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Abstract—In this paper, we evaluate the importance of
evaluating joint cross-layer strategy for a tactical wireless
network with more adjusted application data traffic mod-
els. At first, we describe the system performance difference
depending on the adopted traffic model. Besides that, con-
sidering our system queue model, several numerical results
show the impact of physical, data-link, and application
layer features over typical system metrics, such as average
spectral efficiency and dropping probability.

Index Terms—Cross-layer design, adaptive modulation,
performance evaluation, wireless networks.

I. INTRODUCTION

Several works in the literature have designed new
mechanisms that allow a broader knowledge over tra-
ditional modular design scheme to study network lay-
ers relationships. Under such mechanisms, the classical
independent layers paradigm is left aside for adoption
of a cross-layer optimization (CLO) design. In a CLO
design, parameters and functionalities from application,
transport, network, data-link and physical layers are ad-
justed in an integrated fashion, enhancing overall system
performance. Recently, in order to optimize system per-
formance, research efforts have been specially focused
on physical (e.g, adaptive modulation and coding tech-
niques) and data-link layer (for instance, dropping prob-
ability over finite-length queues) enhancements. Thus,
several parameters and models have been proposed to
perform optimization under cross-layer frameworks for
wireless systems like military tactical networks [1], [2],
[3], [4], [5], [6], [7].

In general, such proposals focus on developing cross-
layer designs that rely solely on the channel state, dealing
independently with losses due to transmission errors
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at the physical layer and overflow effects at the data-
link layer, without considering the impact of data traffic
pattern on adaptive modulation threshold choices. For
example, adaptive modulation thresholds optimization
in [1], [2], [4], [5], [7] are evaluated to minimize a
strictly physical-layer error rate over the system - thus,
only physical-layer-driven thresholds are obtained. After
this, system parameters, like dropping probability, packet
loss rate or data-link transmission delay are indirectly
evaluated, since they can only be determined after a suit-
able physical-layer-driven thresholds choice. Delay and
overflow requirements are not taken into consideration.

Future tactical wireless networks are envisioned to
support high data rates with a wide range of quality
of service (QoS) requirements [8]. Thus, issues such as
throughput, delay, packet error rate (PER), and packet
overflow ought to be considered. Considering such fea-
tures, we proposed in [9] a technique for physical-layer
adaptive modulation thresholds optimization which takes
into account wireless channel state and data-link layer
queue behavior.

In the other hand, the authors in [10], [11] consider the
buffer and traffic information over the adaptive modula-
tion techniques set, but neither present important traffic
model features, such as burstiness and batch arrival
events, nor they evaluate the gain by adopting more
elaborate application data traffic models, by comparing
them with simpler descriptions. In order to enhance
this new cross-layer design strategy with more accurate
application data traffic models, we developed the Gener-
alized Input Deterministic Service (GIDS) model in [12],
which deals with generalized data traffic input under
time-correlated service disciplines. In [13], we enhance
this idea by introducing a queueing model based on
embedded Markov-chain techniques that considers time-
correlated arrivals with deterministic-time batch services
on a finite-buffer queue, with capacity for B customers
at a time, the MM

∑K
k=1 CPP/DY /1/B queue - the



Generalized Batch Input Deterministic Service (GBIDS)
queue.

In this article, we evaluate the sensitivity of the joint
cross-layer optimization technique in [9], now upgraded
for the more accurate application data traffic models
presented in [12], [13]. Differently from other works, our
physical-layer adaptive modulation thresholds optimiza-
tion takes into account not only wireless channel state
and data-link layer queue behavior, but also application
data traffic states - thus, we study the traffic model
impact over system performance. Besides that, we also
sketch channel parameters influence over the proposed
framework.

The remainder of this work is organized as follows:
the scenario of interest is described in Section II and
an updated cross-layer optimization (CLO) design strat-
egy is presented in Section II. Simulation results are
presented and analyzed in Section IV, followed by
concluding remarks in Section V.

