
A Real-Time Browser-Based Collaboration System
for Synchronized Online Multimedia Sharing

Cristian Gadea, Bogdan Solomon, Bogdan Ionescu, Dan Ionescu Gabriela Prostean
NCCT Lab, University of Ottawa, Ottawa, Canada Politehnica University of Timisoara, Romania
{cgadea, bsolomon, bogdan, dan}@ncct.uottawa.ca gabriela.prostean@mpt.upt.ro

Abstract—The amount of multimedia content on the web has
been growing at a staggering rate, and users are increasingly
looking to share it with colleagues and friends in real-time.
Several commercial, open source and academic solutions have
attempted to make it easier to share a large variety of online
content with others but they are generally limited to sending
links. Existing products have not been able to provide a browser-
based system that synchronizes disparate web content among
many users in real-time. Additionally, they have lacked a platform
with a modular architecture that can be easily extended by
developers to support new sources of online media. In this paper,
we propose a next-generation software architecture for a real-
time web-based collaboration platform. The platform allows users
to collaborate over webcam chat while viewing videos, photos,
maps, documents, listening to music, and playing games, all in
real-time. As examples, we show how three versions of a cloud-
based environment called Watch Together were deployed to live
users, including within Facebook and an e-learning environment.
Finally, we present usage data from the deployments and reflect
on how users share and consume real-time multimedia content.

Index Terms—real-time web collaboration, distributed systems,
cloud-based digital content delivery, online multimedia sharing

I. INTRODUCTION

With the advent of Web 2.0 technologies, new services have
appeared where web users are no longer satisfied with just
viewing simple HTTP pages but expect the ability to share and
collaborate with other people, such as friends or colleagues,
online and in real-time. This can be seen with services like
Google Docs [1], where multiple users can work on the same
document at the same time, and the document is stored on
Google’s remote servers in the cloud. Other popular websites
which offer the ability for online content sharing between
users include Facebook and Twitter. However, the services
offered by both of these systems are not truly real-time. In both
Facebook and Twitter, a message posted by a user containing
links to photos or videos is later viewed by one or more users
separately. In many ways, this is in no way different than
sending an e-mail with either links or attachments.

Currently, if users wish to share some photos with their
friends, they can upload them to a cloud storage service like
Flickr [2]. They can then use a service like Twitter or send an
email to their friends in order to let them know that the photos
are available. Their friends, some of which may already be
online, may receive the links and choose to view them, which
will be done on their own. The users who shared photos with
their friends may receive a response but they do not know

the true reactions of their friends to the photos as they are
not able to view the photos as a group and receive instant
feedback. This is true as well for sharing videos, maps and
even documents in a corporate setting.

The goal of the system presented in this paper is to achieve
real-time collaboration between users who, as a group, share a
collaborative session. This implies that all users in the session
will see the exact same state of the system - be it the same
video at the same moment in time, the same image or the same
page in a document or slide. Actions performed by a user -
changing the image, fast forwarding in the video, changing
the page - are replicated across all the users in order to ensure
that the same state is maintained. At the same time, text and
video/audio chat are integrated in the system so that users can
see and hear each other as they collaborate over the online
content.

The system described has several notable constraints that are
not present in simpler sharing systems such as the one used
by Facebook. First of all, the requirement for the system to be
real-time implies that the latency between users has to be very
low to prevent discrepancies between the state of the system
seen by the different users. At the same time, the existence of
video chat implies that each user will consume a considerable
amount of bandwidth. Our system will attempt to minimize
the amount of bandwidth used by each user, while at the same
time ensure that the quality of the video chat does not degrade
excessively. For this, the system will provide the user with
visual feedback of their measured latency time and bandwidth
usage.

Furthermore, the system has to be itself a platform on top
of which new synchronized applications can be developed
and deployed. Through this capability, developers can extend
the functionality of the system by either adding entirely new
synchronized application types or extending existing types
with new data sources. For example, developers could either
add an entirely new collaborative application such as a game
of Scrabble, or they can customize the existing image sharing
application (which is already used for sources like Flickr
and Facebook Photos) to create a collaborative application
for a new source such as PhotoBucket. This way, as new
online services become available, the platform can be extended
to support them and make their content collaborative with
relative ease. Since the system has to be a platform, it must
provide easy-to-use APIs for developers. Additionally, the



synchronization between users has to be done transparently
such that developers do not have to worry about the necessary
synchronization messages reaching all users of a session.

