
Probabilistic Approach to Network-Based
Virtual Computing

Chung-Ping Hung∗ and Paul S. Min†
Department of Electrical and Systems Engineering, Washington University in St. Louis

One Brookings Drive, St. Louis, MO 63130, USA
Email: ∗chung23@wustl.edu †psm@wustl.edu

Abstract—In this paper, we propose a probabilistic approach
to desktop virtualization. Like the application streaming, appli-
cations that are stored and managed in the server are uploaded
to and ran on remote devices in speculative orders to achieve
high performance computing. To ensure the compatibility, the
required portion of the operating system is packed and uploaded
together with the applications.

A look-up table (LUT), which reflects the probabilistic behav-
iors of code blocks during the execution of applications, is used.
In order to reduce the computational complexity associated with
the LUT (and thus the latency), the initial LUT with a very large
number of entries is successively substituted with smaller LUTs
while preserving approximately the same quality of information.
We also propose the use of hierarchical LUTs whereby a large
LUT can be separated into multiple smaller LUTs to improve
performance and/or reduce cost.

Index Terms—virtual computing, memory management, com-
puter network, information technology.

I. INTRODUCTION

Today, people use computers on daily basis whether they
realize it or not. Other than traditional computers, cell phones,
PDAs, portable media players, GPS, automotive electronics,
and household appliances also provide IT resources.

Companies around the world have developed hardware and
software to make standards to ease the integration of those
resources [9], but rapid changes in technology make it virtually
impossible for ordinary users to keep up. There are significant
challenges in providing information technologies that are easy
to use for ordinary users.

This paper aims at proposing a novel server-client archi-
tecture that reduces the complexity of information technology
while providing high performance. While several claims have
been made on this front, the solutions proposed thus far
adopted piece-meal approaches for specific applications [6],
[7], [9] limiting the applicability and scope. The standards
lack the generality needed to make them adaptable with all
kinds of operating systems and processor types. Many of
these attempts resulted in poor performance, not acceptable
in today’s computing environment.

The particular paradigm this paper is focused on is based
on desktop virtualization [6], [7]. Departing from the 1960s-
style terminal architecture, desktop virtualization adds a layer
of function known as the virtual machine monitor [6], [7]. The
virtual machine monitor interacts with the operating system in
the server to display a desktop remotely on the client machines.
The virtual machine monitors also manage input/output (IO)

functions at the client machines executed by keyboards, mice,
and video displays. On a client machine, the user sees a
desktop like the one that appears when an ordinary computer is
turned on, but this desktop is emulated by the server interacting
with the virtual machine monitor. The client machine acts like
a simple display device with keyboard and mouse. From the
remote desktop, the user can utilize software applications that
reside in the server, without having to install and manage them
locally.

The main benefit of desktop virtualization in IT strategy is
clear such as software resources can be centrally managed to
save maintenance and repair cost. Since the client machines
interact with the virtual machine and not directly with the soft-
ware applications, the client machines can be made simple and
inexpensive. Without the complex operating system functions,
the client machines are more efficient and reliable for ordinary
users.

We briefly introduce the background and related work on
desktop virtualization world in Section II and III, respectively.
Considering to the challenges we states in Section II, we set
up our design objectives in Section IV, and then describe our
proposed architecture based on them in Section V. Speculative
page uploading, which is the key feature of the proposed
architecture, is described in Section VI. We also propose two
algorithms to alleviate implementation difficulty and improve
performance in Section VII and VIII. Finally, there are con-
tributions and future work in Section IX and X, respectively.

II. BACKGROUND

There are two common architectures of desktop virtualiza-
tion, as shown in Fig. 1. The architecture shown on the left in
Fig. 1 resembles the traditional terminal architecture wherein
the client machine’s main job is performing the I/O functions.
Based on the inputs received from the client machine, the
server runs software applications and sends the outputs back
to the client machine for display or other forms of output
(e.g., audio). This architecture reaps the benefits of traditional
server-client architecture such as the ease of management
and cost reduction. The drawback of this architecture is the
large amount of data that needs to be exchanged between the
client machine and the server across the communication link,
which often is unreliable. This results in potentially slow and
unpredictable interactions between the client machine and the



Fig. 1. Common architectures of virtual computing.

server. Today, most of the browser-based applications in the
Internet use the architecture shown on the left in Fig. 1.