II. PROBLEM STATEMENT

Among several military wireless networks, tactical
data distribution systems (TDDS) [8] are assumed as
a data service transmission upon an end-to-end wire-
less connection between an infantry or cavalry brigade
and each subordinate batallion at combat, improving
situational awareness and supporting command, con-
trol, and mobility issues. Thus, we consider an end-
to-end wireless connection between a source (e.g., an
infantry batallion) and a destination station (for instance,
a brigade command headquarters), through a single-
transmit single-receive transmission setup using a time-
slotted medium access technique, as illustrated in the
agregated channel-queue model presented in Figure 1,
which describes the channel-queue model for a given
pair i.
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Figure 1. TDDS channel-queue model.

The finite-buffer queue feeds an adaptive modulation
controller at the transmitter. The receiver feeds back the
channel state information (CSI) to the transmitter by
an ideal reverse channel, admitted as error- and delay-
free. The transmitter uses CSI, the queue state, and the
application data traffic rate to choose the modulation
scheme. It is worth noting that each packet may be
transmitted successfully, dropped, due to buffer overflow,

or lost at the corresponding base station, in case of
transmission errors.

1) Channel-Queue Model: In wireless mobile net-
works, overall system performance degrades markedly
due to time-dispersive effects introduced by the wireless
propagation environment. We adopt a time-varying wire-
less channel, characterized by flat fading effect, in which
we consider that the channel remains invariant during
each frame transmission. Such frame transmission tem-
poral variation is modelled by a wide-sense stationary
process with Jakes spectrum whose maximum Doppler
frequency shift is fD. Instantaneous signal-to-noise ratio
γ is modelled by a probability density function p(γ, γ),
where γ̄ represents average signal-to-noise ratio.

In order to enhance the spectral efficiency while adher-
ing to a target error performance over wireless channels,
adaptive modulation is used to match transmission pa-
rameters to time-varying channel conditions. We assume
that N transmission modes are available for the transmit-
ter, with each mode representing a specific modulation
scheme, which is chosen based on an ideal channel-
state information at the receiving station and on data-
link buffer occupancy at the transmitting station. This
channel-state information is sent to the transmitter by an
ideal feedback channel, admitted as error- and delay-free.
Transmission mode n is adopted by transmitter-receiver
pair when instantaneous signal-to-noise ratio (SNR) γ
lies between γn and γn+1.

When mode n (n ∈ {1, ..., N}) is used by the
transmitter, the outgoing packet is encoded in a block
with Nb/Rn symbols, where Rn represents transmission
mode n spectral efficiency. Afterwards, each block fills
one single frame data slot. After aggregating Nd blocks,
the frame is transmitted over the wireless adaptive chan-
nel with physical-layer bit error rate given by BER(γ),
according to instantaneous signal-to-noise ratio γ.

Each block is filled into a frame time slot, where each
time slot holds Nb symbols; thus, the maximum number
of transmitted packets per time slot (Rn) depends on the
adopted modulation scheme. These aggregate packets are
transmitted over the wireless adaptive channel subject to
physical-layer packet errors, data-link dropping events,
and delay effects due to finite length buffer.

Each time frame has a fixed time duration of Tts

seconds, being divided into Nd time slots for data and
Nc time slots for control information, containing a fixed
amount of Ns symbols. Thus, a single frame i refers to
time period [(i− 1)Tts, iTts) seconds. The transmitter
station has a finite-length buffer, with capacity of B
packets. Each packet has a fixed length of Nb bits,
divided into header, data and checksum bits.

So, if a packet arrives when the buffer is full, it is



discarded and lost. We assume that the channel-queue
behavior, comprising features like fD, γ, and queue
occupancy, can be modelled as a Finite State Markov
Chain described by the matrix X , with N + 1 states
(the first state, namely state 0, indicates no-transmission
option) under slow fading conditions, so that transitions
happen only between adjacent states.

