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Abstract—This paper presents a modified Hopfield neural instead, only fault sets that have a non-negligible prdiabi
network for solving the system-level fault diagnosis prolm of occurrence are considered.

under the symmetric comparison model. The comparison-base | thjs paper, we consider the comparison-based diagnosis
self-diagnosis approach assigns tasks to the nodes, and the

outcomes from each pair of units performing the same task are approaqh since it is considered .to be mor_e practical. The
compared. The objective is to identify the set faulty of nods COmparison approach hgslbeen introduced |n_dgp€nd€ntly by
based on the matching and mismatching among the system’s Malek [16] and by Hakimi and Chwa [12] giving rise to

nodes. We considert-comparison-based diagnosable systems intwo models. The Malek’s model is known as tagymmetric
which at most ¢t nodes can fail permanently at the same time. comparisormodel and that of Hakimi and Chwa is called the

Results from a thorough simulation study demonstrate the déc- tri . del. In both dels it i d
tiveness of the Hopfield-network-based self-diagnosis algthm Symmetric comparisomodel. In both modeis 1t 1S assume

for randomly generated diagnosable systems of different ses that two fault-free nodes give matching results while ataul
and under various fault scenarios, making it a viable additon node and a fault-free node give mismatching outcomes. The

or alternative to existing diagnosis algorithms. . two models differ in the assumption on comparison tests

tiplggg)s(sgfr;naﬁglt ég’/‘gﬁg?ﬁé ié’rsrfgg'i"s%"f rg('%%rl‘gs'aog'ﬁ‘ﬂl' involving a pair of faulty nodes. In the symmetric model, lbot

neural networks. ' test outcomes are possible in this case (0 or 1), while in the
asymmetric model two faulty nodes always give mismatching

outputs. Fig. 1 summarizes all possible comparison outsome

for both models.

The system-level fault diagnosis problem aims mainly at

answering the very simple question “Who's faulty and who's Q O O O

fault-free?”, in systems known to be diagnosable. In recent 1 1

decades, the need for dependable computing systems for

critical applications has motivated researchers to inyats

this problem by assuming that nodes are able to test and | 0 X 0 1

to be tested by other nodes of the system. From the results

of the tests, nodes need to be diagnosed as faulty or fault- . Faulty~_

free. This problem, also known as tkelf-diagnosis problem - Fauli=Free O Q O

has been extensively studied in the last three decades (th

reader is referred to the following surveys for more details SYMMETRIC ASYMMETRIC

[3], [15]). Three types of diagnosis models have been stlidie

testing models [19], comparison models [16], [12], [20]dan Fig. 1. Possible Comparison Outcomes.

probabilistic models [15]. Testing models, such as thesatas

PMC model [19] and its variations, assume that each node iddentifying the complete and correct set of faulty nodes

assigned a subset of the other nodes to test and the diaggosgising a comparison model has been shown to be NP-hard [5],

based on the collection of test outcomes. While, comparisbat if the system ig-diagnosable, the problem is solvable in

models, such as the generalized comparison model (GCptlynomial time. This problem has been extensively studied

[20], assume that a set of jobs is assigned to pairs of distideading to elegant and efficient solutions [3], [15]. In this

nodes, and the results are compared. The outcomes of thesper, we present a new diagnosis approach based on a mod-

comparisons, i.e., the matching and mismatching resulés, #ied Hopfield Neural Network (ModofiedHNN) for solving

used as a basis in order to identify the set of faulty noddhe system-level diagnosis problem under the symmetriccom

In invalidation and comparison models, a worst-case behavparison model. Hopfield neural networks (HNNs) have been

is always assumed. That is, onhdiagnosable systems whereshown to be able efficient in solving optimization problems

the maximum number of faults is boundedbare considered [13]. They have been widely applied to various problems such

in order to guarantee a certain level of diagnosis. Finallss image restoration [17], channel allocation [14], anddum

probabilistic models [15] do not assume any bound, bbbundary detection [24], to name a few. We believe that this

I. INTRODUCTION




new type of diagnosis approach will be useful in the desigystem’s components caused this abnormal behavior. Ifsfaul
of future generation of dependable systems. are allowed to occur during the execution of the diagnosis

The remainder of this paper is organized as follow. Walgorithm, then the faults are assumed talppamic Whereas,
first provide general view of the fault and the symmetristatic faults are not assumed to occur during the diagnosis
comparison model in Section Il. The modified Hopfield neuraphase. Note that dynamic faults are hard to diagnose since a
network-based diagnosis approach is detailed in Section hode may fail after it has been diagnosed as fault-free bgroth
Simulation results are provided in Section IV. Section Viodes.
discusses about related work. Finally, Section VI condiuttie In this work, we consider only the static permanent faults,
discussion and motivates future investigations on theesyst i.e., software or hardware faults that always produce srror
level fault diagnosis problem. when they are fully exercised. However, we consider botd har
and soft faults.