The architecture depicted on the right in Fig. 1 is known as
the automated software distribution or application streaming.
When a user chooses to run a software application in the
server, the server uploads the selected software application
over the communication link and the software application
is run on the client machine using the local processor(s).
This architecture improves interaction time for the users since
the software application is run locally. A drawback for this
architecture is that a significant portion (40% or more in
current implementations) of the software application must be
first uploaded, which delays the start-up process significantly.
Depending on the performance of the communication link,
there may be substantial delay before the software application
is downloaded to the client machine. Another drawback is that
since the software application is run on the client machine, it
might be sensitive to the operating system’s configuration and
stability of the client machine, which leaves the responsibility
of operating system maintenance to the users.

It is clear that virtual computing presents substantial op-
portunities for high performance computing and ease of IT
management. Currently, however, there is no method of virtual
computing that provides the necessary performance, reliability,
and convenience that are expected from the users. The result-
ing architecture must have the look and feel of the computers
that today’s users are accustomed to. Without this, wide spread
acceptance of virtual computing may remain elusive.

III. RELATED WORK

The early days of virtual computing was based on main-
frame computers [1]. Using a centralized mainframe computer,
a number of remote terminals emulate the mainframe remotely.
In this method, the remote terminals are connected directly to
the mainframe using dedicated cables. The computing resource
in the mainframe is simply shared among the remote terminals
by time-division multiplexing.

As the Internet proliferated in 1990, network-based ap-
proaches to virtual computing emerged [2]–[11]. In this

method, the remote terminals are not connected directly to
the computing resource. By using the network connection
available to the remote terminals, any computing resources
in the Internet can be accessed and used.

For example, using network browsers, users can access com-
puting resources located anywhere in the Internet. However, as
anyone who has surfed the Internet can testify, the performance
of network browser can be highly unpredictable. [4], [6].

In [2], [10], authors discuss a new problem of security
arising from virtual computing. In [3], [8], [12], authors
describe issues related to application streaming.

In [12], authors propose a novel virtual web service archi-
tecture which integrates web services without user awareness.
The users can access the web services with the same experi-
ence they are used to without manually switching around the
service providers.

In [13], authors take the advantages of virtualization and
further integrate the Java Virtual Machine technology into the
operating system. We believe it is the future of virtualization
computing.

While virtual computing is touted as the solution to manage
extreme complexity in today’s computing, there is no clear
approach reported to date that address the performance, con-
venience and cost involved in virtual computing.

IV. OBJECTIVES OF OUR SOLUTION

The main aim of this paper is to develop a novel method
of desktop virtualization that improves the performance, reli-
ability, and convenience, and at the same time, addresses the
challenges stemming from diverse hardware and software. In
this paper, we focus on the following three objectives for the
desktop virtualization method to be developed.

Objective 1
Software applications and general operating system
components should reside centrally at the server in
the proposed architecture, which enables skilled IT
professionals to manage them efficiently.

Objective 2
Personal data and files are store in the client ma-
chines, since some users would feel more comfort-
able storing their personal data and files locally in
their own machines rather than in remote servers
controlled by somebody they don’t know. Privacy
and security are top concerns of most users.

Objective 3
In the proposed architecture, software applications
are run in the client machines, where computational
resources are dedicated for them without incurring
long transmission delay.

V. PROPOSED ARCHITECTURE

Based on the above-stated objectives, Fig. 2 reflects a high-
level depiction of the proposed method. The proposed archi-
tecture employs a server wherein software applications and
operating systems reside. The client machines store personal



Fig. 2. High-level depiction of the proposed architecture

data and files, and have limited device system functions such
as boot loader, file management, and I/O.

When a software application is running on any computer
(real or virtual), the operating system assigns a memory
structure with which the processor(s) interacts. This memory
structure is known as the virtual memory (VM). From the VM,
the processor fetches the instructions and data, responses to the
inputs, writes intermediate results, invokes output routines etc.
All of processing done by the processor is based on the VM.
For Windows XP, the VM is defined over the address range
of 00000000–FFFFFFFF, of which 00000000–7FFFFFFF is
the user space and 80000000–FFFFFFFF is the kernel space.
There are a total of 4GB VM addresses defined for each
Windows XP process.

