
Concurrent-Multipath-Communication SCTP A
Novel Method For Multi-Path Data Transmission

Abbas Malekpour1, Hamideh Jabalameli2, Djamshid Tavangarian1
1 Department of Computer Science
University of Rostock, Germany

{abbas.malekpour,djamshid.tavangarian}@uni-rostock.de

2 Department of Computer Science
University of Esfahan, PNU, Iran
hamideh.jabalameli@gmail.com

Abstract— Multi-homing at the transport layer is a mechanism
that ties one transport layer association to several network
interfaces at each communication host, which enabling the two
end-nodes to exchange data over several network paths. Stream
control transmission protocol (SCTP) supports multi-homing
feature. We suggest Concurrent Multipath Communication-
SCTP (CMC-SCTP) which uses multi-homing as a base for
simultaneous data transmission over multiple paths to increase
end-to-end path throughput and network path failover. In this
paper we identify the negative side effects of re-sequencing due to
the use of CMC that must be managed in order to get the full
performance of CMC’s parallel data transmission. To overcome
this weakness we proposed new chunks and algorithms to
eliminate these side effects. Sender maps a general transmission
sequence number for each data packet to a dedicated sequence
number for each path to controls the transmission status
independently for each path. A control packet called status-
chunk informs the receiver about the path number of each
transmitted data chunk and the status of transmitted data on
each path. An OPNET simulation evaluates the performance of
our CMC-SCTP protocol extension.

Keywords-component; SCTP; Multi-homing; Load-Sharing;
QoS; multipath communication; congestion control; transport layer

I. INTRODUCTION
New devices on the market now often can connect over

more than one network interfaces (both wired and wireless).
Multi-homed hosts (i.e. hosts that can be accessed under
several IP addresses) along with networked technology and
network devices are available and are getting more and more
economical.

In 1974 that Transport Control Protocol (TCP) was
introduced, computer equipment and specially network devices
were too expensive, and thus providing multi-home network
node was beyond the research perspective [1]. Multi-homing at
the network transport layer is a mechanism that ties one
transport layer association to several network interfaces at each
communication host, which enabling the two end-nodes to
exchange data over several network paths (a.k.a. Load-sharing
). Therefore, supporting multi-homing for having concurrent
multipath communication became an attractive part of network
researches and technology finances.

Several researchers have tried to apply simultaneously all
available communication paths in order to transmit the user
data on all available paths [8] [9] [11]. They provide solutions
for the problems of utilizing multiple paths. As long as the
load-sharing operations are provided in the upper network
layer (i.e. Application Layer), they would be more flexible in
term of user application connectivity and developing
environment, but they have to pass the cross layer connectivity
and related overheads to provide the necessary paths and
interfaces information for the upper layer applications. In the
opposite direction, as long as the load-sharing mechanism is
provided in the lower layers, its implementation will be more
complicated but normally would be work faster. Transport
layer is the lowest network layer which provides an end-to-end
connection. Although transport layer multi-homing is an old
idea for multipath load-sharing for having better flexibility at
the time of network failure to control multi path
communication issues, the general transport layer protocols
TCP and User Datagram Protocol (UDP), cannot support
multi-homing. Both UDP and TCP can use one network
address in both end-to-end connected nodes [2] [3]. Two recent
IETF transport layer protocols, the Stream Control
Transmission Protocol (SCTP) [4], and the Datagram
Congestion Control Protocol (DCCP) essentially support multi-
homing at the transport layer[5].

Using SCTP, we investigate possible design for Concurrent
Multi-path Communication (CMC-SCTP). Each interface of a
multihomed node may have different round-trip-time. Sending
packets on several paths will cause un-order arrival of data on
the receiver side. Consequently, the receiver has to inform its
correspondent node the un-arrived packets (i.e. packet on the
fly). This force the receiver to send the unnecessary packet lost
message and consequently triggering the fast retransmission
data on the sender side. The CMC-SCTP aims to address the
related problems. The needed algorithms and a new status
chuck are introduced. Theses algorithms controls the unwanted
traffic caused by unnecessary fast retransmission. The
suggested status chuck is used to inform the receiver about the
status of transmitted data on each path.