Definition 1: A system ist-diagnosableif each node can

The system we consider is composed 8f nodes that pe correctly identified as fault-free or faulty based on adval
are interconnected with each other via a wired or wireleggllection of comparison results, assuming that the nurober
communication network. In comparison models, it is assumegliity nodes does not exceed a given bound
that pairs of nodes are assigned the same task to be performeghe fault diagnosis process is based on the comparison
The agreements (0) and disagreements (1) among the noglgfdrome output by the system’s nodes. We consider only
are the basis for identifying the set of faulty nodes. Thge deterministic diagnosis approach in which the input is
comparison diagnosis model can be described by two graphsgomparison syndrome and the output is the set of nodes
a communication graphand acomparison(or test) graph  diagnosed as faulty. In this paper, we consider the symenetri

The undirected communication gragh= (V, E) represents comparison model developed by Hakimi and Chwa in [12].
the interconnection topology of the system (see example in

Fig. 2 (A)). An undirected edge = (u,v) represents a

communication link between the two nodesndv. Whereas,

the comparison graph shows the comparison tests that arén the symmetric comparison model developed by Hakimi

performed in order to identify the set of faulty nodes onceand Chwa [12] it is assumed that a central observer (com-

faulty situation is detected, i.e., when the system desifitan  parator) is responsible of performing the comparisons eetw

its expected behavior due to faults in the nodes. An examlairs of nodes by assigning them some tasks from the set

of a comparison graph is provided in Fig. 2 (B). The set of alif tasksT = {11, T5,...}. Each pair of nodes; andv, is

comparison outcomes is called tegndromeand it is denoted assigned a taskd; € 7. Once the taskl; is completed by

by Q. The set of all faulty nodes in the system is called thieoth nodes, their results are compared. The comparisoigrap

fault set The actual fault set causing a faulty situation at @ this case, is an undirected gragh = (V,C), where V'

given point of time will be denoted b§. We will refer to any denotes the set of nodes a@t= {(v;,v;) : (v;,v;) is a pair

comparison syndrome that can be generated under the faulta§enodes performing the same tegke 7'}. From now on, we

IF by Qp. The objective of the fault identification algorithm iswill denote a node paifv;, v;) or (v;,v;) by ¢;;. The result

to identify I given Qp. of the comparison test between the nodeandv;, a binary

value, is associated with;;. This comparison result is 0 if

A. Fault Model the results generated by both nodes are identical; and it is 1
Faults can be classified based on their duration, their ustherwise, i.e., if their results mismatch.

derlying cause, or on how a failed component behaves once iThe outcome of a comparison test involving a pair of

has failed [2]. Based on how a failed node behaves once it Haalty nodes is unreliable (0 or 1). Both test outcomes are

failed, we could simply classify faults either laard or soft[7].  possible in this model, while in the asymmetric comparison

A hard-faulted node is unable to communicate with the rest nfodel (Malek’s model [16]) two faulty nodes always give

the system, whereas a soft-faulted node can continue t@at@pemismatching outputs (see Fig. I); denotes the set of nodes

and communicate with the other nodes in the system witfith which a nodev; € V, is compared, and is given by:

altered behavior. Based on duration, faults can be clagsifie

either apermanentintermittent or transient A transient fault i ={v;:¢;€C}

will eventually disappear without any apparent intervemti

whereas a permanent one will remain unless it is repair€d refers to the comparison outcome of the node pair

and/or removed by some external administrator. A partibpla  Definition 2: A fault setF” C V' is said to beonsistentvith

problematic type of transient fault is the intermittentlfabat @ symmetric comparison syndrorfeif for any Q% € €, such

recurs, often unpredictably. While it may seem that permanghatv; is fault-free, i.e.v; € V — F, QY =1 iff v; € F.

faults are more severe, from an engineering perspectieg, th Definition 3: A comparison assignment gragh(V, C') un-

are much easier to diagnose and handle. der the symmetric comparison model i (|V|) design iff
Once the system deviates from its normal behavior, far all v; € V,|T';| > «, i.e. each node is at least compared

diagnosis algorithm is executed in order to determine whietith « other nodes.

