
Leveraging a Minimal Trusted Computing Base for
Securing On-Demand MANET Routing Protocols

Vinay Thotakura, Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University, MS.

Abstract—We propose an approach to secure on-demand
mobile ad hoc network (MANET) routing protocols by lever-
aging low-complexity trustworthy MANET modules (TMM).
Such TMMs, which perform some trivial hard-wired functions
involving simple logical and hash operations, can be realized at
low cost. We describe the functionality of such TMMs to offer a
sound trusted computing base (TCB) for securing MANETs. We
outline an approach to secure two popular on demand protocols
- the ad hoc on demand distance vector (AODV) protocol, and
the dynamic source routing (DSR) protocol - by leveraging the
TCB.

I. INTRODUCTION

A mobile ad hoc network (MANET) is constituted by
battery operated mobile computers with limited wireless trans-
mission range. A MANET routing protocol is a set of rules
which dictate the actions to be performed by every node to
enable any two nodes in a subnet to establish multi-hop paths
and relay data packets.

In practice, some nodes may be under the control of a
malicious users who may deliberately violate rules with the
intention of disrupting the operation of the MANET or for
selfish purposes; some nodes may misbehave accidentally due
to hardware failure, or bugs in the MANET software, or even
in the operating system of the mobile computer.

A. Trusted Computing Base

Securing a MANET involves providing some tangible as-
surances that nodes will abide by rules. Realizing assurances
towards securing any system is achieved by amplifying the
trust in a trusted computing base (TCB) [3]. Most strate-
gies to secure MANETs employ cryptographic authentication
of routing data to limit an attackers ability to disseminate
inconsistent routing information. The TCB for facilitating
cryptographic authentication includes a set of cryptographic
algorithms (which are assumed to be unbreakable), and a
trusted authority (TA) who distributes cryptographic material
to all nodes of a MANET network. Secure MANET protocols
that leverage this limited TCB i) fail to provide some important
assurances, and ii) typically impose substantial overhead for
resource limited battery operated mobile devices.

1) Contributions: In this paper we propose a simple and
efficient TCB for MANET nodes which can be leveraged to
improve the performance of MANETs by i) providing assur-
ances that reduce the scope of attacks that can be launched
by attackers, and by ii) reducing the overhead required for
leveraging the TCB. In the proposed approach simple TCB

functions are executed inside trustworthy MANET modules
(TMM) housed in every MANET node. We assume that only
the TMMs are trusted: the rest of the node - all other hardware
and software - are untrusted.

An important prerequisite for a trustworthy module to
warrant trust is that the TCB functions executed inside the
module are simple, and consequently, easily verifiable. Simple
TCB functions can also be implemented as hardwired logic
(software-free), thus rendering moot a wide range of attacks
that attempt to modify software. It is also desirable that the
modules consume as little power as possible, and consequently
disseminate negligible heat, as such modules can be physically
well shielded from deliberate and accidental intrusions.

With these self-imposed limitations on TCB functions aimed
at improving the reliability of TMMs while simultaneously
lowering their cost, we seek a set of simple TCB functions
for MANETs. While the proposed approach is general enough
to be applicable to many different MANET protocols, in
this paper we restrict ourselves to two popular on-demand
protocols - ad hoc on demand distance vector (AODV) [1],
and dynamic source routing (DSR) [2] protocol.
B. Overview of TMM Functionality

In the proposed approach TMMs housed in MANET nodes.
TMMs are capable of establishing pairwise secrets with each
other using strategies which demand low overhead for opera-
tions to be performed inside the trusted boundary of TMMs.
These pairwise secrets are used for computing message au-
thentication codes (MAC). Nodes communicate with their
TMMs using fixed and well-defined interfaces - by writing
into the input registers of the TMM and reading time-stamped
MACs from the output registers of the TMM. Such MACs
accompany MANET routing packets sent by nodes.

The trust in the TMM - viz., that i) the secrets protected by
TMMs cannot be exposed, and ii) the simple functionality of
the TMMs cannot be modified is amplified to secure AODV
and DSR.
C. Organization

The rest of this paper is organized as follows. In Section
II we begin an overview of AODV and DSR and explain the
notions of trusted computing base (TCB) and trustworthy com-
puting modules. In Section III we outline the TCB functions of
TMM i) UpdateNT(); ii) RelayRR (); and iii) RelayData (), all
of which output time-stamped MACs computed using secrets
protected inside the TMM. In Section IV we explain how the



three TCB functions can be utilized to provide some useful
assurances regarding MANETs employing AODV or DSR as
the routing protocol. The proposed approach to realize secure
AODV and DSR is compared with other secure AODV/DSR
approaches in the literature. Conclusions are offered in Sec-
tion V.

II. BACKGROUND

MANET routing protocols can be broadly classified into
proactive and reactive protocols. In the former, nodes strive
to maintain a consistent view of the subnet topology. In the
latter topology information is acquired on demand. Popular
examples of the former category include the dynamic source
routing protocol (DSR) and ad hoc on demand distance vector
(AODV) protocol. An example of the latter category is the
dynamic sequenced distance vector (DSDV) protocol.

A. AODV and DSR

AODV is an ad hoc on-demand routing protocol where the
distance to a destination is stored in a node’s routing table as
a routing record (RR), indexed using the destination identity.
Other fields in the RR include a sequence number, hop-count,
next-hop to reach the destination, and validity time.