During the time, paths quality may be changed especially
for wireless networks. Therefore, a dynamic mechanism to
monitor the communication paths in order to measure their

quality parameters must be considered. The path selection
method should choose the best possible paths. Inserting any
un-qualified (e.g. big round-trip-time) path will only enlarge
the end-to-end communication latency time. In addition, we
design a two-layer path selection method for two-side path
selection, which specifies the source and destination addresses
to send the data chunks on the proper paths. We study CMC-
SCTP at transport layer in a broad scheme. We think our
mechanisms and related algorithms will introduce a base for
multi-home-support in different transport protocols. This paper
introduces and enhances transport layer mechanisms to use
CMC-SCTP for the multi-home hosts to improve application
throughput.

This paper is organized as follows: Section II describes in
detail CMC-SCTP design. Section III specifies the receiver
side control algorithms. Section IV provides a performance
study for CMC-SCTP. Finally, Section V concludes the paper.

II. SCTP BASICS AND RELATED WORKS
SCTP was introduced to be an all-purpose transport

protocol for message-oriented communications. SCTP is a
novel transport layer network protocol, which supports multi-
homing and is the lowest and nearest layer to the network layer
(i.e. IP) which has the most accurate information about internet
addresses and path connections. SCTP is a Connection-
Orientated Protocol and has in common many characteristics
with TCP. Two communication end-points must establish a
“connection”, which is known as Association in SCTP. It has
been formed using a 4-way handshake, which protects the
communication against the Denial-of-Service (DoS)
attacks [6]. SCTP puts messages and control information into
different chunks (data chunks and control chunks). A message
can be fragmented over a number of data chunks, which
bundled into SCTP packets. Between all-available paths, one
will be chose as a primary path (the fastest one). Standard
SCTP uses primary path for data transmission. Other paths will
be used either when primary path fails or retransmissions lose
data packets. Chunks can be a control or a data chunk. For the
purposes of reliability and congestion control, each data chunk
in an association is assigned a unique transmission sequence
number (TSN) for the entire DATA stream (used in
fragmentation for reassembly). A selective ACK chunk called
SACK is used in SCTP. Receiver uses SACK chunks to inform
the last received TSN and the group of missed data chuck as
gaps [4]. SCTP’s congestion control algorithms like TCP are
based on RFC2581. Like TCP, SCTP uses three congestion
control variables: receiver’s advertised window (rwnd),
sender’s congestion window (cwnd), and sender’s slow start
threshold (ssthresh). According to [7], SCTP congestion
control engages with the following problems; 1) Well-
organized recovery after a packet loss is only possible if SCTP
generates the optional Gap Ack Blocks in SACK chunks. 2)
The SCTP fast retransmit method is open to being mistakenly
triggered multiple times leading to under-utilization of the
network during recovery and duplicate retransmissions of the
lost packet. 3) The SCTP fast retransmit procedure must wait
for half a window of data to be acknowledged before
retransmitting a lost packet yielding a slow response to packet
loss. These problems will be increased when all paths are

aggregated and used simultaneously. The retransmission
performance of the standard SCTP was studied in [11]. The
authors explained retransmission through another path is not
always beneficial regarding throughput of the standard SCTP.

The authors of [8] introduced Concurrent Multi-path
Transfer mechanism based on SCTP for simultaneous
transmission and tried to solve the problems related to
congestion control by introducing three algorithms: (1)
avoiding unnecessary fast retransmissions; (2) delaying
selective acknowledgements appropriately; (3) allowing faster
updates of the congestion window. These algorithms could not
properly control the both-side path selection and unnecessary
SACK transmissions at the receiver side. Another method is a
bandwidth aggregation technique that is called LS-SCTP,
introduces a new data chunk which carries a path identifier
(PID) and path sequence number (PSN) for all transmitted data
chunks on the different paths [9]. Based on our knowledge the
previous solutions have no control on the both-side multi-path
transmission control. Because, those solutions do not provide
the necessary sender path information to the receiver side. The
authors did not clearly address the control of unwanted
retransmission packet due to different path delay. Moreover,
their method raises some new security issues relate to data
transmission at the time of path changeover.