Finally, the system must be as accessible as possible for
users. As such, it must make use of the latest web-based
technologies and standards. In order to achieve this, the
system must not require the download and installation of
proprietary browser plugins and must run on various types
of devices, including emerging smartphones and tablet PCs.
This is achieved through the use of the Flex 4 framework for
Adobe Flash [3] on the client side and a Real Time Messaging
Protocol (RTMP) based [4] server. While Adobe Flash is a
browser plugin, it can be found on more than 98.9% of client
machines [5]. Currently, this represents better penetration than
HTML5, which is still in the course of development and can be
found only in experimental states in all major web browsers.

The organization of the remainder of this paper is as
follows: Section II introduces work related to the system
presented here. Section III then discusses the requirements and
architecture of the proposed collaboration system. Section IV
offers a closer look at the implementation details of the system
and its API. Some results of the system, including screenshots
of the system in action and usage data from three separate live
deployments, are presented in section V. Finally, section VI
reflects on the contributions of this paper and proposes topics
for future research.

II. RELATED WORK

Several commercial and academic web-based collaboration
solutions have existed for some time [6]. Many collaboration
solutions, such as the ones mentioned in [7], rely on screen-
sharing techniques where a user decides to share their desktop
view with other users. Since this technique is essentially taking
multiple screenshots of the user’s desktop per second and
streaming them to the other users, it requires all users to
have a large amount of bandwidth, especially when video
chat is also present. In addition, the framerate and video/audio
streaming quality is not sufficient for a proper video viewing
experience, especially for the larger high-resolution videos
commonly found online today. Finally, all solutions require the
users to download and install new client or server components
on their computers (and ensure that all users have compatible
and up-to-date versions) in order to gain access to share their
desktop.

One of the first companies to release the ability to view
synchronized videos to the public was Yahoo! with a product
named Zync [8]. Developed as an add-on to the popular
Yahoo! Messenger client, Zync would detect when a user
taking part in a two-user IM conversation pasted a link to
a video on YouTube or Google Videos, which would cause
a synchronized video player window to appear. They found
that “the synchronicity and social co-presence would promote
online conversation, engagement with shared media”, with
31% of users returning to reuse the service after their first
session with it. They also found that music, entertainment
and comedy clips made up most of the types of videos being

shared, and that users generally performed a skipping action
at the start of the video while chatting more near the end
of the video. Users would need to download and install the
Yahoo! Messenger application as well as the Zync addon, and
the system was only for Microsoft Windows. In addition, the
Zync client had to first download the entire Flash-based video
for both users before it was available for co-viewing.

In the system we propose, users are able to collaborate on
video data while having the video rendered on each user’s local
machine within their own instance of that application. Videos
are not re-encoded as part of a remote screen update; they
therefore run at full speed for all users and synchronization
is ensured through event-based signals. Our system is able to
make use of the latest web technologies and service-specific
APIs to allow for instant streaming and skipping within videos,
as well as support for additional online content such as photos,
maps, live video streams and documents. The system is also
designed to support a nearly-unlimited number of users per
session through a cloud-based architecture. Finally, we plan
to augment the social viewing experience with browser-based
video and audio chat in addition to regular text chat.

III. REQUIREMENTS AND ARCHITECTURE

This section looks at the overall architecture design con-
siderations. As mentioned in the introduction, the system
presented in this paper must achieve real-time collaboration
between the different clients in the same session, while at the
same time be extendable and accessible to various devices. The
requirements for the above architecture are first introduced,
and the architecture is then developed.

A. Requirements

The central idea of the system presented in this paper is
its real-time browser-based collaborative nature. A number of
functional software requirements result directly from this:

1) Clients in the same session must see the exact same
thing in the collaborative part of the application.

2) Clients must be able to communicate with each other
through text, audio and video.

3) Clients must be able to search through various data
sources for content.

4) Clients must be able to see which of their uploaded
content is online.

5) Clients must be able to invite their contacts to a session.
6) Clients must be able to accept or reject an invitation

received from another user.
7) Clients which join the session after the session has

started must be synchronized to the state of the session.
A number of non-functional requirements can also be de-

termined:
1) Clients must be able to access the system via a web

browser without the need for downloading extra propri-
etary addons or plugins.