When a node desires to communicate with a destination,
and finds that it does not have a fresh route to the destination,
a route request (RREQ) is flooded, indicating a fresh sequence
number of the initiator, the last known sequence number of the
destination, and a hop-count field which is initially set to zero.
Every node that receives the RREQ

1) updates the sequence number of the source, and adds an
RR (for the source) to a table of RRs.

2) if the node does not have a path to the requested
destination it forwards the RREQ after incrementing the
hop count field by one;

3) if the node has a fresh enough path to the destination
(or if the node is the destination itself), it responds by
unicasting a route response (RREP) towards the source
by sending the RREP to the neighbor from which it
received the RREQ.

In the case of RREP by an intermediate node the hop count in
RREP is set to the stored value, and in the case of RREP by
the destination, it is initialized to zero. Every node receiving
the RREP adds an RR for the destination, increments the hop
count, and unicasts the packet towards the source node.

Every entry in the routing table has a validity time after
which it cannot be used. However, due to the mobility, the
information in the RRs can become invalid even before the
expiry period. AODV handles such premature expiry using
route error (RERR) messages.

DSR also employs a similar RREQ, RREP and RERR pack-
ets. The difference is that while in AODV intermediate nodes
(that forward the RREQ) increment the hop-count, in DSR
every intermediate node inserts its identity. Thus, compared to
AODV, DSR provides some additional topology information.
The primary disadvantage of DSR is the additional bandwidth
overhead for RREQ and RREP packets (which indicate the

entire path instead of a single field - hop count). The advantage
accrued from the knowledge of the entire path is that multiple
paths between the source and destination can be established.

As originally proposed, both AODV and DSR simply ignore
the possibility of malicious nodes which intend to disrupt the
MANET. Several secure routing protocols have been proposed
which add cryptographic authentication of routing data. Cryp-
tographic authentication strategies are primarily intended to
ensure that some illegal modifications to the routing data can
be identified. Specifically, in secure AODV protocols a specific
aim of cryptographic authentication is to ensure that illegal
modifications to hop-count values can be detected. The main
aim of most secure DSR protocols is to permit detection of
illegal insertions or deletions of nodes in the path indicated in
RREQ/RREP packets.
B. Trusted Computing Base

The trusted computing base (TCB) of a system is “a small
amount of software and hardware we rely on, and that we
distinguish from a much larger amount that can misbehave
without affecting security” [3].

As an example consider a generic communication system,
where an important assurance sought is the ability to verify
that a message sent from one entity to an another cannot be
modified in transit by intermediaries. To realize such an assur-
ance we typically rely on a TCB which includes a certificate
authority (CA), who (we assume) does due diligence before
signing public key certificates, and ensures that it’s private
key is well protected. We also rely on the assumption that
cryptographic algorithms like RSA, DSA, AES, SHA-1 etc.,
are unbreakable. When one receives a message authenticated
using the secrets belonging to an entity A, it is assumed that
the message is from A, as it is implicitly assumed that the
secrets of A are privy only to A.

As a more concrete example, the widely used web-security
protocol, SSL, leverages such a TCB to provide an assurance
that data sent by clients will be privy only to SSL servers,
However, when a client sends some sensitive information (like
a credit-card number) to a server over an SSL connection,
it only ensures that the information remains private till it
reaches the server. There is no assurance that such information
cannot be abused after it reaches the server, by entities
who have unfettered access to the server. Thus, in many
practical scenarios, the limited TCB which caters only for
cryptographic authentication, is not sufficient as a basis for
realizing important assurances.

1) Trustworthy Computing Modules: The most common
approach to expand the TCB is by employing trustworthy
computing modules which provide some “specialized” TCB
functions, performed inside trustworthy boundaries.

In the trustworthy computing group (TCG) model [4] for
realizing trusted platforms a trustworthy platform module
(TPM) performs several specialized fixed functions to provide
i) the ability for remote parties to verify that the platform
equipped with the TPM is in an “acceptable state” - that only
authorized software has been loaded and executed by the CPU
(even though the TPM does not have direct control over the



CPU); and ii) the ability to provide secrets to the TPM, bound
to some platform states, which will be released by the TPM
only when the platform is in that specific state.

Unlike TPMs, the IBM 4758 [5] trustworthy computing
module sports a general purpose processor inside a protected
boundary, running a specialized operating system, and can
execute application code unmolested inside the trusted bound-
ary. The rich set of programmable functions that can be
executed inside the boundary can provide a rich TCB that can
be leveraged to realize assurances that may not be possible
otherwise.

Unlike inexpensive TPM chips (a few dollars) with fixed
functionality, the programmable TCB offered by IBM module
comes at a substantially higher cost (a few thousand dollars).
It is for this reason, that in this paper we seek a set of fixed
functionality suitable for securing MANETs. We deliberately
impose some restrictions on such fixed functionality to ensure
that TMMs which offer such functionality can be easily
verified, will consume negligible power, and thus can be
simultaneously trustworthy and inexpensive to realize.

TMMs that offer the TCB for securing MANETs will
demand substantially lower complexity compared to even
inexpensive TPM chips. Unlike TPMs which offer a set of
about 120 fixed functions, TMMs will offer 3 such functions.
Furthermore, unlike TPM chips, TMMs will not require to
perform asymmetric cryptographic computations. TMMs will
merely perform fixed sequences of logical and cryptographic
hash operations.