Il. PRELIMINARIES

B. Symmetric Comparison Model



Systems belonging to this special design(|V'|) have been a thresholding rule. Théh neuron’s input is derived from: i)
shown to bet-diagnosable in [18] and they can be easilthe outputs of other neurons scaled by the connection wseight

generated.
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and ii) an appropriate external input. The total input toroeu
i is denoted byS;, and is given by

S; = wavj + I;

J

where w;; refers to the connection weight from neurgn
to neuroni and I; is the external input. Neurons’ states
are updated using either a discrete activation functior wit

thresholdd; as given by

vo— 1 if S;>0;
L 0 otherwise.

or a continuous activation function as defined by

Vi = f(U) = % (1 + tanh (U?))

whereU; is the input signal and is a constant. The updating
process stops when the states are unchanged or the energy has

reached a minimum value. An energy function is defined for

1)

(B)
Fault-free "1
\Q\
SIS this network. For small values ef the energy functior® is
Faulty Lo defined as in [13];
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/ ‘ This energy function is minimized by the HNN’s updating

rule. Applying successively the updating rule will forcesth
> network to converge such that the energy of the network
J becomes smaller during the updating rule. Upon reaching a
stable state, we can deduce that it has fallen into minimum
energy state where this could be a local or global minimum. To

A . \\4\\ Qb6 —0 . \
0 — 1, \\\ \\\\\ AN \‘\ LS =0
N v adapt the HNN to any new applicatiom,; and thel; should
O ******* O be set appropriately so that E represents the function gedsh
045 =1 V4 N . .. .
to be minimized to solve the given optimization problem. The
energy function should represent all the constraints of the

A 2-Diagnosable Comparison-Based System: (A) Conication
problem.

Fig. 2.
Graph. (B) A Comparison Assignment and a Symmetric CompariSyn-
drome.

A small system connecting seven nodes is shown in Figu%e Applying Modified Hopfield Network to Diagnosis Problem

2 (A). A typical comparison assignment is provided in Figure |n our algorithm, a continuous Hopfield network is de-
2 (B), and a symmetric comparison syndrome correspondiggoped, which is updated until a stopping criteria is met
to the actual fault seF = {vs,v7} is also given. Note that or a predefined maximum number of iterations has been

Q%7 = 0 according to the symmetric invalidation rules. Thigeached. The modified Hopfield network for the comparison-
based system level diagnosis problem is builthéfneurons,

where each neuron corresponds to a node in the system. The
aim of the diagnosis problem is to label each nodéasity

example is a 2-diagnosable system [18].
(1) or Fault-Free (0), yielding hence a potential fault sét,

M ODIFIED HOPFIELD NETWORK FORFAULT

IDENTIFICATION
The Hopfield neural network (HNN) assumes that all newvhile minimizing the discrepancy between the input syndegom

rons are fully interconnected. Thiéh neuron is described by 2 and the syndromé&lr. An energy function is derived to
its state, which is denoted blj;. The value of each state isrepresent this while at the same time taking into account any
determined by the total input from other neurons followed bgonstraint a fault set must satisfy. Our energy functionvsig



TABLE |

by: E = E) + E» + E3, where PossiBLE ouTCOMES(V;, V;, Q).
N 2
= ) 00| 1 0«
N 0 1 0 0«
— . 0 1 1 1
By = 4 Z Z Vi—t ) 10| o0 0«
i=1 \jeli 110 1 1
N 1 1 0 1
By = A (1 —a(w,vj,ﬂfg)) @) Ll1]1 L
i=1 jeT;

whereFE;, E>; and E5 are the energy function components that
correspond to specific constraints dfliagnosable systems,discussed. Step 1) below explains the proposed initiadizat

and the functiom(m,X/j,Q}j) is defined as follows: method, which uses specific characteristics of the problem.
. PP _ ij_ Step 2) presents the updating procedure after the in#ializ
i 0 fFV,+V;+Q7 =1 ) . .
a(Vi, Vi, Q) = 1 otherwise tion. There areN neurons in the network arranged in one-

