
Network Headers Optimization for Distributed
Programming

João Henrique de Souza Pereira1, Liria M. Sato2

1Dept. de Eng. de Sistemas Eletrônicos (PSI)
2Dept. de Eng. de Computação e Sistemas Digitais (PCS)

USP – University of São Paulo
São Paulo-SP, Brazil

joaohs@usp.br, liria.sato@poli.usp.br

Pedro Frosi Rosa3, Sergio Takeo Kofuji1

3Faculdade de Computação (FACOM)
UFU – Federal University of Uberlândia

Uberlândia-MG, Brazil
frosi@facom.ufu.br, kofuji@pad.lsi.usp.br

Abstract—This paper investigates the possibility of network cost
reduction for distributed programming applications and presents
a proposal for networks, with level 2 connectivity of the TCP/IP
architecture. This proposal reduces the network traffic by
minimizing the overhead of packet headers. To prove this
enhancement possibility, it is presented the network analysis
performed for the LAM MPI, sending a vector of integers and
returning its sum. By the analysis of this test, it was confirmed
that the current proposal allows, in this case, a reduction of
15.08% over the total network traffic (in bytes).

Keywords-Computer Networks; Distributed Programming;
MPI; Optimization

I. INTRODUCTION

The distributed communication allows the use of
computational resources of distinct hosts through the
separation of memory, processor and clock, that each
machine has individually [1].

There are several technologies used to perform the
distributed communication and when they use the TCP/IP
architecture, they make use of the lower layers (physical and
data link) and intermediate (network and transport) of this
architecture. The use of these layers, associated with control
and data transfer between the hosts can result, in certain
cases, in a high network resource demand and consequently
in a high computational cost [2].

Considering the importance of the distributed
communication for computational systems and for the
society itself, this paper presents an alternative for network
communication cost reduction, specifically for distributed
programming, when the TCP/IP architecture is used with
connectivity in layer 2.

This purpose leads to show the proposed enhancements
and verify the impact of this alternative in distributed
programming. It is relevant to clarify that it is not the
purpose of this paper to expand the discussions to all
network communication fields, because of the extension of

this study area. Thus, the discussion presented here is
limited to the distributed programming field.

Therefore, this paper was organized as follows. Section
2 shows some related works in network optimization for
distributed programming in TCP/IP architecture. Section 3
presents The network optimization proposal for distributed
programming in TCP/IP architecture with connectivity in
layer 2. Section 4 presents the results and performance
analysis evaluation and the last section shows the
conclusion and suggestions for future works in this research
area.

II. RELATED WORKS CONCERNING NETWORK OPTIMIZATION IN
TCP/IP ARCHITECTURE

The TCP/IP architecture is largely used in the network
area and follows the OSI Reference Model, from ISO.
However, TCP/IP does not use the section and presentation
layers, from OSI Reference Model. The main protocols of
this architecture came up three decades ago, as well as the
IP, TCP and UDP, published in the IETF in RFC 760, 761
and 768, in 1980 [3]-[5].

As described in [6] and [7], besides the increasing
computational evolution, there has not been significant
developments in layers 3 and 4 in the TCP/IP architecture,
since its main protocols specification. Also, the new
demands of applications were met through new
specifications/adaptations in protocols, without structural
development of intermediate layers, which generated gaps
in attending the applications requirements.

Some others studies show that the developments in
layers 3 and 4 in Internet architecture were blocked due to
the expansion of installed base, enlarged because of military
and academic interests and commercial use [8]. Therefore,
the developments in layers 3 and 4 have become more
complex through the years, and the new requirements
demanded by the applications have been attended by

strategies which do not alter the original structure of these
layers.

For example, in the beginning of the 80’s the networks
did not need voice and video transmission over computer
networks, as nowadays. It was also not necessary to support
sensor networks, their real time needs and inter/intra cluster
communication and computational grids. Concerning the
demanded requirements by the applications, that have
changed at the last decades, here are some of them:

QoS;
Security;
Mobility;
Throughput;
Real time;
Network Management.

Requirements like these, among others, have had
changes and evolutions throughout the years which not
always were followed by developments and optimizations in
the distributed systems. To contribute in this area, the next
section presents a proposal for attending the applications
needs in distributes programming, focusing in cost reduction
of network communication.

III. HEADERS OPTIMIZATION PROPOSAL FOR DISTRIBUTED
PROGRAMMING

The increase in the computational capacity of network
elements allowed the expansion of applications with more
complexity and distinct requirements, such as applications
with support to distributed processing. Even though this
evolution has been expressive for network elements, it was
not followed by developments in the protocols in data link,
network, and transport layers of the TCP/IP architecture
which kept its structure mostly unchanged [9]-[10].

The network and transport layers of this architecture are
used by the systems which make use of the distributed
programming to meet the communication needs of the
applications. For the purpose of this work to increase the
network performance in the distributed programming area,
the application needs necessary to support are:

1. Host addressing;
2. Process addressing;
3. Packet size control;
4. Delivery guarantee;
5. Interoperability with TCP/IP.

A possible solution that guarantees the fulfillment of
these needs and that brings a better network cost can be an
alternative to the optimization of distributed programming.
Our proposal is reduce the existing redundancies in link,
network, and transport layers of the TCP/IP architecture and
bring an alternative for the layer model in this architecture.
To have success in this alternative, is suggested a change in
the layer structure for distributed programming, according
to Figure 1, in the networks with connectivity in layer 2.