2) Application Data Traffic Model: A model descrip-
tion for a application data traffic for a single link is
depicted in Fig. 2. Packet arrivals at the queue, de-
noting different multimedia traffic sources, are repre-
sented by the superposition of K independent discrete-
time Markov-Modulated Poisson processes (d-MMPP)
A1,A2,...,AK . Each d-MMPP process has m states or
modulation phases [12]. It is worthwhile noting that a
single d-MMPP Ai can be fully described by parameter
matrices Ti and Λi, which represent the transition prob-
ability matrix of the modulating Markov chain and the
matrix of Poisson arrival rates for process i, respectively.
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Figure 2. Model description for a generic application data traffic
model.

The sequence of arriving-batch sizes for each d-
MMPP process l is given by

{
X l

i

}∞
i=1

, which is com-
posed of independent and identically distributed (IID)
random variables and X l

i has the probability mass func-
tion (PMF) P (X l

i = j) = pj , j = 1, 2, ..., where j stands
for the batch size.

The overall customer arrivals aggregate is given by
the superposition parameter matrices T and Λ, where
T = T1⊗T2⊗...⊗TK and Λ = Λ1⊕Λ2⊕...⊕ΛK , with
⊕ and ⊗ denoting the Kronecker sum and the Kronecker
product, respectively.

3) System Analysis: We state that the overall system
queue discipline, comprising both time-correlated ser-

vices due to adaptive modulation features and multime-
dia data traffic arrivals in batches, can be described by a
MM

∑K
k=1 CPP/DY /1/B queue model, from now on de-

noted as Generalized Batch Input Deterministic Service
(GBIDS) model, which describes transition probabilities
for every combination (i.e., modulating phase) of batch
arrival and service processes.

The associated Markov chain for GBIDS is given
by D, where D = T ⊗ X, representing a d-MMPP of
order F = K.m.n, where F represents total number of
modulating phases. For n ≥ 1, Q−

n describe the number
of customers in the queue just before the nth service
batch departure, Yn denote the nth service batch size
and An represent the number of customers that arrive
between nth and n+1th service times, including possible
blocked ones, defining a left-service-epoch embedded
Markov chain Q. As stated in [13], we assume that
the stationary queue length distribution at that epoch is
ergodic.

So, Q is a process recursively described by:

Q−
n+1 =

{
min(Q−

n − Yn +An, B) if Q+
n ≥ Yn

min(An, B) if Q+
n < Yn

(1)
We define cj,f as the probability of arriving j cus-

tomers during service departures when the overall system
is on phase f , considering the probability of batch
arrivals. Let also P−

k,f be defined as the probability of
having k customers in the system immediately before
a service departure on phase f . The stationary queue-
length distribution P−

k,f , k = 0, 1, ..., B and f = 1, ..., F
is determined by

P−
k,f =

B∑
b=0

F∑
g=1

P−
b,g.cq,g.Dg,f , for 0 ≤ k < B (2)

P−
k,f =

B∑
b=0

F∑
g=1

P−
b,g.(

∞∑
s=q

cs,g).Dg,f , for k = B (3)

where q = k − b + max(b − g, 0) and Dg,f represents
transition probability from state g to state f . The nor-
malization condition is

B∑
b=0

F∑
g=1

P−
b,g = 1 (4)

Based on P−
k,f , we can evaluate the stationary queue-

length distribution at an arbitrary epoch, given by Pk,f ,
where, due to Markov Renewal theory [12]:

Pk,f =
k∑

n=0

F∑
g=1

P−
n,fDg,f

∫ x

0

ck−n,f (x)
1

Tts
dx (5)



where ck−n,f (x) stands for the probability of arriving
k − n customers at phase f during a time interval x,
where 0 ≤ x ≤ Tts.