III. CONCURRENT-MULTIPATH-COMMUNICATION SCTP
(CMC-SCTP)

The SCTP association operations divided in two parts,
controlling the connection paths (Control-Path) and controlling
the communicated data over these paths (Data Path). Figure 1.
shows a general view of the standard SCTP and its extended
modules architecture. The Light gray boxes are the global
SCTP modules and the standard SCTP association modules
which are adopted for multipath communication. We added
some new modules to the standard SCTP association modules
to provide our new protocol CMC-SCTP. Our new extended
modules are shown with gray color in the blow figure.

As you can see in the Figure 1. , the standard SCTP
Control-Path has two base modules, SCTP controller and Path-
Management. We extend the standard SCTP Path-Management
module with two new modules; Multipath Status Controller
and Multipath Rout Management to provide the path
management functionality for multipath communication
scenarios separately.

In the Data-Path section of SCTP association in Figure 1. ,
we extend the flow control and congestion control of standard
SCTP to support multipath flow/congestion control. Since we
aimed to transmit data over the all available communication
paths, we also add a Traffic-Partitioning-Module to provide the
load-sharing over the several paths. Traffic-Partitioning-
Module uses the previously standard SCTP bundle/unbundle
module plus our enhanced Splitting Module to support the
needed tasks for partitioning the traffics over the several
available active paths.

 CMC-SCTP is a method for multi-path data transmission
that uses the available paths for a synchronous transmission of
data chunks. In order to inform the correspondent receiver node

about the status of data on each communication path we
introduced a new chunk, called status-chunk (see section A).

CMC-SCTP maintains separately Congestion Control and
Flow Control on each path to keep the both sides fair load-
sharing integration.

Figure 1. Standard SCTP and its Extended Modules Architecture

All data chunks in the standard SCTP are sent only on the
primary path, but CMC-SCTP is able to communicate through
all active interfaces between the two end-nodes in parallel.
Communicating over multi-paths normally engages with
unnecessary fast retransmission by the sender, and sending
unnecessary selective acknowledgement (SACKS) by the
receiver. This happens because different paths may have
different flight time delays (i.e. RTT= 2*flight time) and cause
a different order of received packets other than what they have
been sent by the sender. A user messages may be divided into
several data chunks and transmitted through several SCTP
packets over the all available communication paths. Before any
group of data chunks are sent on any path in a specified period
of time, the status information of data chunks (i.e. Path
Identifier, TSN, and the related flags) will be sent through our
new chunk called Status-Chunk over the primary path. This
status information helps the receiver to distinguish the range of
transmitted data on each specific path in order to prevent the
incorrect Gap report in the selective acknowledgement chunk.
Sender sends the status-chunk on the primary path before any
transmitted data chunk, to announce the path number before the
arrival of data chunk in the receiver side. Primary path is
supposed to be the best and fastest path (see Figure 2.). In case
the primary path’s RTT value is not too different to the other
sender paths RTT, or several status chuck losses, the status-
chunk of the transmitted data chunks can be transferred on the
other communicated path.

Receiver establishes a dynamics status table to store the
sender status information. The receiver inserts a new row in its
status table for each received status-chunk on the primary path
(see Table 1). The status-chunk informs the receiver about the
specific path on which the data chunks (TSNs) was transmitted.
The receiver uses this stored information to control and prevent
sending unnecessary incorrect Gap reports toward the sender.
In other words, receiver node with the help of status table does
not report a TSN as a Gap when it is on the fly and has not
been lost on the transmitted path. A timer will set for each

transferred data, and then data chunks whose time enumerator
reach the specified timeout, would be marked as a Gap and will
be informed to be retransmitted.