The VM is organized in terms of page. For example,
for Windows XP, each page corresponds to 4KB of data.
For each application, some pages of the VM are specific to
individual users, some are populated by the operating system,
and some are populated during the run time. Once an ISA-
compatible machine has the same VM image and limited
system level compatibility (e.g., providing device drivers in
case of the application software performing low-level access),
it can execute the same application software and get expected
results regardless of who creates the VM space. In other
words, the VM space is an instance which represents the
major information about running a process; the proposed
virtualization becomes the matter of how VM space is created,
transferred, and accessed.

In the proposed architecture, the VM space should be
created by the server since memory management is handled
by the operating system, which should be managed by IT
personnel centrally based on Objective 1. Similar to the VM
space in a standalone computer, some of the pages are mapped
to components that belong to the operating systems and the
application software originally stored in the server while some
other pages are mapped to user’s personal data and files, which

are physically stored in the client machine to satisfy Objective
2.

In order to achieve Objective 3, the context in the VM space,
or at least the pages required immediately to continue execu-
tion, should be made available at the client’s machine. In other
words, there might be more pages of data transferred from the
server to the client machine over the Internet compared to
conventional application streaming architectures.

Furthermore, the client’s machine would request the pages
from the VM space in various orders during the runtime. If
the server uploads every page physically unavailable at the
client’s machine, which is similar to the on-demand paging
we apply on current memory management, the performance
would be intolerably low since the transmission latency over
the Internet is thousands of times slower than that of the local
hard drive bus. Therefore, we need to investigate a speculative
page uploading algorithm to reduce the chance of on-demand
transmission and thus improve the runtime performance.

VI. SPECULATIVE PAGE UPLOADING

A. Observations

A typical VM space in 32-bit Windows XP (i.e., 4GB space
consisted of 4KB pages) can hold 1M pages. Theoretically
there will be 220! possible page access sequences within the
VM space, which is difficult, if not impossible, to manage.
However, three properties make it possible to manage the
probability model of page access sequences. First, most of
the pages are never accessed, which significantly reduces the
number of possible page access sequences. Second, some
pages are considered essential that have to be accessed anyway.
Third, some pages tend to be followed by or follow particular
ones; others might never or unlikely to be accessed before or
after particular ones.

To explore and utilize these properties which reduce uncer-
tainty of memory access model, we have to profile the memory
usage behavior of the application software.

B. Profiling

Fortunately, Oracle provides truss, which is a powerful
tracing facility, integrated in Solaris and OpenSolaris. We
can get page access sequences from a program starts, with
runtime user interactions, till it ends, by tracking and recording
the page fault addresses (since Solaris is a pure on-demand
paging operating system.) If we keep track of enough of these
page access sequences, we can characterize and establish the
probabilistic model of memory usage per application software
and user.

C. Algorithm

Fig. 3 illustrates the traditional on-demand paging protocol
applied to network based desktop virtualization. As we can
see, the server only sends the page requested by the client
each time, which leaves vast idle periods due to the round-trip
delay of the network.

In order to utilize the idle periods, we propose an algorithm
illustrated in Fig. 4. Once the client machine tries to access



Fig. 3. On-demand page download scheme.

Fig. 4. Speculative page download scheme.

a page that is currently unavailable locally, it sends a request
for the page to the server. The server does not only reply
with the page, but also uploads a series of other pages, which
are considered the most likely ones to be accessed thereafter
according to the probability model. If the prediction is correct,
the client machine can continue the execution without the
relay involved in requesting the next page. If the prediction
is incorrect, the client machine sends the request for the next
page, just as it does using the conventional on-demand paging,
and stores the incoming pages for potential future use.