dimensional array. The network is fully connected as shown

The term E1 ensures that the proposed solution will nothayerig 3. The most important task is finding an appropriate
more thart nodes Iabeled_ as fau!ty. In fapt, we are looking fog,nnection weight matrix. It is constructed taking into @aat
the smallest fault set that is consistent with the.mput syme. the structure of the comparison graph. A considerationis th
From (2), we can easily deduce that a potential fault set Wifiy4q s, for example, no neuron should fire on another one
more thant faulty nodes will end up with a positive valueit j; is not its neighbor. An element in the weight matrix for
for E'1. While, fault sets with cardinalities smaller thamvill 5 .01 nection between two neuronsand j is computed as
result in a negative value df'l decreasing hence the energy,qous:

value. Smaller fault sets will be given more priority.

The second terniu2 aims at avoiding fault sets where all the
neighbors of any given node are faulty. In fact, if all neigh
of any node are faulty, then the system is not diagnosdtite.
is @ more specialized version éfl as it is applied only at the
node’s view, i.e., its neighbors.

Finally, the last termE3 which is the most important is
related to the consistency of the potential fault set witd th
input syndromey. To explain how we ended up with such a
term, we need first to comment the key idea behind it. Table |
shows all possible outcomes of the functiefV;, V;, Q). For
example, the first row of this table indicates thatljf = 0,

i.e., v; is fault-free, andV; = 0, i.e., v; is fault-free, then
the comparison outcome between nadeand v; will match
with the input comparison outcome which @8/ = 0. As a
result, notice that —a(V;, V;, Q) = O in this case. Thatis, ity 5
will not affect the energy terniv3. However, consider now the
second row, and follow the same reasoning. Sivice: 0, i.e.,
fault-free, andV; = 0, then the comparison outcome between
nodev; andv; should be 0, while this time the comparison wij = —A1(1 = 6;5) — A2(1 = Biz) — As )
outcome isQly = 1, and hence, there is a mismatch thafu
R

¥

Layout of the Hopfield Network for the Diagnosis Peghl

is the Kronecker delta function and defined wijth; as
ows:

needs to be avoided. Thus, this case and similar ones n
to be avoided by having them affecting negatively the ener
factor E3. All the three cases in rows indicated ky should
also be avoided as they contradict with the input syndrome. 1 ifi=j
Intuitively, this means that if the comparison outcoftié = 1, 0 = { 0 otherwise.
then for sure at least one of the two nodes is faulty, and if the

comparison outcomé&;! = 0, then for sure both compared

nodes should be either fault-free, or faulty. B = { 0 ifjely
1] -

B. Modified Hopfield Diagnosis Algorithm L otherwise.

In this section, the implementation of the modified hopfield The overall diagnosis algorithm is summarized in the fol-
neural network-based (ModifiedHNN) diagnosis algorithm i®wing steps.



: - : . TABLE I
i) The initial state of neurons is set to one or zero accordingeyrons OuUTPUTS FOR AD5 (10) SYMMETRIC COMPARISONGRAPH.

to the chosen initialization method, and the weights are

initialized using (5). i [ Vi
i) Compute all outputs using (1). § 8-83323?; :
iif) Repeat until a stopping criteria is met or after runniag 5 | 0.0997321 <«
certain number of iterations 1 | 0.119535
L . 3 | 0.115852
a) Calculate the activations of all neurons in asyn- 3 | 0.119291
chronous way using the updating procedure as de- 9 | 0.115835
scribed below. 2] 0.116041
b) Recompute all outputs using (1). g 8:}1232;

iv) Determine the fault set using the network’s outputs as
detailed below.

two classes is not all the time well defined. Hence, we adopted
e following heuristic to be able to extract the set of fault
odes by using the comparison graph and the input syndrome

Step 1-Initialization:In general, a random initialization
method is used as the initial states for the neurons in the HJ
field network. In our algorithm, all inputs have been initiall
to 1. Other heuristics could be used such as initializing tHE- o . )
states based on the probability of failure of the correspgnd  1he heuristic proceeds in the following steps.
nodes. Another heuristic could be by assuming that two node§y Set position variablgos to end of the array.
are fault-free and then generating the states of the renwini ji) Label the node in positiopos as fault-free and add it to
ones by using the input syndrome. A problem may arise that the setPendingF F. In the provided example, the state
the network get stuck at a local minimum. To avoid such  of nodev, will be fault-free, and the sePendingFF =
an occurrence, random noise is added. Weights are inéghliz {vo}. Decrease value gfos by one.
following (5) which mainly gives more weight to connectionsjii) Repeat the following steps until all nodes are labeled
that involve nodes compared together. either as fault-free or as faulty, ending FF is empty.

