(i.e. TS-TE) on a specific path, the same concept can be 
applied to report any un-arrived TSN with a bigger number 
after any received TSN as a Gap in its SACK chunk.  Figure 7.  
checks whether any TSN number after any un-arrived TSN is 
received or not. This is done for each specific path separately. 
In the case of receiving any TSN after an un-arrived TSN on 
the same path, it will be reported as a Gap in SACK chunk. 

 

   
Figure 6.  Unnecessary retransmission control Algorithm Part#1 

If Tg is assumed to be a Gap TSN,  Figure 7.  step b checks 
if at least one TSN has arrived after Tg in the finding row. 
Then Tg is determined to be a loss chunk. In  Figure 7.  step c 
recaps the next transmission on the same path related to the 
same path identifier. If the aforesaid row is found, and IF or GF 
flag has been had set to one, it shows that the receiver has 
received a data chunk after the Tg in the next transmission on 
the same path and shows this Tg has been lost. Otherwise, the 
receiver waits for arrival of these un-arrived TSNs. Since the 
status table will be grown up during the time, an algorithm 
removes the unused-rows from the status table. In two cases, 
the receiver does not need any more to keep the aforesaid row 

1. For any receipt status-chunk do 
i. If (TSNs between TS and TE have been arrived) then 
/** status-chunk received after all of its related data chunks **/ 
      Begin 
Insert TS, TE, PI, IF=1, GF=1 to the status table; 
Go to Delete algorithm; 
      End 
 ii. Else  
 If (TSNs between TS and TE have not been arrived) then 
/** status-chunk received after some of its related data chunks **/ 
 Insert TS, TE, PI, IF=1, GF=0 to the status table; 
iii. Else  
If (TSNs between TS and TE have not been arrived) then 
Insert TS, TE, PI, IF=0, GF=0 to the status table; 
2. For any receipt data chunk check status table do 
/**checking whether the part or whole of the data chunks receipt in 
TS-TE range received or not**/ 
i. If (TSNs between TS and TE have not been arrived) then 
    Begin 
 Set IF=1, GF=1 for related row; 
Go to Delete algorithm; 
    End 
 ii. Else  
If ( TSN between TS and TE have not been arrived) then 
            

 



in the status table: 1. All data chunks in a TS-TE range are 
arrived (IF and GF have been set to one); 2. The loss chunks 
have been identified and reported as Gap blocks (Tg’s TSN). 

 

Figure 7.  Unnecessary retransmission control Algorithm Part#2 

V. PERFORMANCE STUDY 
Our CMC-SCTP protocol extension has been simulated in 

the network simulator [12] and probed with different network 
configurations. The purpose of the extensive simulations is to 
inspect the transmission performance of the proposed path 
selections methods for CMC-SCTP with various network 
interfaces. We also compare our approach with the standard 
SCTP and LS-SCTP [9]. 

In our simulation, we created a network topology with two 
communication hosts where one side has 3 interfaces and the 
other side 2 interfaces. We supposed all intermediate link paths 
have the same path MTU; also, they tested with same packet 
losses to investigate the impact of different path quality and 
performance. 

In our simulation, we evaluated the strength of the CMC-
SCTP protocol in dynamic conditions. We assumed that we 
have 6 possible paths (i.e. 2*3 or m*n). Each time a maximum 
of 3 can be activated simultaneously (see below figure). The 
paths have different RTT between 40 and 160 ms. The sender 
paths have 1, 3 and 6 Mbps bandwidth while the receiver paths 
have 4 and 6 Mbps available bandwidth. In our performance 
study, we used the association throughput as a performance 

metrics, defined as an amount of data per-second which is 
delivered to the receiver’s application-layer. 

 

 

Figure 8.  Big block messages transmission throughput 

 Figure 8.  shows different path selection throughput during 
a big block of data messages transmission such as video files. 
The x-axis in  Figure 8.  represents the time, while the y-axis 
represents the effective association throughput. As can be seen 
from  Figure 8. , MLPQ path selection has the best average 
throughput, but the increase reaches its maximum throughput a 
little slower than other methods.  

The splitting module reaches its maximum throughput 
faster but in overall is slower than MLPQ. As we expected, the 
impact of slow line will degrade its whole association 
throughput in splitting and round-robin methods. We 
reconfigure the simulation with the same configuration, but 
with small blocks of application messages fed to the paths 
(see  Figure 9. ). All methods have a lower throughput 
compared to the last measurement with big blocks of data. In 
this simulation, all diagram results are unsteady, especially for 
the splitting module which has more oscillations. As we saw in 
both scenarios, the MLPQ had better overall throughput. 

The different throughput of Multi-Level-Priority-Queue is 
compared with LS-SCTP and standard SCTP in  Figure 10. . 
LS-SCTP has a gain better performance than standard SCTP, 
and relatively its behavior looks smoother, while the MLPQ 
method has far better performance, thanks to the use of path 
selection by considering the both sides’ communication parties. 

 

Figure 9.  Small block messages transmission throughput 

For any un-arrived TSN do 
i. If  Tg's timer expired then {Tg is un-arrived TSN} 

Let Tg is a loss chunk; 
ii. Else 

      Begin 
a. For all table rows do 

  If (TS<=Tg<=TE) then 
Begin 
 PathNumberTemp = PI;  /**Tg’s path 
identifier**/ 
MayNotEnd=TE; 
Break ;   /** go out of For a.**/ 
          End 
    b. If(TSN between Tg+1 and TE have been arrived) then 
/** at least one acked TSN of Tg+1 to TE was sent to the sender. **/ 
                Begin 

Let Tgis a loss chunk; 
Go to Delete Algorithm; 
End 

c. Else 
For this row to the last row  do 
If [(PI==PathNumberTemp) and (GF==1or IF==1) and (TS>MayNotEnd)] 
then 

/** at least one TSN arrived in the next transmission on path 
PI to the receiver and acked to the sender. **/ 

    Begin 
Let Tg is a loss chunk; 
Go to the Delete Algorithm; 
Break; 

 
     

             
 



 

Figure 10.  Different Methods transmission throughput 
 

VI. CONCLUSION 
SCTP support multi-homing. Multi-home nodes are the 

nodes which can be reached under several IP addresses. With 
the increase of multi-homed devices, we can simultaneously 
connected to different networks through different interfaces. In 
this paper, we suggest an extension for SCTP which is called 
CMC-SCTP. It can use all the available paths for simultaneous 
transmission between the sender and receiver. The standard 
SCTP is designed for single path communication and not 
suitable for simultaneous multi-path communication. Then we 
extend the SCTP to support concurrent multipath 
communication. The CMC-SCTP proposed modifying the 
sender to split the data on the available paths based on an 
estimate of the line weight. Furthermore we create the CMC-
status-chunk for informing the receiver from transmitted TSNs 
rang and related path. The CMC-SCTP performance study 
shows that it benefits the use of simultaneous data transmission 
on all available paths. CMC-SCTP not only increased the 
communication path throughput but also controls incorrect gap 
report in the SACK chunks. We believe our proposal also 
benefits the mobile nodes on the overlapped wireless networks. 
A mobile node can be multi-homed when detects a new subnet 
and communicate still on its previous subnet. 
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