
A Distributed Online Environment for
Gesture-Based Collaboration

Cristian Gadea, Bogdan Ionescu, Dan Ionescu, Shahidul Islam, Bogdan Solomon
University of Ottawa, Mgestyk Technologies

Ottawa, Ontario, Canada
Email: {cgadea, bogdan, dan, sislam, bsolomon}@ncct.uottawa.ca

Abstract—Gestures are seen as the new human computer inter-
face mechanism. They can make computers and devices easier to
use, such as by allowing people to share photos by moving their
hands through the air. Much research has been undertaken to
develop systems whereby users can effectively control computers
and devices through gestures. Existing solutions have relied on
inadequate hardware, requiring elaborate setups limited to the
lab. Relying heavily on image processing, gesture recognition
algorithms used so far are not practical or responsive enough
for real-world use. Most importantly, existing solutions have
lacked a software environment that allows users to perform
common collaborative tasks. In this paper, a new paradigm for
next-generation computer interfaces is introduced. The method
presented is based on an affordable 3D camera that is easy to
set up and has a flexible detection range. Our method accurately
detects hand gestures from depth data, allowing them to be used
to control any application or device. The paper proposes the
control of windows and their content in distributed collaborative
and web-based environments on which many teams cooperate to
complete useful tasks, as demonstrated with examples.

Index Terms—gesture-based control, web collaboration, dis-
tributed systems, virtual environments, human computer inter-
action, 3D depth camera

I. INTRODUCTION

Gesture recognition and gesture-based control has gained
the attention of various research groups related to image
processing and artificial intelligence since the sixties [1]. More
recently, as the camera and gesture processing technology has
continued to evolve, hand gesture recognition technologies
have received significant interest from commercial and aca-
demic institutions looking for a compelling system that allows
for touch-free interaction.

Traditionally, PCs have relied on keyboards and mice as
the standard input devices for interacting with user environ-
ments based on the WIMP (windows, icons, mouse, pointer)
paradigm. There are many instances, however, where user
input based on hand gestures can provide an improved user
experience. For example, using a mouse to drag an icon from
the left side of a high-resolution display to the right side can
prove to be a cumbersome affair, which may even require the
user to physically lift the mouse off the table and reposition
it so that they can complete the full dragging operation. By
using hand gestures, users can quickly swing their arm and
point to the necessary location on the screen.

The drawbacks of the keyboard and mouse as input de-
vices are particularly apparent when considering users with

Fig. 1. Two-Handed Gesture Control of Virtual Workspaces.

special accessibility requirements, public kiosks, the “10 foot”
interfaces of televisions and set-top boxes, and even industry-
specific scenarios such as surgeons who are unable to come in
contact with touch-based devices. Touch-free gesture control
can therefore complement, or even completely replace, tradi-
tional interaction modalities in many different cases.

The concept of a computer interface that is entirely con-
trolled by gestures has been popularized by many recent
science fiction movies and illustrations such as Figure 1. In
the 2002 movie Minority Report, gesture-driven displays were
used by the main character to perform forensic analysis using
photographic and video data. The fluid and natural interaction
that such gesture control systems offer has caught the attention
of researchers who have attempted to re-create this vision with
varying results.

Unfortunately, most existing solutions suffer from several
shortcomings that have prevented mainstream adoption of such
technology. Some of the hardware that has been used for pro-
cessing gestures has required users to wear obtrusive sensors
and stand near multiple carefully calibrated cameras. Most
cameras used so far rely on color data and are therefore sensi-
tive to environmental factors such as dynamic backgrounds
and lighting conditions. The algorithms used to determine
gestures from the data returned by the hardware have been

unreliable when tested on a wide variety of users and gestures
have generally been limited to basic hand-tracking. Since the
time needed for the computer to recognize a gesture is usually
longer than the time needed to display its result, there is always
a lag affecting the practical application of such interfaces.
Finally, there have not been any collaborative environments
that allow users to freely use gestures for completing tasks
such as sharing photos with friends. We plan to address all of
these problems by using a custom 3D depth-based camera that
generates data ideal for processing hand gestures so that our
algorithms can reliably return the number of hands, number of
fingers, and angles of the fingers that the user is showing. We
then propose a distributed web-based environment that allows
users to use hand gestures when collaborating with other users
on maps, photos and more.