2) The system must be extendable with new data sources
and even new application types.



JEE Server
Database

Media Server

Client 1

1) login

3) getSWF

2) authenticate user

4)get user info

5) connect

Client 2

6) communicate

with Client 1

Fig. 1. Server-client Architecture.

3) Data sources and application types are loaded on de-
mand by clients.

4) The system must examine the user’s latency and band-
width in order to provide a balance between video chat
quality, latency and bandwidth usage.

5) The system supports the ability for different data sources
and application types to be loaded depending on the
deployment type.

B. Architecture

In order to achieve the functional and non-functional re-
quirements of the system, the architecture was developed as
a client-server application, where the Media Server has three
responsibilities: providing the audio/video streaming between
clients, passing synchronization messages between clients in
the same session, and passing session setup messages between
clients. Figure 1 shows the high-level client-server architec-
ture. In this figure, the Java Platform, Enterprise Edition (JEE)
server is responsible for authenticating and authorizing the
users who wish to use the system. If the system uses an
external authenticating/authorization system, such as when it
is embedded as a Facebook application, then the JEE server
would not be used. However, if no JEE server is used, it would
be replaced by a web server whose sole responsibility is to
provide the HTML page and the embedded ShockWave Flash
(SWF) files necessary for the client to run the application.
Once the client is authorized and the SWF files are loaded
client side, the client connects via RTMP to the Media
Server. After a connection is established, the client can start
collaborating with other users.

1) Server Architecture: The server side is structured in
three classes - a class which handles client connections and
messages from clients, a class which represents a session and
is responsible for holding session state and broadcasting ses-
sion messages to clients, and finally a class which represents
the clients themselves. Figure 2 shows the server side structure.

The ServerModule class, which is a singleton in a server,
allows clients to join and leave the application, as well as
create sessions, invite other users to sessions and allows
invitees to accept or reject invitations. The server has zero
or more clients connected at any time and has zero or more

ServerModule

-module:ServerModule

-ServerModule()
+getInstance()
+joinApplication()
+leaveApplication()
+createSession()
+inviteToSession()
+acceptRejectSession()

ServerSession

+joinSession()
+leaveSession()
+broadcastMessage()
+synchronizeNewUser()
+getSessionController()
+reassignController()

1

Client

+connect()
+sendMessage()

*

1

*

1

*

Fig. 2. Server Class Structure.

sessions running at any time. Clients can connect to the server
and send messages to other clients. Clients can also join
sessions by either creating a new session or accepting an
invitation from another client. Clients can also leave sessions
- either explicitly or by disconnecting from the server while in
a session. When a new client joins a session, the new client is
synchronized to the state of the session. Clients can also use a
session to broadcast messages to other clients. Finally, every
session has a session controller. The controller can allow or
deny other users from controlling what is seen in a session.
Initially the controller is the user who creates the session. The
controller can also reassign the session control either explicitly
by selecting another user to pass control to or by leaving the
session. If the controller leaves the session, then another user
in the session is randomly chosen by the server as a session
controller, and all the users in the session are notified.

2) Client Architecture: The client side has to be easily
extendable and be capable to load its components on demand,
which requires the architecture of the client to be modular.
The client modules are split into two categories:

• Domain modules - these modules are domain specific. A
domain represents a deployment instance of the system
and each domain has a separate login approach. For
example, the login approach for the client integrated
as a Facebook application is different than when the
deployment uses a local JEE server. There are two domain
modules which are developed for each domain - a login
module, which performs the login logic and retrieves the
local user’s information and the user’s contacts, and a
user list module, which displays the user’s contacts. The
reason for using different user list modules is that differ-
ent domains can have different contact categorizations.
For example, Facebook contacts are called friends; a user
has a number of friends and there are no subcategories. If
the system is deployed inside an organization however,
the organization will have groups for various tasks. As
such, the contact display list has to be capable of showing



the contacts inside a group, and to allow the user to
select a different group. In order to maintain a consistent
Look and Feel, the user list modules extend an existing
component.

• Media modules - these modules are for collaborative
applications and data sources. Each media module is
actually separated into four components: a search com-
ponent, a viewer component, a control component, and
an information component.

– The search component allows the user to search for
media to share with other people. For example, for
YouTube videos the search component mimics the
standard YouTube search options and display a list
of thumbnails for the videos. The user can select the
video to view from this list. For games, the search
component displays the game lobby from which the
users can select what game to join.