Figure 2. CMC-SCTP Message Diagram for Data and Status Chunk

Like Sync-attack in traditional TCP protocol, a possible
malicious attacker may disuse the receiver’s status table as a
Denial-of-Service attack against any victim receiver node
anywhere on the network. There are some solutions to prevent
this kind of attacks; one may use these algorithms for the
communication parties, which know each other due to a
previous reason. The other solution may build based on a credit
base algorithm, which starts to use CMC-SCTP algorithm after
some data exchange. In fact, the receiver starts to make the
status table if the sender acquired enough credit by the amount
of data exchange in each association. Status will be kept only
when at least one data chunk is exchanged. C. Vogt in [10]
addresses the same related problem annihilation for Mobile IP6
protocol.

All status-chunks and possible retransmitted data chunks
should be exchanged on the primary path to minimize the
status update delay as well as head-of-line-blocking
problems [13]. If sender did not receive any acknowledgement
for any status-chunk after a specified time (e.g. 200ms
according to the standard SCTP), it will retransmitted again on
the primary path. The maximum delay time for any chunk
acknowledgement, may be configured by the CMC-SCTP
implementer. The maximum delay may be lower than 500 ms
but must not be increased above 500 ms (according to the
standard SCTP).

The standard SCTP does not isolate the flow and
Congestion Control mechanisms, as it was designed to deal
with a single path and both mechanisms use the same
transmission sequence number. CMC-SCTP Flow Control is
on each path basis to ensure fair integration with other traffic
on the receiver side paths, and SCTP Congestion Control
performs on each path separately, in order to ensure fair
integration with other traffic on sender side paths. The Round
Trip Time (RTT), congestion window size (cwnd), slow-start
threshold (ssthresh), retransmission time out (RTO), etc. is
applied as Congestion Control variables for each path
separately. All the sender interfaces provide an independent
congestion window size, which is equivalent to the combined
of the cwnd from the all paths included in the association
which are applied for CMC-SCTP. In addition, The
HEARTBEAT chunks allow CMC-SCTP to monitor the reach-
ability of idle destination addresses periodically. If the sender
does not receive a HEARTBEAT-Ack chunk on any path, then
it determines that the destination address is not available. In
addition, CMC-SCTP monitors the status of the available paths

and as their status changes, i.e. new paths become active or
existing paths break, it updates the active paths list (Dynamic
Address Reconfiguration). When path failure increases, an
association throughput will eliminate it from the active paths
list. If the average loss rate and delay increase on any path to a
given threshold, it will be inactivated. When the inactive path
is recovered, it will be inserted to the active paths list and the
sender starts to use it again in CMC-SCTP communication
mode.

A. CMC-SCTP Status Chunk
In a multipath communication mode each path may has

different transmission delay time, a receiver cannot detect
whether the un-received data are missed or they are still on the
fly on the other paths. Sender sends CMC-SCTP status-chunk
to prevent the insertion of unnecessary Gap block in the
receiver’s selective acknowledgements (SACK) messages. The
format of CMC-status-chunk is shown in Figure 3. . Status-
chunk caries all the TSN ranges which are sent over one or
many packets via the all communication paths in a specific
time period. There are five new parameters in our status chunk.
The latest Cumulative TSN Ack that the sender received
through the received SACK is inserted within Cumulative TSN
parameter in the related status chunk. TSN Start (TS) Block is
containing the start offset of the TSNs range, which was sent
on a given path in a specific period in any transmission. TSN
End (TE) Block also is containing the end offset of the TSNs
range, which was sent on a given path in a specific period in
any transmission. In fact, Cumulative TSN plus each of these
values will generate the start and end TSN value of this
transferred block in this path (i.e. TS-TE range). In addition,
CMC-SCTP continues to internally use Status-chunk Sequence
Number (SCSN) parameter to assure sequenced delivery of the
status chunks within an association. In order to inform the
transmission path used for each packet transmission, the end
point use Path Identifier (PI) parameter which is contains the
transmission path identifier.