The remainder of this paper is organized as follows: Section
II further analyzes how the work presented in this paper differs
from the current state-of-the-art. Section III then discusses
the unique architecture of the proposed 3D camera and web-
based system. Section IV offers a closer look at the low-level
details of the 3D camera, gesture processing software and
collaboartive gesture environment. The resulting gesture-based
control scenarios within a distributed online environment are
presented in section V. Finally, section VI reflects on the
contributions of this paper and proposes topics for future
research.

II. RELATED WORK

The processing of hand gestures has been explored ex-
tensively in existing literature. Some of the earlier work by
Freeman and Weissman [2] used a video camera and computer
vision template matching algorithms to detect a user’s hand
from across a room and allow the user to control a television
set. A user could show an open hand and an on-screen
hand icon would appear that could be used to adjust various
graphical controls, such as a volume slider. The slider was
activated when the user would cover the control for a fixed
amount of time. The authors discovered that users enjoyed
this alternative to the physical remote control and that the
feedback of the on-screen hand was effective in assisting the
user. However, users found it tiring to hold their hand up
for long amounts of time to activate the different controls.
This user fatigue common of gesture-based interfaces has been
called gorilla arm.

Other approaches have relied on using multiple cameras to
produce a 3D image which can be used to detect and track
hand motion [3][4][5]. These systems required an elaborate
installation process which had to be completed carefully
as calibration parameters such as the distance between the
cameras was important in the triangulation algorithms used.
These algorithms were also computationally expensive since
a large amount of video data needed to be processed in real-
time, and stereo-matching typically fails on scenes with little
or no texture. Ultimately, such systems would not be useable
outside of their special lab environments.

In [6], Mistry presented the SixthSense wearable gestural
interface, which used a camera and projector worn on the
user’s chest to allow the user to zoom in on projected maps
(among other activities) by the use of two-handed gestures. In
order for the camera to detect the user’s hand, the user had
to wear brightly-colored markers on their index fingers and
thumbs. The regular webcam worn by the user would also be
sensitive to environmental conditions such as bright sunlight or
darkness, which would make distinguising the colored markers
much more difficult, if not impossible.

Wilson and Oliver [7] attempted to create a Minority Report-
like environment that they called GWindows. The user was
able to move an on-screen cursor of a Microsoft Windows
desktop by pointing with their hand and using voice commands
to trigger actions like “close” and “scroll” to affect the
underlying application windows. They concluded that users
preferred interacting with hand gestures over voice commands
and that desktop environments designed for gesture interac-
tions were worth pursuing further.

When considering collaborative online environments, sev-
eral commercial and academic web-based collaboration solu-
tions have existed for some time [8][9]. However, interaction
with other users in these environments is usually limited to
basic sharing of media files, rather than allowing for full real-
time collaboration of entire web-based applications and their
data between users on distinctly deployed domains, as our
solution proposes.

The system we developed uses a custom 3D depth camera
to sense the position of the user’s hand and process hand
gestures in any lighting. Camera systems which recover depth
information from the captured scene have gained significant
traction recently with at least one affordable model announced
to available in stores for consumers later in 2010 (although its
resolution, image quality and ability to interface with a regular
PC are still relatively unknown) [10]. Our system allows the
user to perform a large variety of gesture interactions within a
distributed collaborative environment known as UC-IC (“you
see I see”). Users are able to select icons and windows by
pointing to them. To select and drag an item, the user simply
hides their index finger and swings their hand to the position
they wish to drag the item to. Since UC-IC is a distributed
environment, multiple users can be interacting with each other
using such gestures in real-time to perform actions such
as sending application windows or viewing a collaborative
application window. Additional gestures implemented include
a hand flicking gesture to navigate between items such as
photos, and a thumbs-down gesture to close an application
window. The benefits on task completion efficiency offered
by flick-style gestures have been shown in [11]. The system
also provides a mouse cursor for each hand so that users may
perform multiple actions at the same time, such as move two
windows around or resize a window. UC-IC is a web-based
environment accessible via a typical web browser, meaning
that there is very little for users to install in terms of setup. By
offering these advantages, we believe that gesture-controlled
environments can finally be accessible to the average person

Fig. 2. Grayscale Depth Data Obtained From 3D Camera.

to use from their home, and the distributed nature of our
collaborative environment ensures that the system can scale
as demand grows.