– The viewer component displays the media content
selected from the search list. For YouTube, this is
a video. For documents, this is the selected docu-
ment. For games, this the actual game screen. The
viewer supports a maximized full-screen mode and
is responsible for resizing the media content.

– The user control component displays the various
controls that the user has over the media content.
Not all actions done via this bar are synchronized.
For videos this is a bar with play/pause, volume
and video timeline seeking controls. However, the
volume is not synchronized across the session, as
various users might prefer different volume settings.
For documents, this includes zoom levels, as well as
controls for switching to the next/previous page and
for skipping to a specific page. The zoom level is not
synchronized, as various users can be using different
screen resolutions.

– The information component displays information re-
lated to the currently selected media content. This is
the title of the video, image or document.

Each of the four media module components implements
the Model-View-Controller (MVC) software pattern. The
model is shared between all four components as it repre-
sents the shared state of the media content.

Figure 3 shows the state chart diagram of the client. Initially,
the client’s browser loads the SWF file from the server. Once
the main application is loaded, it determines the domain
under which it is deployed. Based on the domain, it loads
a configuration file from the server. This XML configuration
file describes the domain modules to load, as well as the media
modules which are available to the application. The client code
then loads the login module and the user list module, and
performs a login for the user. As part of the login process, the
user’s contacts are loaded. Once the user is logged in and the
contact list is loaded, the client opens the connection to the
Media Server and the search modules become available. When
the user selects a search module from the list of available

Config

Loaded

MainApp Loaded/

Determine

Domain

loadSWF

loadConfig

Load Login

Module

Load User List

Viewer Module

Load Media

Module

user loads media

Connect

MediaServer

Fig. 3. Client State Chart.

modules, the appropriate search module is loaded from the
server. Finally, if the user selects a specific media item to
view, the corresponding viewer and media control modules
are loaded from the server.

3) Server Client Communication Architecture: A very im-
portant part of the architecture deals with the server-client
communication. Due to the modular and extendable nature of
the client, the communication between the client and the server
must be able to support messages that were not considered
at design time. Figure 4 shows the sequence diagram for
establishing the connection between the client and the server,
and then disconnecting. The diagram assumes that there is
already a client connected to the server (client2). The sequence
is initiated when a different client, client1, connects to the
server. Upon connection, the media server performs access
control and determines if the user should be allowed to
connect. If the user is allowed to connect, a connect success
message is sent back to the client. The client then sends a
notify online message, which contains a list of the unique
IDs of the client’s contacts. Assuming client2 is a contact
of client1, the server posts messages to both client1 and
client2 that the other client is online. Following a collaborative
session, the sequence diagram for which is shown in Figure 5,
client1 disconnects from the Media Server. The server notifies
client2 that client1 has gone offline.

The session sequence diagrams assumes that the three
clients are all contacts of each other. In order to begin a
session, a client - client1 in this case - invites another client,
client2, to a collaborative session. Upon reception of the
request, the server creates a new session, adds client1 as the
controller of the session and forwards the invitation to client2.
At the same time, it notifies client3 that the other two clients
are busy, as well as notifies client1 and client2 that client2 and
client1 are busy respectively. The goal of the busy state for
clients is to prevent a client from receiving invitations while in
a session or while an invitation is pending. After the invitation
is received, client2 decides to accept the invitation and the
invite reply message is sent to the server. The server adds



Fig. 4. Server-Client Connect Sequence Diagram.

the new client, client2, to the session. When a new client is
added to a collaborative session, the session synchronizes the
new client to the state of the session. In order to determine
the state of the session, the session asks the controller what
the controller’s state is. The controller determines its state and
sends it back to the server-side session. The server session then
sends a media API message to the client or clients that are to
be synchronized. Media API messages are the same messages
that are used in order to synchronize new actions done by the
users. Also note that if multiple users join a session while
the session is waiting for a synchronize state reply from the
session controller, the clients are added to a waiting queue
and multiple messages are not sent to the controller. Once the
reply arrives from the controller, the message is broadcasted to
all the clients waiting for it. This is done in order to minimize
the messaging between server and clients as much as possible.
Finally, when a client decides to leave a session, a message is
sent to the server. Upon reception, the client is removed from
the session and the other clients receive notifications that the
client is online, indicating that the client has become available
again.