Figure 3. CMC-SCTP Status Chunk

Type Reserved Length
Status Chunk Sequence Number(SCSN)

Cumulative TSN

TSN Start (TS) Block #1 TSN End (TE) Block #1 Reserved

TSN Start (TS) Block #2 TSN End (TE) Block #2 Reserved

.....

TSN Start (TS) Block #N TSN End (TE) Block #N Reserved

 Path Identifier(PI)

Optional/variable parameter

According to our traffic-partitioning module, a specific data
range (i.e. TS-TE range) has to be sent on a specific path. This
data may be formed as one or more data chunks and can be fed
in one or more SCTP packets. Receiver replays an
Acknowledgment in response to each status-chunk. The status-
chunk-Ack is very simple and only contains a header chunk and
the status-chunk sequence number, which copied from the
received status-chunk to show the transmitted Ack belongs to
which received status-chunk. All other settings will follow the

standard SCTP stated in [4]. Since the status-chunk is only sent
on the primary path, the Ack chunk must be replied on the
primary path as well. CMC-SCTP acknowledges all the chunks
on the same received path. Receiver must immediacy reply the
related Ack of each status-chunk. In order to decrease the
waiting time on the receiver side because of status-chunk loss,
the sender after 2*RTT delay (i.e. on primary path), upon the
receipt of any SACK on any path, retransmits the status chunk.
This will be done for 4 consecutive retransmissions and then
the primary path will be supposed to be inactive and will be
removed and will be changed.

B. 7BTraffic-Partitioning Module
Optimal traffic partitioning specifies the amount of data

percentage which should be assigned and dispatched over each
communication path. The following equation calculates the
data Division Factor (DFi) that should be sent on each path:

i

n

i
iii DFPathWeightPathWeightctorDivisionFaPath == ∑

=1

 (B.1)

Suppose the Message Length (ML) is the length of the
given message which should be sent to the correspondent party,
therefore:

ML*DF1 ML*DF2 … ML*DFn
Figure 4. Message Dividing parts

1, 2, .., n are adopted to the number of active paths.
Summation of the all above pieces will produce the whole
message, in fact:

(ML*DF1) + (ML*DF2) + …(ML*DFn) = ML (B.2)

 There are different possible ways for delegating the user
data on different paths. The following methods can be used for
different scenarios or policies.

• Splitting module: receives each message from association
buffer and split the messages in regards to the different
paths’ factors (e.g. RTT, bandwidth and etc.). Splitting
module may unnecessarily fragment a message. If part of a
message in any path is lost or delayed, the rest of the
message will be faced head-of-line-blocking problem.
Therefore, a proper policy should be adopted for
retransmission of the lost data in this method.

• Multi-Level Priority Queues (MLPQ): configures a
multiple priority-queues based on different class of paths.
Each class gets a priority based on the path quality factors.
As long as the higher priority queue has space, data will be
transmitted on this path and data will not deliver to the
lower priorities class of path.

• Round Robin: this packet distribution method forms only
one packet (i.e. which can have the maximum of the path
MTU) for each network path in each round-period. If an
interface sender-buffer is full, it will skip to the next
interface. Of course, the round robin circulation will start
with higher priority interface to the lower one. Moreover,
the round-robin will be reconfigured each time a SACK
message or control message is received, which may be an
announcement of new sender buffer size.

IV. STATUS-CHUNK HANDLING
We use Path Sequence Number (PSN) to facilitate their

operation instead of using TSN. Accordingly, although the
receiver provides the Cumulative TSN Ack Point but it is not
used directly by sender in CMC-SCTP anymore. In fact, the
Cumulative PSN Ack Point is used indirectly for each path
according to the received Cumulative TSN Ack Point (i.e. for
each path and not for whole association). The association
follows the standard rules stated in [4] for TSN, whereas each
path uses the PSN concept likewise. The Cumulative PSN Ack
Point represents the sender’s view of the highest PSN that has
been received so far from a path at the receiver. It is worth
noting that since sender uses a standard data chunk therefore, it
sends TSN on toward its correspondent but has a map of TSN
and PSN for each path locally.