D. Probability Model Management

We can get a list of potential page access sequences with
their occurrence probabilities by using truss in Oracle Solaris
or OpenSolaris to trace and count the page faults of sufficient
runtime samples. In the proposed architecture, the probability
model is managed by a special look-up table (LUT). Each
entry of the LUT represents a particular page access sequence.
Once the server gets a client machine’s request, including the
current required page number and the page usage history, it
looks through the entries, finds the one whose prefix matches
the client’s request with highest probability, and then sends
the requested page and the following ones in that entry, i.e.,
the most probable page series that the client might need at the
time. In other words, we expect the page access behavior to
be Markovian.

Managing and searching from the LUT, however, is not
going to be easy due to the huge number of entries, even
if the number of potential page access sequences has been
significantly reduced from the worst case. Therefore, we
need further algorithms to reduce the LUT’s size without
significantly degrading the speculation accuracy.

VII. LUT REDUCTION

Almost everything in the world can be modeled in a Markov
chain. However, the model can be difficult to implement if too
much information is carried in states.

If the server sends a series of pages according to the full
page access history from the beginning of the application soft-
ware in the proposed architecture, the Markov model would be
too complex to handle. Therefore, we try to create a simplified
Markov model, which carries shorter page access history
in its states while providing approximately equal prediction
accuracy.

Here is our observation of a hypothetic memory access
model. Assume we have N pages of data and M possi-
ble page access sequences {Seq0, Seq1, . . . , SeqM−1}, where
M � N !. We also randomly assign Pm, where m ∈
{0, 1, . . . ,M − 1}, to be the probability of each Seqm’s
occurrence. Each sequence represents an outcome, which is
the following page access behavior in this case.

Intuitively, we can always pick up the right outcome based
on the information provided by the entire known page access
history. However, how well we can do if we can only remem-
ber several pages recently accessed depends on the mutual
dependency between the full history and the recent partial one,
which can be measured by mutual information.

The original equation of mutual information is given by:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p1(x)p2(y)

)
(1)

where X and Y are random variables represent the full and
partial page access histories, respectively. In our case, however,
each y is the postfix of the corresponding x, such that (1)
becomes the following equation:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p1(x) log

(
1

p2(y)

)
(2)

The mutual information between different orders of y and
full page access history x in our 32-page experiments, which
have different numbers of possible sequences, is represented in
Fig. 5. As we can see, the mutual information gets “saturated”
in certain order of y, i.e., we cannot get more information
and thus more accurate prediction by remembering longer
sequences. Also, the more possible sequences we have, which
means the less even in our probability distribution, the higher
saturation order we get.

The idea is similar to lossy data compression techniques. We
first analyze the full model using mutual information approach,
and then select a proper order of page access history to keep
track of. Therefore, we can have approximately the same
prediction quality with a simpler Markov model, which can
be implemented in a smaller LUT, and thus reduce the cost in
keeping and addressing records.

A. Hierarchical LUT

After we simplify the Markov model and reduce the size
of the LUT that represents the page access model, we may



Fig. 5. Mutual information of different number of random sequences and
different orders of tracking history.

find that preserving all of the information in a single LUT is
still not feasible within the given memory technology. We now
consider separating one LUT into multiple LUTs in hierarchy,
i.e., storing the LUT in multiple levels of storage elements
which are different in speed and capacity. In this paper, we
simplify the problem by separating one LUT into only two
levels. One is the fast portion, which may be implemented by
fast and expensive technology (e.g., semiconductor memory),
and the other is the slow portion, which may be implemented
in bulk storage devices (e.g., hard drives).

Let Tav be the average transaction time.

Tav = Pfast · Tfast + (1− Pfast) · Tslow (3)

where Pfast is the probability of accessing the fast portion
and Tfast (Tslow) is the transaction time for the fast (slow)
portion.

Intuitively, the optimal algorithm would be first sorting
the entire entries in the LUT by the occurrence probabilities
from high to low. Then, the entries with high occurrence
probabilities are put in the fast portion, and the other entries
are put in the slow portion. We can, therefore, minimize Tav
by maximizing Pfast. However, we have to sort the entire
LUT by occurrence probabilities in the beginning, and again
whenever the probabilities change, which is an unsustainable
overhead for the LUT, in this approach. In order to reduce the
complexity, we propose an alternative algorithm to partition
the LUT.