Step 2-Updating Proceduretn an asynchronous Hopfield
network, the neurons are selected randomly or sequeniiglly
a certain order for the updating. In our algorithm, a segaént
selection technique is used along with the following upuati
rule. We denote the activation of thith neuron bya;, and the
output is denoted by;. The change in the activation is given

a) Consider; € PendingF'F' if not empty. For each
vy’s neighbor, i.ev; € T';, if Q = 0 then label; as
fault-free and added tpendingF'F, else = 1)
and hence we need to label as faulty.

b) If pendingFF' =, then goto step ii).

by a!t!, where The described heuristic has been implemented and ex-
’ cessively tested as it will be shown in Section IV. In all
. scenarios this heuristic was successful in convertingectigr
a; ’
a;;+1 = a -3 (ZZ + Termy + Terms + Term3> the neurons’ outputs to faulty or faut-free states.
N 2
Term; = A, (Zoﬁ —t) IV. SIMULATION RESULTS
i=1
2 We have implemented the modified hopfield neural network-
T _ 4 N . based (ModifiedHNN) diagnosis algorithm using C++, and we
ermz = QZ Z 0j —t have performed extensive simulations using a PC equipped
=1 \Jel with an Intel Core 2 QUAD Q8300 CPU 2.5GHz and 4GB of
g RAM. All diagnhosable comparison graphs the we have used
_ t t 1]
Terms = A3Z Z (1 — al(o;, 05, O )) have been generated randomly. In addition, faulty sitnatio
i=1jel have been generated randomly and all possible fault setts tha
The output of theith neuron is calculated using (1) withmay occur in at-diagnosable system have been simulated by
€ = 1000. varying the number of faults from 1 ta We relied mainly

Step 3—Converting Network’s Outputs to a Fault SE: on diagnosable comparison graphs from the special design
clearly explain how we extract the set of faulty nodes coarsidD:(|V]), with ¢ < [V| — 2, introduced in Definition 3 as it
the neurons’ outputs, sorted in an ascending order, shownhi@s been proven to bediagnosable in [18], and it can be
Table 1l for the comparison grapPs(10). Faulty nodes are easily generated even for large systems.
pointed by«. First note that the Hopfield neural network was We will first start by showing results from a thorough
able to separate between the two classes: the faulty nodes simulation study to demonstrate the effectiveness of tive ne
the fault-free ones. However, from the extensive simutegio diagnosis approach. Then, a comparison with similar disigno
we have conducted we noticed that the boundary between #mproaches is provided.



A. Effectiveness of the ModefiedHNN-Based Fault Identifioaf n, we have randomly generatd®0n comparison graphs

tion Algorithm and tested them fot000n times using randomly generated
, ) ) ault sets, and where the maximum number of faults was

Extensive simulations have been conducted to check %@0 random. Over almost all these extensive simulatidres, t

eff|C|e_ncy of the new diagnosis aIgonthm._Varl(_)ys t_ypes iagnosis algorithm was able to determine the exact fatdt se
experiments have been run and the fault identification algﬁr’oviding us hence with around 100% correctness

rithm has been tested under all possible faulty situationihe As matter of fact. we can conclude that the ModifiedHNN-
following, we summarize the outcomes of such experimentiqe diagnosis algorithm is correct, i.e., it identifié$aallty

showing only the results for the symmetric comparison gra%des, and that Hopfield neural networks can be used to

Do(20). We hgve also tested the new approach with variogglve the system-level fault diagnosis problem adding &enc
other comparison graphs ranging from small systems €O} alternative to the existing diagnosis algorithms.
posed from few nodes to large systems composed of hundred

of nodes. All simulations’ results were similar to the oneB. Performance Comparison With Similar Approaches
provided below. Note that the maximum number %f possible Ariicial neural networks have been introduced to the