III. ARCHITECTURE

The architecture of the proposed system consists of a 3D
camera that sends depth information to a PC containing a
camera driver and a web browser. The camera driver processes
the depth data and is accessed by the application within
the web browser to determine the latest gesture states. The
web browser displays the collaborative UC-IC gesture-driven
environment, which is typically hosted on a remote web server
and contain application content distributed among several
servers.

A. Gesture Processing Architecture

The gesture-processing technology used in our approach
consists of a new high-resolution 3D camera for real-time
depth-per-pixel measurements based on variable gain and
gating techniques. The depth-sensing camera uses a com-
bination of Phase measurements and Time-of-Flight (TOF)
measurements to extract a depth image from the environment.
It works by projecting a pulsed near-infrared cone of light
onto the scene and shuttering the returning light in order to
generate 256-level grayscale images within which the gray
level is proportional to the depth of the object points (brighter
pixel values indicate an object that is closer to the camera).

The 3D camera is an embedded system made up of an
electronic board for the image sensor, a controller board, an
illuminator board, and an image processing board. The con-
troller and the image processing are synchronized to produce
the 8-bit depth map from the image sensor output. The camera
produces 3D images at the speed of 30 frames per second,
with almost no delay in regards to the moves captured. The
functioning 3D camera can be seen in Figure 2.

The custom depth-sensing technology is discussed in greater
detail in [12].

B. Collaborative Gesture Environment Architecture

The UC-IC Collaborative Web Client Platform is a web-
based implementation of the desktop metaphor, consisting of

Fig. 3. UC-IC Photo Viewer Collaborative Session Between Seven Users.

familiar windows, icons and menus. The entire environment
is built on top of a collaborative platform that allows any
window to be “sent” to another user. For the user, this is
done simply by dragging a window onto an icon on the web-
based desktop representing the user who is to receive the
application (and who must acknowledge a dialog to accept it).
This sending process is unique in that the entire application
logic, in addition to the current data within that application,
is sent as part of the window. Sending a map application, for
example, means that the receiving user not only receives the
application logic (the user interface and geographical functions
called by the buttons), but also the current data and state of
the application (the exact position where the map is centered).
This is made possible by an advanced XML-based syntax and
dynamic resource loading techniques (AJAX-Push) that have
been described in other works [13].

It is important to note that this concept of “sending” does
not necessarily mean that the user doing the sending no longer
retains the application. Rather, by draggin the user icon to the
application window, both users can have the same window
open as part of a collaborative session. The inherent collabora-
tion built into UC-IC ensures that any actions performed within
that application are automatically synchronized to the other
user. For example, any panning or zooming of a map will be
communicated instantly to the other user’s browser so that, as
much as possible, both users always see the same application
state. The environment was named “UC-IC” to highlight these
collaborative characteristics. Figure 3 shows seven different
users taking part in a UC-IC collaborative session for the photo
viewing application.

Real-time collaboration on UC-IC is supported for ap-
plications programmed in, or able to communicate through,
DHTML (AJAX). This makes it easy to develop new collab-
orative applications for the environment since this includes
a variety of web-based technologies, including JavaScript,
Adobe Flash and Java. Existing applications built on the UC-
IC platform include a map application, a videoconferencing
application, a collaborative video player, a synchronized photo
viewer, and a drawing application that can be reused to add
annotations on top of other UC-IC applications.

Domain A

SIP Registrar
SIP Proxy

Server 1

Server 2

Server 3

Domain B

SIP Registrar
SIP Proxy

Server 1

Server 2

Server 3

Other

Domains

Other

Domains

Fig. 4. Two UC-IC Domains Communicating Through SIP.

The UC-IC application server includes the ability to bridge
individual servers into a cluster of servers in one domain,
as well as to bridge servers from different domains. This is
achieved by using the Session Initiation Protocol (SIP) as the
connection protocol between the different servers, allowing
users from different domains to be invited to - and thus
participate in - the same collaboration session.

Figure 4 shows an example with two clusters of servers,
each representing a different domain consisting of three
servers. The domains are connected together through the SIP
server of each of the clusters. Each distinct server may contain
different applications and data that will instantly become
available to other users invited to a collaborative session or
who were sent an application window.

IV. IMPLEMENTATION

We now discuss the implementation of the novel gesture
control system that uses the 3D camera and web-based envi-
ronment introduced in the previous section.