III. TCB FOR MANET NODES

Every mobile computer capable of taking part in any
MANET is assumed to be equipped with a TMM. Every TMM
is preloaded with a symmetric secret provided by a trusted
authority. In practice, the TMM may be a SIM card issued
by the trusted authority. The SIM (subscriber index module)
card can be plugged into an untrusted mobile computer. Only
such computers equipped with the TMM become eligible to
participate in MANET subnets, adhering to rules promulgated
by the trusted authority.

Any two TMMs A and B (housed in nodes A and B
respectively) can use their respective secrets KA and KB to
independently compute a pairwise secret KAB . Any subset of
nodes belonging to the network can come together to create
a temporary MANET subnet. While operating in a MANET
subnet, a mobile computer uses the interfaces exposed by its
TMM to submit some values to the TMM and receive time-
stamped message authentication codes (MACs).

When a TMM A is provided some values along with a
MAC computed using a secret KAB , and if the time-stamp tb
indicated by B is “close” to the current time ta (according to
TMM A), the TMM A recognizes B is a neighbor. Every
TMM maintains a list of neighbors in a neighbor table.
TMMs will only accept authenticated routing information from
neighbors, and in response, subject to some rules, prepare
MACs for messages that are verifiable only by such neighbors.

By maintaining a table of neighbors, and by performing
simple and fixed sequences of logical and hash function
operations, TMMs ensure adherence to the rules that govern
a MANET protocol. More specifically, the assurances realized
using the proposed approach is only based on the assumptions
that

1) the secret stored inside the TMM cannot be exposed,
and

2) the simple and fixed functionality of the TMM cannot
be modified

More specifically, the nodes themselves, and the users in
control of the nodes are not trusted.

A. High Level Architecture of TMMs

Internally, every TMM consists of
1) a secure hash function h() (say SHA-1);
2) a protected battery-backed RAM (BBRAM) for storing

one or a few symmetric secrets - let the secret assigned
to the TMM with identity A be KA;

3) limited RAM for storing a “neighbor table” (T) and
some fixed parameters (∆, δn, MAX), and a dynamic
sequence number q (TMM A stores its current sequence
number qa);

4) I/O registers;
5) a clock-tick counter: the clock-tick-counters of all

TMMs are assumed to have some extent of time syn-
chronization (for example, within a few tenths of a
second) to enable them to agree on the expiry time of
routing records); and

6) hardwired control logic which drive a sequence of
operations consisting of logical and hash operations.

1) Pairwise Secrets Between TMMs: Several key distribu-
tion schemes for facilitating pairwise secrets between trust-
worthy modules have been proposed in the recent past. For
scenarios involving trustworthy modules there are compelling
reasons to reduce the computational overhead inside the mod-
ule for the operations performed using protected secrets. For
the scheme in [6] each module will be required to store a few
tens of keys and perform a few tens of block cipher operations
for computing any pairwise secret. For the scheme in [7] each
module will need to store a single secret and perform a single
block-cipher operation.

While both schemes support asynchronous induction of
nodes, the former [6] can support unlimited network sizes;
the latter [7] imposes a soft limit on the maximum number
of nodes (for example, not much more than a few tens of
millions). In this paper we assume that the scheme in [7] is
used for facilitating pairwise secrets. Specifically the pairwise
secret KAB between A and B is computed by A as

KAB = h(KA ‖ B)⊕ PAB . (1)

where PAB is a pairwise public value. The TMMs do not have
to worry about the integrity of the public values. The public
values are maintained by nodes. Modifications to the public
values cannot result in exposure of the secrets.



2) TMM Interfaces: Mobile nodes (which are untrusted)
communicate with their TMM (which is trusted) by writing a
few values into the input registers of the TMM, and reading
the outputs from the TMMs output registers. Values written
into the input registers are typically fields like identities of
nodes, MACs, and a clock-tick value. The TMM computes
pairwise secrets, and employs such values along with other
values provided to the TMM, and some internal values (like
its clock-tick), to verify and/or compute MACs. Typically the
output of a TMM consists of a few MACs, and a clock-tick
value (a time-stamp) necessary for verifying the generated
MACs. Such operations performed by the TMM to map inputs
to outputs are controlled by the control logic inside the TMM,
which essentially makes repeated use of the PRF.

More specifically the TMMs offer three simple interfaces
to nodes which house TMMs:

1) UpdateNT()
2) RelayRR ().
3) RelayData ()

Some of such important rules enforced by the TMM A are
1) Every node will increment the hop-count by exactly 1.
2) Routing records will be honored only if authenticated

by TMMs associated with neighbors with bidirectional
links.

3) Routing records will be authenticated by TMMs only to
TMMs associated with bidirectional neighbors

4) Creating a RERR message claiming that a neighbor
X is unreachable will result in neighbor X becoming
unreachable.

5) Data packets will be afforded end to end protection, and
that they cannot be redirected through paths longer that
the path specified by the source.

B. Notations

In the rest of this paper we shall use the following notations
to describe the functionality of a TMM assigned an identity
A.
h(): a hash function like SHA-1.
KA: A TMM with identity A stores a symmetric secret KA

in the protected BBRAM.
ta: the current clock-tick count of node A.
KAB : A pairwise secret between TMM A and a TMM B,

computed as h(KA ‖ B) ⊕ PAB where PAB is a pairwise
public value (the public value is provided to the TMM by the
node housing the TMM).