Figure 5. CMC-SCTP packet Load-sharing

 Figure 5. displays an example to show our status-chunk
behavior which is sent to the receiver on the primary path (Pp).
In this example, four ranges of TSNs over the three paths have
been sent. Table 1 shows our dynamic status table on the
receiver, which is regulated based on Figure 5. . Each row will
be added upon the arrival of each status-chunk on the receiver
side. Table 1 assumes the related data chunks have not yet
arrived to the receiver node. In case they arrive before their
status-chunk, they will be buffered until the receipt of the
related status chunk. This buffer will be kept only for a
specified period of time (i.e. till the expected received time).

The CMC-SCTP receiver uses the algorithm to detect whether
the delayed packets are on the fly via the other path or they
have been lost. On a single path, the transmission and
receiving sequence on both sides are usually the same. Of
course except for any changes on the intermediate routing
table in a short period or packet loss). This rationale is used to
form our unnecessary retransmission control algorithm to
eliminate the incorrect Gap in a SACK chunk. The first part
of this algorithm updates the status table upon the receipt of
any packet (see Figure 6.).

The unnecessary retransmission control algorithm uses two
variables to check a data chunks reception on a specific path.
They are one-bit flags and are called Internal Flag (IF) and
General Flag (GF). The “IF” flag will be set over the related
given status table row after the receipt of any data chunks
between TS and TE. The “GF” flag will set on the related
given status table row after the receipt of all data chunks
between TS and TE. Figure 6. has two steps: the first step
checks whether a CMC-status-chunk is received before or after
its related data chunk. The second step checks whether a part or
whole of the TSNs are received in TS-TE range.

Table 1: Status table
TS TE PI IF GF
T1 Ti 1 0 0

Ti+1 Tj 2 0 0
Tj+1 Tk 3 0 0
Tk+1 Tt 1 0 0

 Figure 7. shows the second part of the unnecessary
retransmission control algorithm which prevents the incorrect
Gap report toward the sender. Based on Congestion Control, if
a TSN arrives to the receiver after an un-arrived TSN on the
same path, it indicates this un-arrived TSN is lost and can be
marked for its retransmission. Therefore, for a range of TSNs
(i.e. TS-TE) on a specific path, the same concept can be
applied to report any un-arrived TSN with a bigger number
after any received TSN as a Gap in its SACK chunk. Figure 7.
checks whether any TSN number after any un-arrived TSN is
received or not. This is done for each specific path separately.
In the case of receiving any TSN after an un-arrived TSN on
the same path, it will be reported as a Gap in SACK chunk.

Figure 6. Unnecessary retransmission control Algorithm Part#1

If Tg is assumed to be a Gap TSN, Figure 7. step b checks
if at least one TSN has arrived after Tg in the finding row.
Then Tg is determined to be a loss chunk. In Figure 7. step c
recaps the next transmission on the same path related to the
same path identifier. If the aforesaid row is found, and IF or GF
flag has been had set to one, it shows that the receiver has
received a data chunk after the Tg in the next transmission on
the same path and shows this Tg has been lost. Otherwise, the
receiver waits for arrival of these un-arrived TSNs. Since the
status table will be grown up during the time, an algorithm
removes the unused-rows from the status table. In two cases,
the receiver does not need any more to keep the aforesaid row