A. Gesture Processing Implementation

The grayscale data obtained from the depth camera was
plotted as a 3D mesh by using standard OpenGL libraries.
We adjusted the illumination timings of the camera to obtain
a clean image of the hands of the person standing about
one meter away from the camera. The detection range of the
camera is configurable based on the nature of the application
or device controlled, being able to span distance from a few
tens of centimeters to a few meters. We applied a threshold to
eliminate the data beyond a certain depth (the background).
The resulting 3D image of a user’s hand can be seen in
Figure 5. The user’s hands and fingers are captured by the
3D camera and a 3D image is formed.

In order to convert the depth data returned by the 3D
camera into gestures useable within a collaborative desktop
environment, a component was tasked with applying computer
vision algorithms for determining hand gestures to the 3D data.
The algorithms detect the convex hull of the hand and the
irregularities present when fingers are apart to decide if one,
two, or more fingers are shown. The angles of the fingers are

Fig. 5. Real-Time Depth Data Represented as a 3D Mesh.

Fig. 6. Detecting the Number of Hands, Fingers and Finger Angles.

also calculated. Figure 6 shows how a test application is able
to draw the number and orientation of a user’s fingers on both
of their hands in real-time.

When the user holds out their hand to perform a gesture,
the closest object to camera is the user’s hand. Therefore, by
tracking the brightest point in the depth data, we can create a
mouse cursor. The resolution of the 3D data from the camera
can be mapped to the resolution of the screen, with low-pass
filtering applied to reduce the jitter introduced by such scaling.
A quick movement of the cursor from the right to the left can
then be detected as a flicking gesture. We can detect a second
hand in a similar fashion and map it to a second cursor. We
therefore end up with a large variety of possible hand gestures
that we can use to interact with computer applications and
electronic devices. Based on these gestures, we can define a
natural language that users find to be the most convenient for
interacting with a collaborative web-based environment.

B. Collaborative Gesture Environment Implementation

As was mentioned in Section III, UC-IC is a web-based
application platform which provides a desktop environment
as well as components for application development and man-
agement. The DHTML-based user interface provides wrappers
for delegation to and from other browser-contained technolo-
gies such as Adobe Flash and Java Applets. Thus, AJAX

(JavaScript) components provide the collaboration layer used
by applications regardless of the programming language used
to build it.

Java Applets are of particular interest as they have the ability
to communicate with the driver of the 3D camera connected to
the user’s PC. We therefore created a UC-IC application that
uses the Java Native Interface (JNI) programming framework
to access the processed gesture data from the camera driver.
This includes details about the current frame such as the
number of hands present and their position, number of fingers
on each hand and their angles, and if a flicking gesture is
taking place.

Since UC-IC is a custom desktop-like environment, two
new cursors that mimic the behavior of a regular mouse
were introduced and assigned to follow each user’s hand.
Introducing two functional mouse cursors in the Microsoft
Windows environment is much more difficult, as the operating
system and all its applications were generally designed to be
operated by one mouse cursor. In UC-IC, however, we can
draw two objects that represent cursors and have access to the
entire virtual desktop environment within the user’s browser.
Through its access to the DHTML layer, the Java Applet
therefore executes JavaScript code to update the positions of
each cursor instance and to signal events such as if a click
is taking place. We have defined the presence of no fingers
to indicate a clicked state, while the presence of an upward
pointing index finger allows for regular cursor movement. The
environment can then respond accordingly to a hidden finger,
such as by allowing the user to drag a UC-IC application
window if the cursor is on the title area of the UC-IC window.

If a flicking gesture has been detected, a next or previous
command is sent to the UC-IC environment depending on
the direction of the flick. This command affects any active
slideshow or photo viewing application that the user may have
opened. By using the angular finger data, a thumbs down
gesture was assigned to call the close window operation.

We have modeled our natural gesture language to use
gestures users are familiar with from multi-touch environments
such as that of the iPhone. The pinch-to-zoom gesture that
used are already accustomed to can easily be translated to our
touch-free environment by detecting if both hands indicate a
clicked state and are moving in an inward or outward motion
while positioned over the photo viewer application of the UC-
IC environment. It is important to add support for gestures
such as these, as users may instinctively and naturally assume
that the operations exist when they see the ability to control
two cursors at the same time.