T: The neighbor table T has one row for each neighbor,
with four columns per-row. The four values in the row corre-
sponding to a neighbor P are

1) the identity P ,
2) the most-recent authenticated time-stamp t′p from P ;
3) the pairwise key KAP shared between A and P , and
4) a value lap = {0, 1, 2} indicating the status of the link to

node idj . Status lap = 1 indicates a verified link to P ;
lap = 2 indicates a verified bidirectional link; lap = 0
indicates an unverified link.

∆: a constant indicating the lifetime of routing records.
δn: a constant indicating a time after which a link with

status 1 or 2 is set to status 0 (if the neighbor has not been
heard from for a duration δn).
INF : a constant representing infinite (or unknown) hop-

count.
qa: the current sequence number of A;
Routing record RD = D ‖ qd ‖ nd ‖ τd ‖ ad ‖ ν: A

routing record for a destination D containing i) the identity
D, ii) a sequence number qd; iii) the number of hops nd (to
D); iv) time of expiry τd of routing data RD; v) an auxiliary
value ad which can be a one way function of some additional
information regrading the route to D, and vi) a flag ν. The
flag ν is zero for regular routing records. If the flag ν is set
to one this indicates a recent loss of a link to a neighbor who
had earlier provided a record for D with ν = 0. Specifically,
for DSR and AODV the flag ν = 1 for route error (RERR)
packets.
hr: Hash of an RR. For example, the hash of the RR for D

is hr = h(D ‖ qd ‖ nd ‖ τd ‖ ad ‖ ν).
Authentication Record Ap = P ‖ hr ‖ tp ‖ µpa ‖ αpa:

Authentication information for a routing record (for example,
RD) provided by a neighbor P . The value hr is the hash of a
routing record (like RD). P is a neighbor of A which provided
the routing record. The value tp is the time according to P at
which the MAC µpa was computed, and αpa is a one-bit flag
(where 1 represents an acknowledgement). The MAC µpa is
computed as

µpa = h(hr ‖ tp ‖ αpa ‖ KPA). (2)

C. UpdateNT(A, ξ)

Using this interface node A submits to its TMM A a
authentication record A = P ‖ hr ‖ tp ‖ µpa ‖ αpa, along
with a value ξ which specifies the nature of the update required
to the neighbor table.

1) ξ = 0: If ξ − 0 the values A are authentication
parameters for a routing record from a neighbor P . Recall
that the entry for P in the neighbor table T (of TMM A) is
of the form (P, t′p,KAP , lap). The TMM verifies the MAC µpa

using KAP and updates the time-stamp field corresponding to
P to tp (if t′p < tp).

If the status of P is not 2, viz., lap 6= 2 and if αpa = 0 then
lap status is set to 1; if lap 6= 2 and if αpa = 1 (the received
message is an acknowledgement) the TMM A assumes that a
bidirectional path exists to P and sets lap = 2.

Irrespective of the value of lap and hr, the TMM outputs a
time-stamped MAC (with time ta)

µap = h(hr ‖ ta ‖ αap = 1 ‖ KAP ), (3)

as an acknowledgement to TMM P which provided the
authentication record A.

If lap = 2, hr 6= 0, and αpa = 0, the TMM A additionally
outputs a self-MAC

θ = h(hr ‖ P ‖ KA). (4)

This self-MAC θ can be submitted to the TMM A at any later
time to prove that a value hr was authenticated by P .



2) Other Values of ξ: If type ξ = 1 and A = {Y ‖ hr ‖
0 ‖ 0 ‖ 0} the TMM interprets this as a request to add an
entry for a node Y in its neighbor table with status lay set to
0 and time-stamp t′y = 0. The value hr is interpreted as the
public value PAY associated with Y .

If type ξ = 2 and A = {Y ‖ 0 ‖ 0 ‖ 0 ‖ 0} an entry for Y
is removed from the neighbor table (if it exists).

If type ξ = 3 and if A = {X ‖ 0 ‖ 0 ‖ 0 ‖ 0}, the TMM
interprets this as a request to output a MAC for the value 0
verifiable by every node in T of A (irrespective of the link-
status of the node). A MAC for a neighbor B is computed
as

µab = h(0 ‖ ta ‖ 0 ‖ KAB). (5)

Such MACs accompany HELLO packets sent by A.

D. RelayRR(R, P, θ, φ)

The inputs to RelayRR() function of TMM A are are i) a
RR R with hash hr; ii) the identity of the provider P ; iii) a
self-MAC θ = h(hr ‖ P ‖ KA) verifiable by TMM A; and
iv) a value φ which specifies the protocol (for example, φ = 0
for AODV and φ = 1 for DSR).

Let us assume that the RR is for a destination D, of the
form RD = D ‖ qd ‖ nd ‖ τd ‖ ad ‖ ν. The TMM of A
verifies the self-MAC θ, and checks that the time of expiry τd
is greater than the current time ta.

If the neighbor table T of TMM A does not have an entry
for P (or if lap 6= 2), the TMM sets R′D = D ‖ qd ‖ nd =
INF ‖ τd ‖ ad = h(A) ‖ ν = 1, and computes a MAC for
every neighbor with status 2.