B. Our Markov Model Properties

Fig. 6 shows an example of the Markov chain in the
proposed algorithm. Since we have to keep track of the page
accesses from the beginning, our Markov chain is similar to
a tree structure. The Markov chain starts from an imaginary
root state, and then goes to multiple first-level states, which
represent the earliest page we can trace, with a probability
distribution. Each first-level state also has multiple paths going
to second level states, which represent the second page we can
trace given the first page accessed before, with a probability
distribution, and so on. Corresponding to each leaf node, there
is an output value, i.e., the pages most likely to be accessed

Fig. 6. A simplified example of our Markov chain structure.

following the page access history. If we have long enough
page access history, the state transitions only occur between
the leaf nodes according to the latest incoming information.

C. LUT Separation Algorithm

Once we have the tree structure and the probability distri-
butions, we can store the full Markov model in fast and slow
LUTs accordingly. The proposed algorithm is described below:

1) Assume all states are stored in the fast LUT.
2) Analyze the probability distribution of the outgoing

paths from the root node.
3) Remove the subtrees which are rooted from the outgoing

paths with relatively low probabilities, to the slow LUT.
4) Redo steps 2 and 3 for each next level node, which is

remain in the fast LUT, until reaching the leaf nodes.

D. Comparison

Comparing to the optimal approach, the proposed algorithm
has some pros and cons:

Pros: 1) Assume we have total N pages and (N −M)
pages are monitored in our model. Instead of
sorting PNN−M entries in the worst case, the
proposed approach only needs to sort (N −
m + 1) entries CNm−1 times for the mth level,
which significantly reduce the computational
complexity.

2) Each sorting can be done independently, i.e.,
we can significantly speed up the process by
utilizing parallel computing technologies.

3) We can limit the portion that needs to be
updated in case of minor probability changes
instead of processing the whole LUT again.

Cons: 1) The proposed algorithm is not optimal; we
cannot guarantee that all entries in the slow
portion have lower probabilities than any entry
in the fast portion.

2) We have to develop a fast analyzing algorithm
to keep the computational complexity low.

3) We cannot know the coverage rate and the
entry number of each portion from any preset
coefficient before we run the first pass.



E. Analyzing the Probability Distribution

We introduce three standardized models which can charac-
terize the unknown probability distributions with some degree
of accuracy in the proposed algorithm’s step 2 and help us to
determine whether its element has relatively low probability
or not.

Model A
The first model is illustrated in Fig. 7(a). As we can
see, of the possible n points, some points have the
same nonzero probabilities while the others have zero
probabilities. The probability distribution function is
given by

P1(x) =
1

n̂
for x = 1, 2, . . . n̂ (4)

where n̂ is the number of points with nonzero
probabilities. In Model A, the entropy provided by
the same n̂ is maximized.

H(P1(x)) = −
n̂∑
x=1

{
1

n̂
· ln
(
1

n̂

)}
= ln(n̂) (5)

Model B
In this model, the probability of each element is
exponential decreasing within a limited range. The
distribution function is given by

P2(x) = arx−1 for x = 1, 2, . . . n (6)

where
a =

(
1− r
1− rn

)
0 ≤ r < 1 (7)

Parameter r represents the degree of concentration
for all Model B’s. Model B with n = 7 and r = 0.5
is illustrated in Fig. 7(b).
The entropy of model B is

H(P2(x)) = −
n∑
x=1

{
arx−1 · ln

(
arx−1

)}
= ln(1− rn)− ln(1− r)

− (n− 1)rn−1 − nrn + r

(1− r)(1− rn)
· ln(r) (8)

Model C
In this model, the probability of each element is
linearly decreasing within a range. The distribution
function of Model C is given by

P3(x) =

{
a− k · (x− 1) for x = {1, 2, . . . , ñ}

0 otherwise
(9)

where

a=
1

ñ
+
k · (ñ− 1)

2

ñ=min

{⌊
1 +
√
1 + 4 · k−1
2

⌋
, n

}
There are two types of Model C which are illustrated
in Fig. 7(c) and (d), where ñ = n = 7, k = 0.01,

Fig. 7. Illustrations of the three standardized models.

and n = 7, ñ = 4, k = 0.1, respectively. For
the probability distribution shown in Fig. 7(c), all
elements have nonzero probabilities; in Fig. 7(d), the
probabilities decrease so sharply that the last three
elements have zero probability.
The entropy of Model C is

H(P3(x))

= −
ñ∑
x=1

(a− k · (x− 1)) · ln (a− k · (x− 1))

(10)

Unfortunately, there is no way to further simplify the
entropy of Model C as in the previous two cases.