Once the user is able to manipulate the UC-IC environment
by using just their hands, the collaborative nature of each UC-
IC workspace means that users can instantly be connected to
all of their online friends and co-workers, with which they
can share entire applications and the data contained within
those applications in real-time. This means that a flick of
the wrist not only changes the photo in the photo viewing
application within the user’s own browser, but also affects
the photo viewing applications of any other users that were

invited to the collaborative session for that application. The
Java Platform, Enterprise Edition (JEE) server-side and AJAX
client-side implementation details that make such web-based
synchronization possible across distributed servers have been
discussed further in [13].

V. RESULTS

A. Gesture Processing Results

The ability to reliably determine if a user is showing one
or more fingers has not been possible with non-depth-based
camera technology. Eliminating the background data from the
depth data returned by the camera offers several advantages
over existing solutions, such as those mentioned in Section II.
For example, users do not need to perform gestures against
a white or stable background for gestures to be detected
correctly. In fact, people can be moving around behind the
user without affecting the accuracy of the gesture processing.

The amount of data processed by the gesture detection
algorithms is also minimized since the algorithms only need
to run on a small subset of the data returned by the camera.
This allows the system to run in real-time with very little
computational burden on the user’s PC and with practically
no lag or delay between the user’s actions and the on-screen
response. Additionally, the “gorilla arm” effect is diminished
as users can perform gestures quickly.

Since the implementation reliably returns if the user is
showing one or more fingers, gestures that were previously
not possible to be determined in a robust way can finally
be used as part of a system targeted at the typical home
user for interacting with each other through a gesture-based
collaborative environment.

We have therefore found that depth-based cameras are
optimal for hand gesture processing. The recent drop in the
price of 3D cameras to the level where they are comparable
with high-end webcams indicates to us that there will be
an increasing number of people using gesture control in the
future. The convenience of having to position just one camera
instead of needing a sophisticated laboratory setup is also
ideal for consumers and for use in their homes. By using the
depth data from a 3D camera, gesture detection algorithms
are far less error prone and do not need to be calibrated to
a specific user. It also offers flexibility when defining the
gesture language for users. The far improved reliability of
such processing means that gestures can be easier to learn,
easier to remember, less awkward to use, and generally more
immersive and natural for the user. There are no special gloves
or markers for the user to wear; users can simply walk up to
the camera and instantly take control of a mouse cursor by
holding up their hand.

Figure 7 shows a Java-based application running on Mi-
crosoft Windows that correctly identifies the gestures the user
is performing and gives the user access to the Windows mouse
cursor. The user is able to play Solitaire by moving their
hand to move the on-screen cursor. Hiding their index finger
performs a click operation, which can be used to drag the
cards to the necessary positions. By allowing such gestures to

Fig. 7. Controlling the Mouse Cursor in Microsoft Windows.

affect a web browser, we can give the user multiple mouse
cursors and a window-based environment containing multiple
collaborative applications.

B. Resulting Collaborative Gesture Environment

To evaluate the system, we asked eight friends and col-
leagues to perform a usability study. The users were tested in
pairs so that they can fully evaluate the collaborative features
of the environment (although the UC-IC environment supports
far more than two users collaborating on the same application).
They were given three tasks that cover several major features
of UC-IC.

Tasks were tested for about five minutes with each user
standing in front of one of two different 3D camera setups. One
test setup consisted of two large high-definition televisions
connected to the same computer and configured to display
a spanned desktop. Maximizing the web browser containing
the UC-IC environment therefore created a very wide online
desktop that could contain many application windows. The 3D
depth camera was connected to the PC and set up between
the monitors to pick up the user’s hand gestures. The Java
Applet was started within the UC-IC environment to enable
the gesture-based control. The second test set-up was placed
at another PC several meters away so that users could send
windows to each other and collaborate on applications. Each
PC was running a separate instance of the UC-IC application
server to ensure that the SIP-based session establishment
and web-based communication functions correctly across dis-
tributed domains.

The first task consisted of opening a picture slideshow view-
ing application by clicking on its icon, flicking next/previous
a few times through the images, and then sending that ap-
plication (containing the image) to another user by dragging
the application over the other user’s desktop icon. Users were
surprised by how quickly the on-screen cursor responded to
their moving hand and that they were able to navigate menus
and open applications with relative ease. One user needed to
adjust the camera to point it slightly lower in order for their
clicking gesture (hiding of the index finger) to be detected
consistently. Users found the flicking gesture to be a very
casual and relaxing way of navigating photos. Although it

Fig. 8. Dragging an Application Window Across Multiple Monitors.