On the other hand, if P is listed as a bidirectional the TMM
A sets R′D = D ‖ qd ‖ n′d ‖ τd ‖ a′d ‖ φ ‖ ν, where

1) a′d = h(ad ‖ A) if φ = 1 (for DSR), and a′d = ad if
φ = 0 (for AODV)

2) n′d = nd + 1 if nd 6= INF ,
and outputs a MAC (for h′r = h(R′D)) for all neighbors with
status 2 (except the provider P ).

If the identity of the provider is the node itself (P = A)
a fresh RR for A is created. In the unauthenticated RR RA

submitted to the TMM, the node A is allowed to specify any
auxiliary value aa. The TMM updates its current sequence
number qa by 1, sets RA = A ‖ qa ‖ na = 0 ‖ τa = ta + ∆ ‖
aa ‖ ν = 0.

Most often such an RR initiated A accompanies a RREQ
from A. The node A may specify other parameters of the re-
quest (like intended destination, maximum hop count and last
known sequence number of the destination etc.) by choosing
an appropriate aa (for example, as a hash of all immutable
RREQ fields).

E. RelayData(S, dh, U, θu,R, P, θp)

Consider a scenario where a data packet with hash dh is
relayed from originator S to destination D and that the packet
is received by the intermediate node A from an immediate up-
stream node U . Also assume that P is immediate downstream
node (the next hop in the path to D).

The value µu is a MAC computed by U as

µua = h(hd = h(S ‖ D ‖ dh) ‖ tu ‖ αua ‖ KUA) (6)

If A is the creator of the data packet with hash dh then S =
U = A and µu = 0. In this case the TMM does not verify the
integrity of the MAC of the previous hop.

To forward a data packet the node A is required to demon-
strate to its TMM A a valid record RD for destination D,
provided by the next hop P . Recall that θp is the self-MAC
for the record RD provided by P . The TMM outputs a MAC

µap = h(hd = h(S ‖ D ‖ dh) ‖ ta ‖ αap ‖ KAP ) (7)

IV. COMPARISON WITH OTHER SECURE PROTOCOLS

We shall now see how three functions UpdateNT(), Re-
layRR() and RelayData() can be used to secure on-demand
MANET protocols like AODV and DSR. Following this, we
compare the assurances realized by the proposed approach
with those realized by popular secure extensions to DSR and
AODV.
A. Realizing AODV and DSR

When TMM enabled nodes are used in a MANET subnet
employing AODV/DSR the only difference is that along with
plain routing packets, every node sends some additional values
- a clock-tick value and some MACs. RREQ and RERR
packets are accompanied by one MAC for every bidirectional
neighbor. RREP and data packets are accompanied by one
MAC for the next hop.

Consider a scenario where a node A enters a subnet and
recognizes the presence of nodes B, C and D within its
range. At this point, while node A recognizes its neighbors,
the TMM of A does not. The TMM of A recognizes a node B
as a neighbor only if a time-stamped and authenticated MAC
(authenticated using secret KAB) is provided to the TMM.

Node A uses the UpdateNT() function to add nodes B,
C and D to its neighbor table with status set to 0. As the
pairwise key for B, C and D is available after this step, now
A can request its TMM to compute MACs corresponding to a
time-stamped HELLO packet (with hr = 0) verifiable by its
neighbors B, C and D. On receipt of the HELLO packet, B
submits the time stamped MAC to its UpdateNT() resulting in
the addition of A as a neighbor with status lba = 1. When an
acknowledgement is sent from B with an authenticated time-
stamp, this can be submitted by A to its TMM resulting in the
addition of B to the neighbor table of A with status lab = 2.
An acknowledgement for this packet from B will result in the
lba = 2 in B’s table.

In the same way, a list of neighbors are maintained in
the neighbor table of all TMMs, characterized by the link
status and the latest time-stamp. Periodically, nodes may
send supercilious HELLO packets to ensure that the TMMs
of neighboring nodes recognize their presence. The MACs
necessary to authenticate HELLO packets are also obtained
by using the interface UpdateNT().

Every routing packet can be seen as an information record
about a specific node in the network. A RREQ provides



information about the source (node that created the RREQ),
while RREP packets provide information about the destination.
TMMs do not differentiate between RREQ and RREP packets.
Most often, the job of a node is to simply relay RREQs and
RREP packets after updating the hop count (or hop-count
and an auxiliary value in DSR). TMMs ensure that routing
information will be honored only from neighbors with status
2, and will be sent only to neighbors with status 2.

To create a RREQ for a destination T the source A
constructs the regular RREQ packet (indicating source, source
sequence number, destination, last known destination sequence
number, etc) and computes the hash of the all immutable
contents (fields that do not change as the RREQ propagates) to
derive the auxiliary value aa that will accompany the RREQ
packet. In both DSR and AODV the TMM will ensure that
the sequence number of the source A is incremented every
time the interface RelayRR() is used for creating an RREQ.
(by setting the provider identity to own identity).