IV. IMPLEMENTATION

In order to implement the architecture described above,
Adobe Flex was used for the client side and Red5 [9] was used
as a server. The reason for using Red5 for the server is that it
is an open source implementation of the RTMP specification.
In order to achieve the desired modularity of the system, Flex
Modules are used. By using Flex Modules, we can allow for
the downloading at run time of only the required modules.
This section focuses on the client-side implementation and

APIs provided for the extension of the client as the server
implementation is fairly simple.

As mentioned in the architecture section, each media mod-
ule implements the MVC software pattern. In order to allow
for the extendability of the platform, each of the controllers for
the modules must implement one of the provided interfaces.
This is done in order to ensure that the modules, which are
loaded at runtime, can communicate with each other. The
model, which is common between all four modules, is defined
for each media type by the developer as it is media dependent.
The viewer for each of the modules is also media dependent,
and as such is defined by the developer. Figure 6 shows the
structure of the client code interfaces.

The SearchController performs two actions - search, which
uses the underlying search mechanism for the data source in
order to find media content and is dependent on the data
source, and loadMedia, which loads selected media content
in the viewer. In order to actually load media, a Media-
CommandQueue is used, which is a singleton. The role of
the MediaCommandQueue is to store commands until the
viewer module is loaded and then play the commands in the
order received. All commands, be they loadMedia or control
commands, pass through the MediaCommandQueue. This is
necessary due to the fact that modules are loaded on demand.
Consider what would happen if a new user joins a session,
receives a synchronization command, and while the client side
loads the correct viewer, new commands are received from
other clients. In such a case, the newer commands would
be lost, which would lead to the desynchronization of the
sessions. A second role for the MediaCommandQueue is that
of ensuring that the correct modules are loaded. When a new
command is received, the MediaCommandQueue determines
if the currently loaded modules can perform the command.
If they can not, then the correct modules are loaded, the
queue is emptied and the command is added to the queue.
If, while modules are being loaded, a new command comes
which requires different modules than the ones being loaded,
then similarly the queue is emptied and the command is
added to the queue. The MediaCommandQueue is also re-
sponsible for broadcasting messages to other members of the
session through the connection to the server. The MediaCom-
mandQueue uses a data structure to hold the commands which
has three fields: command, which represents a unique ID for
the command, for example loadVideo, play, pause, seek for
video media content; data, which stores the data for the com-
mand, such as for example the new time position for the video
seek command; and description, which holds the description
of the media type used by the information module. The
ViewerController performs five actions: initComplete, which
notifies the command queue that the viewer has finished ini-
tializing and that the command queue should start playing back
commands; command, which performs a command coming
from outside (either from another user or from the user control
module); setSize, which resizes the viewer; synch, which
synchronizes the viewer to the current state of the session (this
is what new users execute); and getSynchState, which retrieves



client1:Client
Server:

MediaServer
client2:Client client3:Client

session:

MediaSession
inviteUser

(client2)

userIsBusy(client1)

userIsBusy(client2)

userIsBusy(client1)
userIsBusy

(client2)

invitationReceived

sendInviteReply(true)

addClient

ToSession

synchronize

NewUserInit

synchronize

NewUser
MediaApiMessage

userLeaves

CollaborationSession

remove

ClientuserIsOnline

(client2)
userIsOnline(client2)

synchronize

ToSession

getSynchState

Fig. 5. Server-Client Session Sequence Diagram.

the current state of the session (this is executed by the user
who is the session controller). The UserCommandController
performs two actions: sendCommand, which sends a command
to the MediaCommandQueue to be executed by the viewer,
and maximizeMinimize, which is sent to the viewer to resize.
Finally, the InformationController has only one method, set-
Description, which is called from the MediaCommandQueue
when new media content is loaded.

Through the use of the above interfaces, developers can
easily add new applications and data sources to the system
without needing to worry about the synchronization mech-
anism. The modular approach also allows different media
modules to be distributed across different locations, thus
behaving like a cloud application. Developers can host their
own modules either on their own servers or on clouds like
Amazon’s Elastic Computing Cloud (EC2), and the system,
through a simple configuration file, can find and load them.
This can be easily extended to use a registry instead of a
configuration file in order to discover and load modules.