Fig. 9. Controlling Two Cursors to Move Two Windows at the Same Time.

often took users more than one try to drag an application to
another user’s icon, they quickly adjusted to the environment
and were able to send photos back and forth with little
difficulty.

For the second task, we asked users to start a collaborative
session with the map application (this time by dragging the
user’s icon to the application window) and to pan around
the map before finally closing the window by performing a
thumbs-down gesture. Users were able to invite each other to
collaborative sessions without many problems since they were
adjusted to the feel of the cursor after having completed the
first task. Users were able to pan the map by dragging it with
their hand and the others in UC-IC would instantly update to
reflect the new location.

The third and final tasks required users to use both hands to
move two windows at the same time (as shown in Figure 9)
and to resize a photo viewer window. Users exclaimed that, by
using two hands, they felt more productive and that the two-
handed resizing gesture felt natural and familiar. One difficulty
users encountered was that crossing their arms could cause
the left cursor to jump to the right hand, or vice versa. This
problem can be resolved with further work on the tracking
aspect of the gesture processing software.

Some of the tests were filmed and can be seen in the second
half of the YouTube video at [14]. Additional experiment
shown in the video include the ability to drag applications

Fig. 10. Display Wall of the AT&T Network Operations Center.

to users on mobile devices (since UC-IC is a browser-based
environment and can therefore be accessed from mobile web
browsers) and the ability to drag applications containing data
onto other applications to create mashups, such as a map
containing photographs.

By performing these tasks, users were completing useful
and compelling scenarios that are already part of many users’
lives (such as sending a photo or map to someone). Users
are able to move information and manipulate data in a much
more natural way by using gestures, and users expressed a
feeling of empowerment and productivity that they felt while
collaboratively sending the applications with gestures.

C. Reflecting on the Results

While performing the user tests, we observed that moving
windows by using gestures instead of the traditional mouse
is much easier when large, high resolution displays are in-
volved. Increasingly, users are using large displays, which are
becoming slow and akward to navigate with a regular mouse.
More and more companies are also setting up control center
environments containing hundreds of individual displays, such
as the AT&T Network Operations Center in Figure 11. Manag-
ing the content on these displays by using the common Barco
Apollo [15] software is a tedious process, requiring operators
to constantly switch between multiple workstations in order
to display the necessary information. By using gestures and
the UC-IC collaborative environment, multiple users can be
controlling the windows that appear on the large video wall
and the windows can be moved around the room by simply
pointing to the desired locations. By taking advantage of the
distributed nature of UC-IC, such setups can even integrate
disparate applications and data from multiple headquarters and
teams that a company may have.

We can also see such a system being used in an operating
room scenario. Surgeons who are typically unable to touch
any unsanitized surfaces can now access and navigate im-
portant data within UC-IC by using hand gestures. UC-IC
can allow for the seamless display and control of multiple
medical systems and present a heart surgeon with interactive
information such as the live x-ray location of the pressure
wire, the actual pressure measurements, the patient monitor

and an angiographic roadmap. This information is typically
displayed on separate monitors. Figure 11 shows how such a
system may function.

VI. CONCLUSION

Gesture-based technology has gained significant academic
and commercial interest lately with the goal of allowing users
to use hand gestures to control computer interfaces in a
productive and collaborative way. We have shown how the
depth data produced by a custom 3D camera can be used to
successfully track hands, fingers and flicking gestures within
a distributed and collaborative web-based environment called
UC-IC. Existing collaboration products do not connect both
users and applications from different domains. Until now, it
has not been possible for a user from domain A to be able
to collaborate on applications being used by users in domain
B where both users are running the full application code and
have access to the actual application data.

Our touch-free multi-cursor gesture control solution is real-
istic for home use since it does not require a specialized lab
setup, reliably detects and tracks easy-to-remember gestures,
and can be used to complete useful tasks such as sharing
photos within a collaborative online environment. Our test
users were excited about the benefits offered by gesture
controls and how they can be used to complement (or even
replace) the traditional keyboard and mouse in many scenarios.