In both AODV and DSR, an intermediate node B extracts
the values R and A from the RREQ/RREP/RERR packet
received from a neighbor (say P ). While in AODV the
auxiliary value a in R is extracted using only the immutable
fields, in DSR the path of the packet till B is also used
to extract the auxiliary value. The value hr in A is then
computed by hashing R. The value hr and the corresponding
authentication record A are then submitted to the UpdateNT()
interface where The TMM updates the neighbor table, and
issues a self-MAC θ to the effect that “a value hr was received
from a neighbor P ”

Following this, the RR R and the self-MAC θ for the RR
are cached by the node. At any later time the RR R can
be submitted to the TMMs RelayRR() interface (as long as
the time τ specified in the RR has not expired). It is only
the RelayRR() function which performs some simple protocol
specific steps. For AODV (if the value φ = 0 in the RelayRR()
interface) TMM B simply increments the hop count value n;
on the other hand (if φ = 1 for DSR), TMM B increments the
hop count value and extends the auxiliary value a to h(a ‖ B.

Thus, if φ = 0 (AODV) the auxiliary value is relayed
unchanged. IF φ = 1 (DSR) the auxiliary value is extended to
cryptographically bind the identity of the relaying node. For
an RREQ packet that has traversed through nodes P,Q,R
and reached a node S, the value a in R received by S is
h(h(h(P ‖ h(I)) ‖ Q) ‖ R). Where I is all the immutable
information included by the initiator A.

In both AODV and DSR an intermediate node with a fresh
enough path can respond to an RREQ for D by initiating an
RREP - by submitting the valid Rd that it previously received.
Assume that Q had initially received a valid Rd for destination
D from P , and later received a RREQ for D from a different
neighbor N . Node Q can now submit the Rd it previously
received from P along with the self-MAC θ that authenticates
the Rd, and convey this information to neighbor N (as long
as N is a neighbor with link-status 2).

In instances where the destination node, say D, wants to
create a RREP, RelayRR() is invoked to create MACs that

authenticate the destination node itself (sets the provider as
D). The auxiliary field a submitted to this function call is
hash of all the immutable fields included in a RREP of the
corresponding protocol (either AODV or DSR). For DSR a
also represents the source path included in the packet.

While generating RREPs the TMM would output MACs
which authenticate the packet to all the listed bidirectional
neighbors. As RREP is unicast a node would only include the
MAC that is verifiable by the intended next-hop - the other
MACs can be ignored by the node.

A node creates RERR packets to notify prematurely expired
RRs. In our scheme a node can create an authenticated RERR
for a destination D (by setting ν = 1 in a routing record for
D) only by i) submitting an authenticated routing record for
D (Rd along with a self-MAC), and demonstrating that ii) the
provider of Rd is no longer listed a bidirectional neighbor in
T. A TMM then then creates an RERR by setting n = INF
and ν = 1, and authenticates it to all the listed bidirectional
neighbors. However, relaying an RERR packet is no different
from relaying a regular RREQ or RREP packet (with the
exception that nd is already INF and is not incremented,
and ν = 1 in the record).

Finally, to forward data packets a node has to submit
the received data packet from a neighbor U along with a
previously received authenticated RR R for the destination
of the data packet (say RR received from a neighbor P ). The
TMM verifies the submitted R and authenticates the received
data packet to the next-hop (P - provider of the RR). In this
section we shall first see how compare the security assurances
offered by our scheme with popular secure extensions of
AODV and DSR.

B. Some Secure MANET Protocols

In the Secure AODV (SAODV) protocol [8] every node has
a public-private key pair with a certified public key. Digital
signatures are used to authenticate immutable fields in RREQ,
RREP and RERR messages specified by the source of the
packet (an end-point). The immutable field includes a commit-
ment to a hash chain of length x0 · · ·xn, (where xi = h(xi−1),
and h() is a cryptographic hash function like SHA-1) where n
is the maximum length of the path. The RREQ from the source
(indicating hop-count 0) is accompanied by a value x0. Nodes
at the first hop are required increment the hop-count to 1 and
propagate the RREQ along with the value x1 = h(x0), and so
on.

In order to secure route responses by intermediate nodes
SAODV employs double signature extensions for RREQ and
RREP packets. The RREPs generated by an intermediate
node includes the signature of the destination to validate the
immutable fields, and also a signature of the intermediate node
to authenticate the new validity time.

In the SAODV-2 protocol [9] only symmetric cryptography
is used. SAODV-2 argues that schemes for establishment
of pairwise secrets between two nodes demand substan-
tially lower computational and bandwidth overhead. Further,
SAODV-2 uses two hop authentication to thwart illegal hop



changes. In two-hop authentication a node (say A) appends a
MAC which is verifiable by its two-hop neighbors (say C).
When C receives this packet via a B (neighbor of A) it can
compare the hop count announced by B to the one included
by A and identify illegal modifications.

1) Secure DSR: A well known secure extension of DSR
is Ariadne [10] which uses the TESLA broadcast authentica-
tion protocol [11] for authenticating network packets. Every
intermediate node forwarding an RREQ appends a TESLA
MAC which can be verified at the end of the reverse path.
As the authentication appended by every node will be verified
by the RREQ source, nodes cannot be inserted into the path.
To prevent nodes from deleting other nodes in the path a per-
hop hashing strategy is used which leverages a shared secret
between end-points (the RREQ source and the destination).

In [12] an improved Ariadne (iAriadne) was proposed which
mandates every node to maintain a “private logical neighbor-
hood” (PLN) and introduces an additional value to be inserted
by every node forwarding the RREQ - an “encrypted up-stream
per-hop hash.” Unlike Ariadne with TESLA, iAriadne relies
on pairwise secrets between nodes.