As we can see, the entropy of Model B is the function of
parameters r and n, the entropy of Model C is the function of
parameters k and n, while the entropy of Model A is only the
function of n̂. We can model every non-increasing probability
distribution function by the three standardized models with
equal entropy based on this observation. Therefore, we can
establish an approximate relationship between the coverage
rate and the number of selected elements.

The threshold point k for an arbitrary non-increasing prob-
ability function is defined by the following equation:

k = argmin
i∈N

{
i∑

x=1

P (x) ≥ α

}
(11)

where α is the coverage rate between zero and one.
We can solve k2 for Model B by

k2∑
x=1

P2(x)=a

k2∑
x=1

rx−1 =
1− rk2
1− rn

≥ α

⇒k2=dlogr {1− α(1− rn)}e (12)

We can calculate k1 for Model A as well:
k1∑
x=1

P1(x) =

k1∑
x=1

1

n̂
=
k1
n̂
≥ α⇒ k1 = dn̂αe (13)

The threshold point k3 for Model C is solved by geometry
similarity of right triangle and trapezoid:

k3 =


⌈

2
n+nk−

√
2
n+nk2−8α·k
2·k

⌉
for 0 ≤ k < 2

n2⌈
(1−

√
1− α) ·

√
2/k
⌉

for k ≥ 2
n2

(14)

Then we expect for an arbitrary non-increasing probability
distribution function f(x), the threshold point kf(x) would be
close to k1, k2, and k3, which come from the standardized
models with the same entropy and total points as of f(x). We
verify it by two test sets; each includes 99 randomly generated
non-increasing probability distributions, whose probabilities
are assigned by uniform and Gaussian distributions.

Fig. 8 shows the simulation results of the two test sets.
The differences of the 90% threshold points among the three
standardized models and the real distributions generated by
uniform distribution are shown in Fig. 8(a). As we can see,
k2’s are closest to the actual threshold points while k1’s are
also very accurate. The simulation result of the Gaussian
counterpart is shown in Fig. 8(b). As we can see, k1 and k2
are good references for the actual threshold point.

The errors in coverage rate of the uniform and Gaussian
test sets are shown in Fig. 9(a) and (b), respectively. As we
can see, the coverage rate’s errors are acceptable for each
standardized model in both test sets, i.e., the idea that using
these standardized models with the same entropy to estimate
the threshold point of an unknown probability distribution,
even before they are sorted, is sustainable.

Since the conversion from the entropy to the threshold point
based on Model A has the lowest computational complexity
among the three standardized models and also provides pretty

Fig. 8. Differences between estimated and real threshold points.

good accuracy, we believe that Model A has higher potential
to be applied to the proposed algorithm.

In the real world, we expect the LUT’s separation to be
efficient, i.e., the fast LUT saves much in capacity without
losing too much information. If we found the estimated
threshold point is close to 0.9n, i.e., this probability model
is very uniform, we can conclude that applying separation for
this probability model is inefficient thus we keep all the data
in the fast portion.

Since we cannot get exact partitioning until completing the
first pass, further adjusting is required. Since our Markov
model is a tree-like structure, it naturally provides multiple
granularities in probability adjustment. For example, if we
observe that the coverage rate of the fast portion is far less
than the expected value after the first pass, we can relax the
criteria for the root levels. On the other hand, if we observe
that the coverage rate of the fast portion exceeds the capacity
a little bit, we can tighten the criteria for the leaf levels.
By controlling the criteria for each level, we can achieve
successive adjusting of the coverage rate to full utilize the
fast portion capacity.



Fig. 9. Coverage rate errors generated by estimated threshold points.