III. DESIGN PROPOSAL

Our goal is to identify physical-layer adaptation
thresholds that optimize global parameters, like system
throughput and packet loss rate, in a direct fashion,
according to simultaneous information from all layers.
So, using the technique proposed in our previous work
[13], we evaluate the following quality of service metrics
in this work:

• Data-link layer spectral efficiency (Se,γ̄): average
number of bits transmitted per symbol through a
wireless channel with average SNR given by γ̄;

• Average packet error rate (Po): losses due to phys-
ical layer transmission errors;

• Dropping probability (Pd): losses due to overflow
events at data-link transmission queue;

• Packet loss rate (ξ): physical- and data-link-layer
losses aggregate.

In spite of their advantages, the methods presented
in [1], [2], [4], [5], [7] have some drawbacks. First
of all, it is impossible to evaluate system throughput
and overall packet loss rate directly, since these tasks
can only be performed after determining an optimal
packet error rate at physical layer. Besides that, such
procedure does not ensure that optimal setting will be
determined; this statement holds since the choice of
adaptive modulation thresholds impact on both physical
and data link layer. The main limitations of this policy is
that it does not guarantee any application- or data-link-
dependent requirements. Finally, they do not consider the
impact of more realistic data traffic patterns on adaptive
modulation thresholds choice.

Thus, in this article, we evaluate a more accurate
queue system model, namely the GBIDS framework
[13], under the CLO strategy proposed in [9]. Our
objective is to identify the cross-layer design technique
robustness to the adopted data traffic models. So, the
conducted physical-layer adaptive modulation thresholds
evaluation takes into account traffic and buffer states in
addition to channel state to choose the action to be ap-
plied in a particular system state. This policy guarantees
a joint cross-layered requirements set. In this adaptation
scheme, each system state has a unique optimal action
and corresponding transmission rate. So, we keep on tar-
getting system settings optimization solving the problem
in a joint fashion, but now with more realistic application
data traffic assumptions.

We state that packet loss events depend not only
on physical layer parameters (m, fD, γ̄) but also on
upper layer settings, like data link queue length (K),
packet arrival traffic rates and states (matrices T and
Λ), and transmission frame duration (Tts). Both types
of parameters impact on the choice of the adaptive
modulation thresholds set Γ and, as a consequence, on
the probability of choosing a particular mode n for
transmission, depending on current queue occupancy
state (Pr(n)), where:

Γ = [γ1, γ2, ..., γN ]T (6)

Pr(n) =

∫ γn+1

γn

pγ(γ)dγ (7)

Given π (stationary distribution of traffic-channel-
queue model), which is based on the stationary queue-
length distribution at an arbitrary epoch Pk,f , represent-
ing k customers at an arrival-service phase f , we define
the following metrics for each transmission mode n:

• Utilization (Un): transmission probability at mode
n. Such transmission events occur when there are
at least n packets in queue. In mathematical no-
tation, Un =

∑j=K
j=n π(Q = j,mode = n), where

Q represents the number of packets in queue and
π(Q = j,mode = n) describes the probability of
having j packets in queue when the transmission
mode is n.

• Dropping (Dn): packet dropping probability upon
queuing at mode n. This occurs when the num-
ber of arriving packets is higher than available
space in queue. In mathematical notation, Dn =∑j=K

j=0 P (At > K − j)π(Q = j,mode = n).
At transmission mode n, data-link layer spectral effi-

ciency (Se,n), average packet error rate (Po,n) and packet
loss rate (ξn) are represented by:

Se,n(Γ) = n× Un (8)

Po,n(γ̄) =

Nb∑
j=1

(
Nb

j

)
BER(γ̄)

j
(1−BER(γ̄))

(Nb−j)

(9)
ξn = Dn + (1−Dn)Po,n (10)

Thus, overall system metrics, like packet loss rate ξ
and data-link layer spectral efficiency Se,γ̄(Γ) are given
by:

ξ = Pd + (1− Pd)Po (11)