C. Shortcomings of Current Secure Protocols

Even while demanding substantial overhead, SAODV still
leaves an AODV MANET susceptible to a wide range of
attacks. Some of the main shortcomings of SAODV (which
are addressed in SAODV-2) are

1) lack of mechanisms to authenticate intermediate nodes
(intermediate nodes are not required to append any
authentication)

2) inability to prevent some misrepresentations of the hop-
count: it can only ensure that a node receiving an
RREQ/RREP with hop count r cannot relay a hop
count less than r. A malicious node can incorrectly (or
maliciously) relay the same hop count r or a hop count
greater than r, and

3) lack of mechanisms to address one-way links.
While SAODV-2 addresses many of the pitfalls of SAODV,
SAODV2 is still susceptible to many attacks. SAODV-2 as-
sumes that nodes will not collude together. Colluding nodes
can easily thwart two hop authentication. Secondly, there is
no mechanism for regulating creation of RERR packets.

Unlike SAODV (where intermediate nodes are not required
to append authentication) in Ariadne authentication of interme-
diate nodes is mandatory. Unfortunately, the verification of the
authentication occurs very late in the RREQ-RREP process.
Due to this malicious nodes in the path can send random
RREQ packets which even though will not be accepted by
end-points, can preempt propagation of genuine RREQs.

The main pitfalls of Ariadne that are addressed by iAri-
adne are addition of mechanisms for i) link-layer (one-hop)
authentication, and ii) preventing abuse of one-way links -
both of which are achieved by imposing a private logical
neighborhood (PLN). The additional upstream per-hop hash
facilitates the RREQ destination to narrow down intermediate
noes that engage in active attacks.

1) Collusion: However, the security of all four protocols
are based on the assumption that nodes will not collude.
In both SAODV and SAODV-3 colluding nodes can ensue
that even shorter hop counts can be relayed. In Ariadne and
iAriadne colluding nodes can trivially delete nodes from the
path.

The primary reason that facilitates easy collusion is that two
nodes A and B simply need to share their secrets to do so.
Through their ability to send packets impersonating A or B,
both A and B can create packets with misleading information,
with the false information provided by A consistent with the
false information provided by B. Obviously, three such nodes
A, B, C sharing their secrets can engineer an even broader
variety of attacks.

2) Unregulated RERR Creation: Another pitfall of all pro-
tocols is that they do not possess secure for creation of RERR
packets. An effective strategy for an attacker to introduce
unnecessary additional overhead is to participate faithfully in
establishing a path and then send a supercilious RERR packet
- mandating a fresh route creation process. For example an
attacker C in a path A → B → C → X can simply send a
RERR claiming to have lost the link to X (even while the link
exists). A selfish node desiring to retain X as a neighbor can
still manage to send such a RERR packet by ensuring that the
RERR will not be heard by X . This can be achieved easily by
exploiting the medium access control protocol. For example, if
a collision avoidance protocol is used, C can send the packet
as soon as X sends a clear to send (CTS) or a request to
send (RTS) packet, thereby ensuring that C’s RERR suffers
collision at X (but will be received collision-free by other
neighbors of C).
D. TMM Based Secure Protocols

In the TMM based approach a node cannot produce an au-
thenticated routing record without submitting an authenticated
routing record to its TMM. All that the TMM needs to do
is to ensure that the routing record originates from an active
neighbor, make appropriate changes to the record (increment
hop-count, and extend the auxiliary value if φ = 1), and
authenticate the modified record to all neighbors with link-
status 2. If a valid record is received from a node which is not
in the neighbor table (or has status 0 or 1), the modification
required is that the flag ν is set to 1 in the routing record and
authenticated to all neighbors.

Thus, an RERR packet can be created by a node only if a
valid routing record exists and the neighbor which provided
the record is no longer a neighbor (indicating recent loss of
a link). This makes it impossible for nodes to send RERR
packets without actually losing a neighbor. In practice, a node
desiring to send an RERR has to remove a current neighbor
to send an RERR. The risk of loosing a neighbor (and thereby
links to other nodes through that neighbor) can be an effective
deterrent against such attacks.

The problem of collusion is addressed simply by shutting
out the avenue which facilitates easy collusion in the first place
- the ability to easily share each others secrets. By ensuring
that secrets used for authentication of packets from node A



are privy only to TMM A and relying on the ability of TMMs
to protect secrets we can address the root cause of collusion.

To achieve the required security goals, viz.,

1) ensuring that routing records cannot be modified ille-
gally

2) ensuring that routing records will be accepted only from
nodes with tested bidirectional links and will be relayed
only to nodes with tested bidirectional links,

3) regulating RERR creation, and
4) addressing collusion based attacks

the nature of operations performed inside the TMM are truly
trivial.

A TMM can only make a node to accept authenticated RRs,
and ensure that changes to received RRs are made adhering
to the protocol. However, the TMM cannot force the node to
broadcast a packet as the communication interfaces are not
included within trusted boundaries. Hence explicit provisions
are required to discourage nodes from maliciously dropping
packets. It is for this purpose we provide the node with the
ability to remove a node from the neighbor table T of its
TMM. Nodes which identify selfish behavior by neighbors can
simply remove the neighbor. Unwarranted dropping of packets
can result in a node being disconnected from the network as
the neighbors of the node would remove the node from their
neighbor list.