VIII. CONTRIBUTIONS

We developed a novel architecture for virtual computing in
this paper. The proposed architecture combines the merits of
the known methods: (1) By storing the software applications
and the general operating system components at the server, it
reduces the complexity arising from the incompatibility and
inconsistency in the hardware and software. (2) By storing
the personal data and files at the client machines, it allows
the users to maintain the control of own data and files,
and ensure the security and privacy. (3) By running the
software applications on the client machines locally, optimal
performance results. (4) By prioritizing the download sequence
of the VM pages based on users’ usage profile, the start-
up delay is minimized and the probability of running out of
pages during run time is minimized. (5) By introducing the
LUT reduction and separation algorithms, the difficulties on
implementation can be significantly alleviated.

IX. FUTURE WORKS

In this paper, we address the performance of network-
based virtual computing using the probability of code block
usage. While the proposed approach improves the start-up
delay and the performance, we have not addressed the issue of
controlling the code block sequence, when the user behaviors

change in real time generating an unacceptable rate of misses.
In the future, we will investigate the use of information
associated with the misses to adapt the code block sequence
in real time.

Even with the methods of reducing the complexity in
the LUTs, the entries in the LUTs remain substantial. We
will investigate ways to reduce the complexity further. For
example, in addition to the two-level hierarchy we described,
we will extend our study to multiple levels of hierarchy.

In addressing the performance, the granularity of code block
size is an important issue. We will investigate this issue in the
context of performance control.

Copyright and privacy protections are significant issues
in today’s digital information distribution. Imposing access
control on certain code blocks can be effectively used to
prevent unauthorized accesses of some code blocks. We will
investigate this issue as part of the code block download
control.

There are numerous application opportunities that can ben-
efit from virtual computing. We will investigate one or more
applications to adopt virtual computing. This may involve
some level of physical prototyping.

REFERENCES

[1] L. P. Deutch and B. W. Lampson, SDS 930 Time-sharing System
Preliminary Reference Manual, Doc. 30.10.10, Project Genie,
Univ. Cal. at Berkeley, April 1965.

[2] Michael Price, The Paradox of Security in Virtual Environments,
Computer Magazine, Vol. 41, Issue 11, Nov. 2008, pp. 22-28.

[3] Joeng Kim; Baratto, R.A.; Nieh, J., An Application Streaming
Service for Mobile Handheld Devices, 2006. SCC ’06. IEEE
International Conference on Services Computing, Sept. 2006, pp.
323-326.

[4] Philip Winslow et al., Desktop Virtualization Comes Of Age,
Credit Suisse, 2007-11-26.

[5] Rosenblum, M.; Garfinkel, T., Virtual Machine Monitors: Current
Technology and Future Trends, Computer Magazine, Volume 38,
Issue 5, May 2005, pp. 39-47.

[6] Uhlig, R. et al., Intel Virtualization Technology, Computer Mag-
azine, Volume 38, Issue 5, May 2005, pp. 48-56.

[7] Vaughan-Nichols, S.J., New Approach to Virtualization Is a
Lightweight, Computer Magazine, Volume 39, Issue 11, Novem-
ber 2006, pp. 12-14.

[8] VMware ThinApp Agentless Application Virtualization Overview.
[9] EMA Report: AppStream: Transforming On-Premise Software for

SaaS Delivery - without Reengineering
[10] Chen, P.M. and Noble, B.D., When Virtual Is Better Than Real,

Proceedings 8th Workshop Hot Topics in Operating Systems,
IEEE CS Press, 20-22 May 2001, pp. 133-138.

[11] Sunwook Kim et al., On-demand Software Streaming System for
Embedded System, WiCOM 2006 International Conference on
Wireless Communications, Networking and Mobile Computing,
22-24 Sept. 2006, pp. 1-4.

[12] Ana Fernandez Vilas et al., Providing Web Services over DVB-H:
Mobile Web Services, IEEE Transactions on Consumer Electron-
ics, Vol. 53, No, 2, May 2007, pp. 644-652.

[13] Godmar Back and Wilson C. Hsieh, The KaffeOS Java Runtime
System, ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), Volume 27, Issue 4, July 2005, pp. 583-630.