fault sets in at-diagnosable system is bounded By C”, system-level diagnosis problem in [8] where it has been show
" nl ) =1 that a simple perceptron neural network was able to identify
yvher_eC’i =)0k For_ the Do (20) comparison graph, therefaulty nodes under the asymmetric comparison model. It has
Is exist %'04 528 p053|ble_> faulty S|.tuat|ons. ~_ been also shown in [8] that the perceptron neural network-
The first set of experiments aimed at checking if thgaseq diagnosis algorithm has failed, i.e., correctness le
ModifiedHNN-based diagnosis algorithm was correct, i.@$When 100%, when tested with symmetric syndromes (see Fig.
able to identify the faulty nodes of any given faulty siteati 4y The main reason was that the diagnosis problem under
To do so, we have created a hopfield neural network, 8&mmetric comparison models is a separable problem as a
described in Section Ill, and we have tested it as followy 1t set can only be identified by a unique syndrome. In
We have generated 100,000 random fault sets and their Coggs in asymmetric comparison models each fault set presluc
sponding consistent syndromes, and we have input them to fa, ¢onsistent syndrome. While, under symmetric compariso
ModifiedHNN. The ModifiedHNN-based diagnosis algorithmyoqels a fault set may result in many consistent syndromes
was able to identify almost all faulty nodes, yielding hencgnce the comparison outcomes between two faulty nodes is
around 100% correctness. unreliable and can be 0 or 1. Thus, the diagnosis problem
The second set of eXperimentS, qUite similar to the the ﬁr@ﬁder the Symmetric model is a nonseparab|e one. In a
one, had the objective of checking the effectiveness of éve nsypsequent work in [11] Elhadef et al. tried to improve the
diagnosis approach under various syndromes. We have heggfiormance of the neural network approach by considering
randomly generated 1000 faulty situations, and for each ogemultilayered network as it is known to be efficient for
we have generated randomly 10,000 symmetric syndromggnseparable problems. They developed a backpropagation
In all these tested faulty situations the MOdifiEdHNN'baS%ura| network (BPNN) to diagnose fau|ty situations untier t
diagnosis algorithm was able to identify the almost all eorr symmetric model. The BPNN-based diagnosis has been shown
sponding faulty nodes. That is, around 100% correctness. tg efficiently diagnose faulty situations. The only crisigi is
Our third set of experiments involved this time all faultythat it has failed when the number of faulty nodes approaches
situations that may occur intadiagnosable system. Note thathe bound as shown in Fig. 4. This has motivated the present
we were able to check this only for small systems wheigork as Hopfield neural networks have been extensively used
we were able to generate all these possible fault sets. fegently to solve nonlinear problems.
larger systems we have adopted a different approach thiat wilThe ModifiedHNN-based diagnosis algorithm succeeded
be described below. For the considerBd(20) diagnosable in diagnosing more faulty situations, hence, outperfognin
system we have tested it using all possible fault sets #fe BPNN-based diagnosis. The second advantage of the
cardinality ranging from 1 to 9. For each cardinalityl000c  ModifiedHNN-based diagnosis algorithm is that it does not
randomly generated symmetric syndromes have been testeduire a learning phase like the BPNN-based diagnosisi-n a
In almost all these tested faulty situations the ModifiedHNNJition, BPNN-based diagnosis relied on a postprocessiageh
based fault identification algorithm was able to identife thin order to escape local optima, while the ModifiedHNN-based
corresponding faulty nodes. That is, almost 100% correstnediagnosis algorithm does not need such correcting process.
The last set of experiments that we have conducted involveldwever, it terms of diagnosis latency, i.e. time required t
generating different comparison graphs ranging from smaliagnose a faulty situation, the BPNN-based diagnosis was
systems composed of tens of nodes to large systems compdaster as it exploited the off-line learning phase to speedu
of hundreds of nodes. The number of nodeswas varied the fault identification phase. Fig. 5 shows the average time
from 10 to 1000 with different paces as followsnlf< 100 the taken to diagnose randomly generated fault sets. As one can
pace was set to 10. But, fd00 < n < 1000 the considered easily deduce that both Perceptron-based and BPNN-based
pace was 100. Each time a Hopfield neural network is creatgidgnosis are taking less time to diagnose a faulty sitnatio
and tested using various comparison graphs. For each valanks to the off-line learning phase. On the other hand, the



[ ! ' ' "BPNN —*— | t, V, and C denote, respectively, the maximum number of
100 — BBl Perceptron ---8---

Hopield - c- faults allowed in a system, the set of nodes, and the set
of comparison tests. For their symmetric comparison model,
1 Hakimi and Chwa developed af(|C|) diagnosis algorithm
[12]. While, for the asymmetric comparison model, various
| fault identification algorithms have been proposed. In [1],
Ammann and Cin proposed @(|V|?) sequential diagnosis
algorithm for a subset of-diagnosable systems. Sengupta
and Dahbura introduced next in [20] &(|V|?) polynomial