Currently, the system supports YouTube recorded videos,
Flickr and Facebook images, Twitter text messages, local
documents where users can upload documents to the system
and share them, UStream live video, and Google Maps. Similar
services such as Vimeo videos can be added with relatively

<<interface>>

ViewerController

+initComplete()
+command()
+setSize()
+synch()
+getSynchState()

<<interface>>
SearchController

+search()
+loadMedia()

<<interface>>
UserCommandController

+sendCommand()
+maximizeMinimize()

<<interface>>
InformationController

+setDescription()

MediaCommandQueue

-queue:MediaCommandQueue

-MediaCommandQueue()
+getInstance()
+addCommandToQueue()
+playbackCommands()

MediaCommand

-command
-data
-description

+getCommand()
+setCommand()
+getData()
+setData()
+getDescription()
+setDescription()

1

*

Fig. 6. Client Interfaces.

little effort. The only requirements are for developers to create
the integration with the external data source and use the
provided interfaces.

V. RESULTS

The implemented system was called Watch Together to
highlight its collaborative nature. Three variations of Watch



Fig. 7. Flickr Photo Sharing and Video Chat on a Test Deployment.

Together were deployed to different groups of users and their
usage of the deployments was observed.

A. Internal Test Deployment

Our initial deployment of the system was connected to
a test user database with a simple login system developed
using Java Server Faces (JSF). An internal webpage presented
the user with a username and password login screen, and a
successful login would load a page that had the compiled
Watch Together SWF embedded within it. Figure 7 shows
three users participating in a video chat session on this JEE-
based test deployment. The viewer module described in the
architecture section appears in the top half of Watch Together
and is always synchronized between the users in the session.
The users currently in the session are shown along the bottom
of the Watch Together interface using either their profile
images (retrieved from the user database) or a live video
stream from the user’s webcam.

Near the middle of the Watch Together interface is a menu
bar with clickable icons. The left side of the menu bar contains
the list of applications developed for the Watch Together
platform (by using the API described in section IV) to support
various sources of popular online multimedia content. Clicking
one of these icons brings up a search module containing
thumbnails of the search results. The thumbnails can be clicked
on to change what is displayed within the viewer module. The
right side of the menu contains icons for the contacts module
(which shows a list of available online users that can be invited
to a session), text chat module, and the settings module, all of
which appear on top of the viewer module but do no affect the
synchronized content. The settings module provides real-time
incoming and outgoing video bandwidth details of the video
streams, as shown in Figure 8. In addition, the user’s latency

Fig. 8. Monitoring Upload and Download Bandwidth in Watch Together.

Age Group Percentage of Users (%)

< 18 2
18-21 11
22-25 54
26-29 28
30-33 4
> 33 1

TABLE I
WATCH TOGETHER USERS BY AGE GROUP.

relative to the RTMP server is displayed beside their name in
the bottom left corner.

The initial testing among small groups of friends and
colleagues proved to be a success, with users particularly
drawn to the YouTube application for sharing their favourite
video clips. The system properly kept all content synchronized
among the users, and, at the same time, it allowed them to use
video chat to discuss the content. A common request from our
test users was to add the ability to change the volume of the
audio coming from each user’s video chat stream. We therefore
added a volume slider and mute button over each user’s video
stream that appeared whenever the user moved their mouse
over the video chat area.

B. Facebook Deployment

Once internal testing was completed, the system was de-
ployed to the public as a Facebook Application [10]. Users can
access the system by logging in with their Facebook account
and adding Watch Together to their application bookmarks
list. Facebook’s API [11] was used to retrieve the information
about the currently logged in user (such as the user’s name,
their list of friends, their profile image, etc.) and to populate
the user interface.

Based on over a thousand users who opted in to share
annonymized usage data, 65% of users of Watch Together
were found to be male and 35% were female. We were
pleased to find that 24% of users enabled their webcam
when using Watch Together, which is a strong indicator that
users enjoy sharing and discussing online content in this
collaborative fashion. The YouTube application was again the
most popular, with an average of 11.4 videos viewed per user.
The distribution of users by age can be seen in Table I, with
most users falling into the 22-25 age group.



Fig. 9. Six Facebook Users Collaboratively Watching a YouTube Video.