In other words, active attacks (involving illegal modifica-
tions to routing packets) are addressed by TMMs by ensur-
ing that the rules governing the underlying routing protocol
cannot be violated. Passive attacks involving selective or
selfish participation are addressed by the nodes through their
ability to eject nodes from their “logical neighborhood” - the
neighborhood as seen by the TMM of the node.

V. CONCLUSIONS

For any security solution we begin with the assumption
that some components/algorithms are trusted, and amplify this
trust to realize the desired assurances. The obvious question
is then “what is this minimal trusted computing base (TCB)
to realize the desired assurances?” It is this question that led
to the proposed TMM based approach.

The need for trusted boundaries in which co-operative
routing tasks are carried out has been addressed by some
researchers. In [13] the authors include the wireless transceiver
inside the trust boundary. In [14] the trusted computing module
has complex features built into the wireless driver (executed
within the confines of the trusted module) to verify the in-
tegrity of wireless transceiver. Arguably, bringing the wireless
transceiver within the scope of the protected boundary as in
[13] or including complex features in wireless software drivers
(executed within the trusted boundary) as in [14] implies high
cost for practical realization of such trust modules.

In [15] explicit consideration is given to the need for
lowering the complexity of tasks to be performed inside the
trusted boundary. The scheme employs “nuglets of currency”
protected by smart-cards to promote faithful forwarding of

packets. Nevertheless [15] still assumes that the trusted com-
puting modules should be capable of performing asymmetric
cryptographic computations, which raises the bar for the ca-
pabilities and the cost of such modules. More recently Gaines
et al [16] have proposed a generic dual-agent approach to
MANETs where some desired characteristics of a trustworthy
network agent (like low computational and storage require-
ments) are enumerated.

One of the primary motivations for the proposed approach
is to minimize the complexity of operations performed inside
the TMM to the extent feasible, but yet effectively curtail the
freedom of an attacker. Lower the complexity of the TMM,
lower the cost, and higher is the extent of trust one can place
on the immutability of the TCB. We believe that the current
approach can be easily extended to support other routing
protocols like DSDV, TORA, etc., by small modifications to
the RelayRR() function. Specific changes required for this
purpose is our current research focus.

REFERENCES

[1] C. Perkins, E.Royer, S. Das “Ad hoc On-demand Distance Vec-
tor (AODV) Routing, Internet Draft, draft-ietf-manet-aodv-11.txt, Aug
2002. The 6th World Multi-Conference on Systemics, Cybernetics and
Informatics (SCI 2002), 2002.

[2] P. Johanson, D. Maltz, “Dynamic source routing in ad hoc wireless
networks,” Mobile Computing, Kluwer Publishing Company, 1996, ch.
5, pp. 153-181.

[3] B. Lampson, M. Abadi, M. Burrows, E. Wobber, “Authentication in Dis-
tributed Systems: Theory and Practice,” ACM Transactions on Computer
Systems, 1992.

[4] TCG Specification: Architecture Overview, Specification Revision 1.4,
2nd August 2007.

[5] S.W. Smith, S. Weingart, “Building a High-Performance Programmable
Secure Coprocessor,” IBM Technical Report RC21102, Feb 1998.

[6] M. Ramkumar, “The Subset Keys and Identity Tickets (SKIT) Key
Distribution Scheme,” IEEE Transactions on Information Forensics and
Security, 5(1), pp 39–51, March 2010.

[7] M. Ramkumar, “On the scalability of a “non-scalable” key distribution
scheme,” IEEE SPAWN, Newport Beach, CA, June 2008.

[8] M.G.Zapata, N.Asokan, “Securing Ad hoc routing protocols,” WISE-02,
Atlanta, Georgia, 2002.

[9] K.A. Sivakumar, M. Ramkumar, “Safeguarding Mutable Fields in the
AODV Route Discovery Process,” the Sixteenth IEEE ICCCN-07,
Honolulu, HI, Aug 2007.

[10] Y-C Hu ,A Perrig,. D B.Johnson, “Ariadne: A Secure On-Demand
Routing Protocol for Ad Hoc Networks,” Journal of Wireless Networks,
11 pp 11–28, 2005.

[11] A. Perrig, R. Canetti, D. Song, D. Tygar, “Efficient and Secure Source
Authentication for Multicast,” in Network and Distributed System Se-
curity Symposium, NDSS ’01, Feb. 2001.

[12] K.A. Sivakumar, M. Ramkumar, “Improving the Resilience of Ariadne,”
IEEE SPAWN 2008, Newport Beach, CA, June 2008.

[13] J-H. Song, V. Wong, V. Leung, “Secure Routing with Tamper Resistant
Module for Mobile Ad Hoc Networks,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 7, no. 3, ACM Press,
New York, Jul. 2003.

[14] M. Jarrett and P. Ward, “Trusted Computing for Protecting Ad-hoc
Routing,” Proceedings of the 4th Annual Communication Networks and
Services Research Conference, IEEE Computer Society, May 2006.

[15] J-P. Hubaux, L Buttyan, S. Capkun, “Quest for Security in Mobile Ad
Hoc Networks,” Proceedings of the ACM MOBIHOC 2001.

[16] B. Gaines, M. Ramkumar, “A Framework for Dual Agent Routing
Protocols for MANETs,” IEEE Globecom 2008, New Orleans, LA, Nov
2008.