We plan to explore many more potential uses of this
technology in the future, including the processing of full-body
gestures. In addition, Windows 7 recently added “multi-touch”
related features which we would like to make touch-free. This
is a strong indicator of the gesture-oriented direction in which
human computer interfaces are heading.

REFERENCES

[1] B. A. Myers, “A Brief History of Human Computer Interaction Tech-
nology,” in ACM Interactions, vol. 5, no. 2. New York, NY, USA:
ACM, March 1998, pp. 44–54.

[2] W. T. Freeman and C. D. Weissman, “Television Control by Hand
Gestures,” in Proc. of Int. Workshop on Automatic Face and Gesture
Recognition. IEEE Computer Society, 1995, pp. 179–183.

[3] Q. Cai and J. Aggarwal, “Tracking Human Motion Using Multiple
Cameras,” in Proc. of 13th Int. Conf. on Pattern Recognition, vol. 3.
IEEE Computer Society, August 1996, pp. 68–72.

[4] Z. Jun, Z. Fangwen, W. Jiaqi, Y. Zhengpeng, and C. Jinbo, “3D Hand
Gesture Analysis Based on Multi-Criterion in Multi-Camera System,”
in ICAL2008: IEEE Int. Conf. on Automation and Logistics. IEEE
Computer Society, September 2008, pp. 2342–2346.

[5] A. Utsumi, T. Miyasato, and F. Kishino, “Multi-Camera Hand Pose
Recognition System Using Skeleton Image,” in RO-MAN’95:Proc. of
4th IEEE Int. Workshop on Robot and Human Communication. IEEE
Computer Society, July 1995, pp. 219–224.

[6] P. Mistry and P. Maes, “SixthSense: A Wearable Gestural Interface,” in
ACM SIGGRAPH ASIA 2009 Sketches. New York, NY, USA: ACM,
2009.

[7] A. Wilson and N. Oliver, “GWindows: Robust Stereo Vision for Gesture-
Based Control of Windows,” in ICMI ’03: Proc. of 5th Int. Conf. on
Multimodal interfaces. New York, NY, USA: ACM, 2003, pp. 211–
218.

[8] M. R. Thissen, J. M. Page, M. C. Bharathi, and T. L. Austin, “Communi-
cation Tools for Distributed Software Development Teams,” in SIGMIS-
CPR ’07: Proc. of ACM SIGMIS CPR Conf. on Computer Personnel
Research. New York, NY, USA: ACM, 2007, pp. 28–35.

3D Camera

PC

Medical Imaging Devices

Video &

Real-Time Data

Medical

Database
Medical

Databases

Data

Fig. 11. Architecture of a Gesture Controlled System for the Operating Room.

[9] W. Wang, “Powermeeting: GWT-Based Synchronous Groupware,” in HT
’08: Proc. of 19th ACM Conf. on Hypertext and Hypermedia. New
York, NY, USA: ACM, 2008, pp. 251–252.

[10] (2010) Xbox.com Kinect. Microsoft Corp. [Accessed: September 2010].
[Online]. Available: http://www.xbox.com/en-US/kinect

[11] M. Moyle and A. Cockburn, “Gesture Navigation: An Alternative ’Back’
for the Future,” in CHI ’02 Extended Abstracts on Human Factors in
Computing Systems. New York, NY, USA: ACM, 2002, pp. 822–823.

[12] D. Ionescu, B. Ionescu, S. Islam, and C. Gadea, “A New Method for
3D Object Reconstruction in Real-Time,” in ICCC-CONTI: 2010 Int.
Joint Conf. on Computational Cybernetics and Technical Informatics,
May 2010, pp. 649–654.

[13] R. Dagher, C. Gadea, B. Ionescu, D. Ionescu, and R. Tropper, “UC-IC:
A Cloud Based and Real-Time Collaboration Platform Using Many-to-
Many-on-Many Relationship,” in Proc. 8th IEEE I2TS, May 2009, pp.
9–17.

[14] (2008, November) Look ma, just hands! Mgestyk Gesture-Based Gam-
ing and more. Mgestyk Technologies Inc. [Accessed: September 2010].
[Online]. Available: http://www.youtube.com/watch?v=FZyErkPjOR8

[15] (2010, September) Apollo Video Wall Management Software for
Windows. Barco Inc. [Accessed: September 2010]. [Online]. Available:
http://www.barco.com/en/product/631