C. E-Learning Deployment

A third version of Watch Together was customized as a
module for the Moodle e-learning software platform [12].
Moodle is a free and open source course management system
used by Professor Ionescu for his classes at the University
of Ottawa. Each student is given an account in the system
that they can use to upload assignments, check their grades,
download the latest course slides and more. The flexibility of
the design allowed Watch Together to be intergrated using the
Moodle module API [13] such that students can collaborate
with each other and with the professor over course-related
material. A feature was added so that the professor is able
to prevent students from changing the content of the viewer
module of Watch Together. In addition, all users are always
joined into the same session rather than having to invite each
other separately. While the system is mostly used for its
document sharing feature during the professor’s online “office
hours”, YouTube videos and other content related to the class
are also made available for collaboration. The use of Watch
Together in this way reveals its potential beyond entertainment
and more towards enterprise-oriented collaboration scenarios.

VI. CONCLUSION

In this paper, we presented the design and implementation
of a collaboration platform for experiencing synchronized
online media from a web browser. We showed how users
can collaborate over video chat while viewing videos, photos,
maps, documents and more in real-time. This differs from ex-
isting collaboration solutions which may require cumbersome
installations and large amounts of bandwidth. As a platform,
developers can easily add new media sources and applications
to the system so that all popular online digital media can
be made available for instant sharing. Additionally, through a
product called Watch Together, we have shown how the system
can be integrated into other platforms, such as Facebook and
Moodle, to enable new ways of meeting online. Through these

Fig. 10. Students Collaborating Over Slides Within the Moodle Platform.

live deployments, we observed that users enjoy collaborating
on multiple types of online media in real-time with respect to
one another. The usage data we obtained provided us with
a better understanding of the users of synchronized online
media collaboration tools and their requirements. This allows
us to continue to improve all aspects of the system and to
add features such as real-time document editing, drawing and
games.

REFERENCES

[1] (2010) Google Docs - Online Documents, Spreadsheets, Presentations.
Google Inc. [Accessed: September 2010]. [Online]. Available:
http://docs.google.com/

[2] (2010) Welcome to Flickr - Photo Sharing. Yahoo! Inc. [Accessed:
September 2010]. [Online]. Available: http://www.flickr.com/

[3] (2010) Flex Open-Source Framework. Adobe Systems
Inc. [Accessed: September 2010]. [Online]. Available:
http://www.adobe.com/products/flex/

[4] (2010) Real-Time Messaging Protocol (RTMP) Specification. Adobe
Systems Inc. [Accessed: September 2010]. [Online]. Available:
http://www.adobe.com/devnet/rtmp.html

[5] (2010, June) Flash Player Version Penetration. Adobe
Systems Inc. [Accessed: September 2010]. [Online]. Avail-
able: http://www.adobe.com/products/player census/flashplayer/ ver-
sion penetration.html

[6] W. Wang, “Powermeeting: GWT-Based Synchronous Groupware,” in HT
’08: Proc. of 19th ACM Conf. on Hypertext and Hypermedia. New
York, NY, USA: ACM, 2008, pp. 251–252.

[7] M. R. Thissen, J. M. Page, M. C. Bharathi, and T. L. Austin, “Communi-
cation Tools for Distributed Software Development Teams,” in SIGMIS-
CPR ’07: Proc. of ACM SIGMIS CPR Conf. on Computer Personnel
Research. New York, NY, USA: ACM, 2007, pp. 28–35.

[8] Y. Liu, P. Shafton, D. A. Shamma, and J. Yang, “Zync: The design
of synchronized video sharing,” in DUX ’07: Proc. of 2007 Conf. on
Designing for User eXperiences. New York, NY, USA: ACM, 2007,
pp. 1–8.

[9] (2010) Red5. The Red5 Project. [Accessed: September 2010]. [Online].
Available: http://red5.org/

[10] (2009, June) Watch Together. [Accessed: September 2010]. [Online].
Available: http://www.watch-together.com/

[11] (2010) Facebook Developers. Facebook Inc. [Accessed: September
2010]. [Online]. Available: http://developers.facebook.com/

[12] (2010) Moodle.org: Open-Source Community-Based Tools for Learning.
Moodle Trust. [Accessed: September 2010]. [Online]. Available:
http://www.moodle.org/

[13] (2010) Moodle Modules and Plugins. Moodle
Trust. [Accessed: September 2010]. [Online]. Available:
http://moodle.org/mod/data/view.php?d=13&rid=679