1. For any receipt status-chunk do
i. If (TSNs between TS and TE have been arrived) then
/** status-chunk received after all of its related data chunks **/
 Begin
Insert TS, TE, PI, IF=1, GF=1 to the status table;
Go to Delete algorithm;
 End
 ii. Else
 If (TSNs between TS and TE have not been arrived) then
/** status-chunk received after some of its related data chunks **/
 Insert TS, TE, PI, IF=1, GF=0 to the status table;
iii. Else
If (TSNs between TS and TE have not been arrived) then
Insert TS, TE, PI, IF=0, GF=0 to the status table;
2. For any receipt data chunk check status table do
/**checking whether the part or whole of the data chunks receipt in
TS-TE range received or not**/
i. If (TSNs between TS and TE have not been arrived) then
 Begin
 Set IF=1, GF=1 for related row;
Go to Delete algorithm;
 End
 ii. Else
If (TSN between TS and TE have not been arrived) then

in the status table: 1. All data chunks in a TS-TE range are
arrived (IF and GF have been set to one); 2. The loss chunks
have been identified and reported as Gap blocks (Tg’s TSN).

Figure 7. Unnecessary retransmission control Algorithm Part#2

V. PERFORMANCE STUDY
Our CMC-SCTP protocol extension has been simulated in

the network simulator [12] and probed with different network
configurations. The purpose of the extensive simulations is to
inspect the transmission performance of the proposed path
selections methods for CMC-SCTP with various network
interfaces. We also compare our approach with the standard
SCTP and LS-SCTP [9].

In our simulation, we created a network topology with two
communication hosts where one side has 3 interfaces and the
other side 2 interfaces. We supposed all intermediate link paths
have the same path MTU; also, they tested with same packet
losses to investigate the impact of different path quality and
performance.

In our simulation, we evaluated the strength of the CMC-
SCTP protocol in dynamic conditions. We assumed that we
have 6 possible paths (i.e. 2*3 or m*n). Each time a maximum
of 3 can be activated simultaneously (see below figure). The
paths have different RTT between 40 and 160 ms. The sender
paths have 1, 3 and 6 Mbps bandwidth while the receiver paths
have 4 and 6 Mbps available bandwidth. In our performance
study, we used the association throughput as a performance

metrics, defined as an amount of data per-second which is
delivered to the receiver’s application-layer.

Figure 8. Big block messages transmission throughput

 Figure 8. shows different path selection throughput during
a big block of data messages transmission such as video files.
The x-axis in Figure 8. represents the time, while the y-axis
represents the effective association throughput. As can be seen
from Figure 8. , MLPQ path selection has the best average
throughput, but the increase reaches its maximum throughput a
little slower than other methods.

The splitting module reaches its maximum throughput
faster but in overall is slower than MLPQ. As we expected, the
impact of slow line will degrade its whole association
throughput in splitting and round-robin methods. We
reconfigure the simulation with the same configuration, but
with small blocks of application messages fed to the paths
(see Figure 9.). All methods have a lower throughput
compared to the last measurement with big blocks of data. In
this simulation, all diagram results are unsteady, especially for
the splitting module which has more oscillations. As we saw in
both scenarios, the MLPQ had better overall throughput.

The different throughput of Multi-Level-Priority-Queue is
compared with LS-SCTP and standard SCTP in Figure 10. .
LS-SCTP has a gain better performance than standard SCTP,
and relatively its behavior looks smoother, while the MLPQ
method has far better performance, thanks to the use of path
selection by considering the both sides’ communication parties.

Figure 9. Small block messages transmission throughput

For any un-arrived TSN do
i. If Tg's timer expired then {Tg is un-arrived TSN}

Let Tg is a loss chunk;
ii. Else

 Begin
a. For all table rows do

 If (TS<=Tg<=TE) then
Begin
 PathNumberTemp = PI; /**Tg’s path
identifier**/
MayNotEnd=TE;
Break ; /** go out of For a.**/
 End
 b. If(TSN between Tg+1 and TE have been arrived) then
/** at least one acked TSN of Tg+1 to TE was sent to the sender. **/
 Begin

Let Tgis a loss chunk;
Go to Delete Algorithm;
End

c. Else
For this row to the last row do
If [(PI==PathNumberTemp) and (GF==1or IF==1) and (TS>MayNotEnd)]
then

/** at least one TSN arrived in the next transmission on path
PI to the receiver and acked to the sender. **/