Po =

∑N
n=1 n× Pr(n)× Un × Po,n∑N

n=1 n× Pr(n)× Un

(12)



Pd =

N∑
n=1

DnPr(n) (13)

Se,γ̄(Γ) =
N∑

n=1

Se,n(Γ)× πn (14)

Our proposal aims to determine a set Γ∗, with N
adaptive modulation thresholds, which maximizes Se,γ̄

with minimum packet loss rate provided by ξmin. This
formulation is described as follows:

Se,γ̄(Γ
∗) = maxSe,γ̄(Γ) s.t. ξ = ξmin (15)

where Γ ∈ RN .
As described previously in [9], our proposal encom-

passes two steps:
• Minimum packet loss rate determination(ξmin),

based on a suitable adaptive moduation thresholds
identification {γn}Nn=1.

• Channel-queue model evaluation, based on a
discrete-time Markov chain (DTMC), to identify
quality of service metrics of interest and maximum
Se,γ̄ , given by Se,γ̄(Γ

∗).

IV. NUMERICAL RESULTS

Traditional cross-layer design proposals [2], [4], [1],
[7], [5] evaluate several system parameters, such as
dropping probability, average queue delay, packet loss
rate, and average system throughput by adopting a Pois-
son arrival process, without taking more realistic traffic
models into account. In our first case study, we compare
Poisson- and GIDS-driven queue occupancy distribution.

We consider a transmitter with six available trans-
mission modes, namely non-transmission mode, BPSK,
4-QAM, 8-QAM, 16-QAM, and 32-QAM, where the
non-transmission mode is adopted in case of se-
vere fading conditions. As described in the previ-
ous study case, these transmission modes describe
packet service process phases. We adopt Γ as an
adaptive modulation thresholds vector, where Γ =
[7, 4062; 9, 2711; 15, 2856; 16, 6486; 20, 8606] dB in or-
der to determine the adopted transmission mode in a time
slot basis, taken as Tts = 2 ms. The vector Γ was chosen
since it establishes a physical layer packet error rate
equal to 10−2 for an average SNR of 20 dB in [1], and it
defines the adopted service process transition probability
matrix X . Thus, the batch service process is represented
by a 6-phase model, which is suitable to represent a
wireless channel under Rayleigh fading effects and fixed
batch service disciplines of n = {0, 1, 2, 3, 4, 5} served

packets at each time slot, depending on fading channel
conditions.

We consider two traffic models, according to Poisson
and IPP (Interrupted Poisson Process) processes, both
of them holding an average traffic rate of 2 pack-

ets per time-slot. We adopt T =

(
0.8 0.2
0.12 0.88

)
and

L =

(
0 0
0 1600

)
as the IPP-traffic parameters, average

signal-to-noise ratio γ̄ = 20 dB, maximum Doppler
frequency shift fD = 10 Hz, and queue length B = 100
packets.

Table I presents packet loss rate (ξ), dropping proba-
bility (Pd) and average spectral efficiency (S̄) values for
three different scenarios, namely the one presented in [1]
(LZG) as an example of the traditional cross-layer design
approaches, and our proposal (MSG) with Poisson and
IPP traffic models.

Table I
CASE STUDY - COMPARISON BETWEEN TRADITIONAL AND

GIDS-DRIVEN CROSS-LAYER DESIGN APPROACHES.

LZG MSG + Poisson traffic MSG + IPP traffic
PER 0.01 0.01 0.01
Pd 0.0097 0.0096 0.0130
ξ 0.0196 0.0195 0.0228
S̄ 2.4277 1.9711 1.9477

We can observe that LZG model can be taken as a
particular MSG model case regarding a Poisson traffic
arrival process. Physical-layer packet error rate values
are the same as expected, given that the steady-state
probabilities for transmission mode adoption strictly rely
on Γ. Average spectral efficiency differences are due to
the fact that the MSG model only allows the transmission
of a number of packets equal to block size. On the
other hand, the LZG method grants packet transfers even
below the block data filling level at a given time-slot.