.
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S diagnosis algorithm for alt-diagnosable systems. Recently,
- ] Yang and Tang [23] developed a more efficient diagnosis
Y algorithm which requires onlyO(nA35), where A and §
denote the maximum and minimum degrees of a node, respec-
% 2 s 5 : TR R T tively. In [5], Blough and Pelc studied the complexity of fau

Number of Faulty Units

diagnosis under comparison models and they provided efficie
Fig. 4. Perceptron vs. Backpropagation vs. Hopfield NeNetivork-Based algorithms for diagnosing systems for which the comparison
Diagnosis Approaches. assignment is a bipartite graph. A diagnosis algorithm has
also been proposed, by Blough and Brown, for their broadcast
comparison model which requir€¥(|C| + t?|V|) steps under
ModifiedHNN-based diagnosis is taking a little bit much morgsymmetric assumptions.
time to diagnose a faulty situation compared to the BPNN- Other evolutionary approaches have been also used to solve
based diagnosis, but overall its diagnosis latency is v@ny | the comparison-based fault diagnosis problem such asigenet
i.e., around 16ms. algorithms [9].
Recently, in [7], Chessa and Santi presented a new
Mogiedr N Diagnosts — comparison-based diagnostic model based on one-to-many
BPNN-Diagnosts - communication paradigm which takes advantage of the shared
nature of ad-hoc networks. They introduced a diagnosis pro-
tocol and two implementations of their model considering
1 whether the network topology can change during diagnosis
or not. Their work has been improved more recently in [10]
1 using a more adaptable approach.
In this paper, we have solved the symmetric comparison-
) based diagnosis using the a modified Hopfield neural network.
The new algorithm does not require any prior learning or
knowledge about the system or about faulty situations, éenc
o providing better generalization performance. It can be-con
: ‘ sidered as a viable addition to the other existing diagnosis
2 s e 7 s s 100 algorithms [12], [1], [20], [5], [23].
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VI. CONCLUSION

The modified Hopfield neural network-based (Modi-
We believe that both approaches will be useful. For systerf@dHNN) diagnosis algorithm presented in this paper aims at
known to be more reliable and where extreme faulty situatiorfolving the well known system-level diagnosis problem gsin
involving many nodes, are rare and where faster diagnoi§ symmetric comparison model. The proposed approach
is required the BPNN-based diagnosis would be a perfédapted a Hopfield network to the diagnosis problem by
choice. While, for unreliable systems that can suffer fromfofiting from the availability of the input syndrome to dite
many simultaneous faults and where a learning phase canf§t neurons to the optimal solution. The results from an
be conducted, the ModifiedHNN-based diagnosis would tigxtensive simulation study have shown the efficiency of this

Fig. 5. Comparison of Diagnosis Latency.

best choice. novel approach in detecting all faulty situations, evenaind
rare circumstances. That is, when extremely rare faultyasit
V. RELATED WORK AND DISCUSSION tions, e.g., those where for example almost half of the gyste

Identifying the correct set of all faulty nodes using th@odes fail at the same time, are simulated. We believe that
comparison approach has been shown to be NP-Hard [Ble Hopfield-networks-based diagnosis approach is a viable
but if the system ig-diagnosable, the problem is solvable iraddition to the existing diagnosis algorithms. In addition
polynomial time. This problem has been extensively studiege have shown that the novel approach scales very well
leading to elegant and efficient solutions. In the followindor large diagnosable systems. Further experimental aisaly



and comparisons with existing solutions would be helpful in8] A. Pelc. Undirected Graph Models for System Level Fabilgnosis.

understanding the pros and cons of using artificial neur:i\I]
network systems in designing solutions to the system—le\;e?

diagnosis problem.

As
ModifiedHNN-based diagnosis to other diagnosis models,
such as the PMC model [19], the generalized comparisgm]

future investigations, we plan

to apply

model [4], and the probabilistic models [15]. It would beaals

interesting to experiment and analyze the use of altermati 2]
mechanisms, such as Support vector machines [21], for
solving the system-level fault diagnosis problem. In &ddit
we are adapting the proposed solution to other types ofdfault
such as dynamic faults [22] and intermittent faults [6].
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