 Begin
Let Tg is a loss chunk;
Go to the Delete Algorithm;
Break;

Figure 10. Different Methods transmission throughput

VI. CONCLUSION
SCTP support multi-homing. Multi-home nodes are the

nodes which can be reached under several IP addresses. With
the increase of multi-homed devices, we can simultaneously
connected to different networks through different interfaces. In
this paper, we suggest an extension for SCTP which is called
CMC-SCTP. It can use all the available paths for simultaneous
transmission between the sender and receiver. The standard
SCTP is designed for single path communication and not
suitable for simultaneous multi-path communication. Then we
extend the SCTP to support concurrent multipath
communication. The CMC-SCTP proposed modifying the
sender to split the data on the available paths based on an
estimate of the line weight. Furthermore we create the CMC-
status-chunk for informing the receiver from transmitted TSNs
rang and related path. The CMC-SCTP performance study
shows that it benefits the use of simultaneous data transmission
on all available paths. CMC-SCTP not only increased the
communication path throughput but also controls incorrect gap
report in the SACK chunks. We believe our proposal also
benefits the mobile nodes on the overlapped wireless networks.
A mobile node can be multi-homed when detects a new subnet
and communicate still on its previous subnet.

REFERENCES
[1] Vinton G. Cerf and Robert E. Kahn, “A Protocol for Packet Network

Intercommunication”, 1974 IEEE. Reprinted, with permission, from
IEEE Trans on Comms, Vol Com-22, No 5 May 1974

[2] RFC 793, “Transmission Control Protocol”, Defense Advanced
Research Projects Agency, Information Processing Techniques Office,
September 1981.

[3] J. Postel, “User Datagram Protocol”, RFC 768, 28 August 1980
[4] Arias-Rodriguez, R. Stewart, A. Caro, K. Poon, and M. Tuexen. “Stream

Control Transmission Protocol (SCTP) Specification Errata and Issues”.
RFC 4460, April 2006.

[5] M. Handley, E. Kohler, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP)”, RFC 4340 March 2006.

[6] Zhongying Bai, Yuan Bai, “4-Way Handshake Solutions to Avoid
Denial of Service Attack in Ultra Wideband Networks.”, Issue Date: 21-
22 Nov. 2009, ISBN: 978-0-7695-3859-4

[7] M. Allman,V. Paxson, E. Blanton, “TCP Congestion Control” RFC
5681, IETF, September 2009.

[8] Janardhan R. Iyengar, Keyur C. Shah, Paul D. Amer. “Concurrent
Multipath Transfer Using SCTP Multi-homing.” SPECTS 2004, July
2004.

[9] Ahmed Abd El Al*, Tarek Saadawi, Myung Lee, “a bandwidth
aggregation technique for stream control transmission protocol.”
Computer Communications, VOL 27, NO. 10, pp. 1012-1024, 2004.

[10] C. Vogt, “Credit-Based Authorization for Concurrent IP-Address Tests”,
2005

[11] A. Caro, R. Stewart and P. D. Amer, “Transport Layer Multi-homing for
Fault Tolerance in FCS Networks”, Collaborative Technology
Allicances (CTA), 2003.

[12] OPNET Technologies, Inc. A Leading provider of solutions for
managing networks and applications, http://www.opnet.com/

[13] M. Scharf, S. Kiesel, “Head-of-line Blocking in TCP and SCTP:
Analysis and Measurements.”, April 2007

[14] R. Stewart, M. Tuexen, G. Camarillo, Security Attacks Found Against
the Stream Control Transmission Protocol (SCTP) and Current
Countermeasures. RFC 5062 (Informational), September 2007

http://www.opnet.com/�

	I. INTRODUCTION
	II. SCTP Basics and Related Works
	III. concurrent-multipath-communication SCTP (CMC-SCTP)
	A. CMC-SCTP Status Chunk
	B. Traffic-Partitioning Module

	IV. Status-chunk Handling
	V. performance study
	VI. conclusion
	References