It is also worth noting that LZG model does not
properly fit in IPP-traffic cross-layer design case, since
it produces noticeable differences for the remaining
performance metrics, such as dropping probability Pd.
Thus, we perform an additional study case, in order to
determine a suitable Γ vector to achieve the same ξ value
(ξ =0.0196) for IPP as obtained for previous case study
Poisson traffic model, given an identical average arrival
rate. We adopt the same T , L, γ̄, fD, and B values as
in the first study case. Table II describes the achieved
values:

Comparing the results from Tables I and II, we observe
that the thresholds vector gets more conservative for IPP-
traffic than in Poisson traffic case - i.e., each modulation
scheme is used under higher SNR values. As a con-



Table II
CASE STUDY - OPTIMIZED SYSTEM PARAMETERS FOR IPP

TRAFFIC.

Metric Value
PER 0.0059
Pd 0.0137
Γ [8.6350; 10.9479; 17.1120; 18.6771; 23.2709]
S̄ 1.9469

sequence, the IPP traffic experiences a lower physical-
layer error rate (0.0059 < 0.01); on the other hand,
there is a higher packet dropping probability (0.0137 >
0.0097), due to the higher packet arrival rate observed
during transmission periods (Pon = 0.625). So, we state
that it is not sufficient to take Poisson-driven results
as a standard for other traffic models with the same
packet arrival rate, due to the noticeable performance
differences - different adaptive modulation thresholds
and system performance. Moreover, a physical-layer-
only adaptive modulation technique is insufficient to
guarantee desirable quality of service levels. In fact, it is
necessary to take higher layers’ parameters into account
to produce system performance optimization.

In the following case study, we compare the system
performance values for Poisson and IPP traffic models
with equal average packet arrival rates. If they were
similar, it could be reasonable just to take Poisson-case
vector into account to evaluate optimal performance for
every traffic model, due to its simplicity. Considering
average packet arrival rate λTts = 2 packets per time
slot, maximum Doppler frequency shift fD = 10 Hz,
and queue length B = 20 packets, both Poisson and IPP
traffic models were evaluated. The adopted IPP matrices

were T =

(
0.8 0.2
0.4 0.6

)
and L =

(
0 0
0 3000

)
. As a final

test, the threshold vector adjusted for a Poisson traffic
was used for the IPP data traffic source, to evaluate the
performance impact.

Figure 3 help us to observe that the average spectral
efficiency is severely degraded for the IPP traffic model,
due to the upsurge of packet dropping effects during IPP
transmission periods. In 4, we see that the packet loss
rate is specially subject to the average SNR values. The
performance of the IPP model is better on higher average
SNR values, since more efficient modulation schemes
are adopted, which is more interesting for traffic models
with higher burstiness, while the opposite holds for lower
average SNR values. We can also observe that the IPP
model performance with Poisson-adjusted thresholds is
significantly worse - higher packet loss rate and lower
average spectral efficiency - than the one with a properly
IPP-adjusted vector.

Figure 3. System throughput - Traffic Models Comparison.

Figure 4. Packet Loss Rate - Traffic Models Comparison.

Thus, we state that the system performance is highly
influenced by the adopted traffic model. Besides that, it is
not reasonable to simply adopt Poisson-driven adaptive
modulation threshold vector for IPP traffic scenarios,
since we observe an average spectral efficiency decrease
and a packet loss rate increase in the whole average
signal-to-noise interval range.

After identyfing the need for considering more accu-
rate traffic models, we submit a IPP traffic with matrices

T =

(
0.8 0.2
0.3 0.7

)
and L =

(
0 0
0 3000

)
over a system

with transmitter queue length given by B = 20 and 40
packets, minimum achieved packet loss rate ξmin and
average spectral efficiency (S̄) are evaluated in order to
analyze queue length influence. The results obtained are
shown in Fig. 5 and 6.

Figures 5 and 6 show that the increase in queue length
offers a small S̄ increase for lower average SNR values.
This result for higher SNR values is due to the adoption
of transmission modes with higher spectral efficiency
for both queue length values, conjugated with the small
packet dropping probabilities verified on those scenarios.
We confirm that increasing queue length B decreases
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Figure 5. Queue length influence on ξ over SNR range.
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Figure 6. Queue length influence on S̄ over SNR range.

packet loss rate ξ, as stated by the authors in [9].
After that, we also evaluate arrival data rate influence

on minimum achieved packet loss rate ξmin and S̄, just
by comparing two traffic data sources with different ar-

rival data rates, described by matrices L1 =

(
0 0
0 3000

)
and L2 =

(
0 0
0 6000

)
, respectively. Numerical results

shown in Fig. 7 and 8 were obtained for queue length
B = 20 packets. As mentioned by the authors in
previous works, increasing arrival data rate leads to
higher ξ values; however, it improves S̄, since there
are more available packets to be transmitted per data-
unit, specially for higher average SNR values, due to
the adoption of higher spectral efficiency transmission
modes.

Finally, we consider traffic burstiness influence on
minimum achieved packet loss rate ξmin and S̄, just by
comparing two traffic data sources with Pon = 0.4 and
Pon = 0.6, respectively. Numerical results shown in Fig.
9 and 10 were obtained for average packet arrival rate
λTts = 2.4 packets per time slot, maximum Doppler
frequency shift fD = 10 Hz, and queue length B = 20
packets.

For this study case, we can observe that the model
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Figure 7. Arrival Data Rate influence on ξ over SNR range.
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Figure 8. Arrival Data Rate influence on S̄ over SNR range.
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Figure 9. Arrival Data Rate influence on ξ over SNR range.

with higher transmission period (Pon) presents a higher
S̄. This is reasonable since, for a given time-slot period,
there are more available packets to be transmitted for
Pon = 0.6. By the other way, such transmission period
increase also leads to higher ξ values, specially for
lower average SNR values, due to higher packet dropping
probability. The amount of dropping events decreases for
Pon = 0.4 because there are less packets arriving during
the time slots in which few or even no packets are served.
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Figure 10. Arrival Data Rate influence on S̄ over SNR range.

V. CONCLUSION

In this paper, we developed a cross-layer design pro-
cedure to improve system performance for transmissions
over adaptive wireless networks. Taking previous works
as starting points, we presented a direct design approach
which maximizes average spectral efficiency subject to
an overall target packet loss rate, which combines errors
from physical and data link layers considering more
accurate data traffic models. We performed changes
on data traffic patterns, wireless channel models and
QoS performance metrics [12], in order to check the
amplitude of such advantages taken from joint CLO
design frameworks, analyzing system effects over typical
wireless tactical systems.

We observed that traditional cross-layer design ap-
proaches do not properly fit for more elaborated traffic
models, since they produce noticeable differences in
important system performance metrics. We also stated
that the system performance is highly influenced by the
adopted traffic model, and it is not reasonable to sim-
ply adopt Poisson-driven adaptive modulation threshold
vector for IPP traffic scenarios. Finally, we studied the
influence of physical, data-link and application layer
features over noticeable performance metrics, indicating
their close dependence on application layer features such
as data rate and burstiness.

There are several possible ways to extend the results
presented in this paper. One direction is to improve sys-
tem performance by an association between application
data traffic burstiness and adaptive modulation thresholds
optimization, by the evaluation of a suitable threshold
vector for each data arrival rate. Another direction is to
evaluate the impact of feedback channel imperfections
over the system performance. Finally, we can consider
the case multiple transmitters want to maximize their
revenues in the same environment. In this case, it is
important to consider the interactions among different
users, under a multitude of channel, interference, buffer,

and application combinations.
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