Figure 1. Layers Proposal

The structural change in the current architecture can
cause impact in compilation of applications and in their
communication at the Distributed Operational Systems area.
It is not the purpose of this work to discuss the impacts in
compilation of applications, but to propose an alternative
which minimizes the network cost from the structure
optimization of communication protocols used in this
architecture.

To propose an alternative which minimizes the network
cost from structure optimization of communication
protocols used in TCP/IP architecture, the next sections
present a proposal to meet the five necessary requirements
(listed before) for the network communication in distributed
programming.

A. Considerations over host addressing

The host addressing in data networks is performed by
logic and physical addresses. However, according to
Hegering [11] for a local network that has connectivity in
layer 2, the use of these two addresses by host can be
redundant in some cases. In networks with connectivity in
layer 2, the logical address can be substituted by the
physical one in some cases, for example, for hosts with
fixed addressing.

To keep the compatibility with current standards, the
applications and their users can make use of logical address,
and let the Distributed Operational System solve it by the
use of ARP (Address Resolution Protocol) [12]-[14]. Once
the physical address is localized by the Reply of ARP (Eth
Type 0806 and ARP Opcode 0002) in the return of the
Request of logical address (Eth Type 0806 and ARP
Opcode 0001), there is no more need to address the packets
with the use of layer 3 in a network with connectivity in
layer 2.

Therefore, the packets can be delivered directly by the
physical address, without the IP address, saving 20 bytes,
which is the minimum IP heading [3] [15].

Even though the exclusion of layer 3 does not impact in
the connections in layer 2, this does not solve the need of
multiple procedures of addressing, which for TCP/IP
architecture is done by the use of ports in layer 4, both for
UDP protocol as well as for TCP.

Physical

Data Link

Network

Transport

Application

Physical

Data Link

Proposed Optimization

Application

B. Considerations over the addressing of processes

To optimize the use of Transport layer, it is necessary an
alternative to address the processes. This requirement can be
met without using UDP or TCP, in the layer 4 of TCP/IP.
The deliver proposal is to send 1 byte of control in the
beginning of the payload of the link layer. From this byte,
the first two bits inform how many bytes will be used for the
addressing of multiple processes, according to rule 2^N,
where N is the decimal value of these two bits.

The complementary bits to these two will be used for the
addressing of processes. For example, for the value “00”
there are 6 complementary bits which allow 64 addresses, as
follows:

 value 00: 2^0 = 1byte 2^6 = 64 addresses
 value 01: 2^1 = 2bytes 2^14 = 16.384 addresses
 value 10: 2^2 = 4bytes 2^30 = 1G addresses
 value 11: 2^3 = 8bytes 2^62 = 4E addresses

The limit for the number of ports for the TCP and UDP
protocols is 2^16 (64K) [6] – less than this proposal which
supports 2^62. For the current distributed applications,
nowadays a higher quantity of addresses is not so necessary,
but in the future it can be. For example, it can be when it
will be necessary communication among hosts with huge
quantity of processors and that support huge quantity of
processes in HPC (High Performance Computing).

The TCP has 20 bytes of heading and to address the
processes, is proposed a variable quantity between 1 to 8
bytes according to the quantity of addresses of used
processes. Therefore, the quantity reduction of bytes sent in
relation to the TCP heading will be:

value 00: 2^0 = 1byte 1/20 = 95,0%
value 01: 2^1 = 2bytes 2/20 = 90,0%
value 10: 2^2 = 4bytes 4/20 = 80,0%
value 11: 2^3 = 8bytes 8/20 = 60,0%

The UDP heading has 8 bytes and in this proposal the
proposed sent byte reduction in relation to the heading of
this transport protocol will be:

value 00: 2^0 = 1byte 1/8 = 87,5%
value 01: 2^1 = 2bytes 2/8 = 75,0%
value 10: 2^2 = 4bytes 4/8 = 50,0%
value 11: 2^3 = 8bytes 8/8 = 0,0%

Therefore, the quantity of addressing of processes is
raised with the reduction of band consumption, except for
the value “11” compared to the UDP, which presents 0% of
reduction.

For the current architecture of distributed
communication, with the maximum number of ports equal
to 2^16, the number “10” would be sufficient, once it allows
the equivalent to address up to 1 Giga ports (processes). For
this value, there is a reduction of network cost of 80% in the
transport layer, compared to the TCP use, and 50% to the
UDP.

Removing the IP, TCP and UDP protocols at the
network and transport layers it is necessary to control the
packet size, since this information is sent, in the TCP/IP
architecture, by the layers that were removed (layers 3 and
4). On an attempt to guarantee this need to control packet
size, is presented hereafter a solution proposal.

C. Considerations over packet size control

The quantity of bytes of the packet is informed in the IP
Datagram in the field “Total Length”, of 16 bits and in the
transport layer this information is held in the field “Length”
of the TCP and the UDP, also of 16 bits. In the TCP/IP
architecture, the use of the “Total Length” in the IP and the
“Length” in the TCP and UDP it is redundant, once they
have a close relationship, defined by:

Length = Total Length – IHL x 4

To inform the packet size, without layers 3 and 4, is
proposed to send one byte, where the first two bits indicate
how many bytes will inform the packet size by the rule 2^N.
Thus, this proposal to control packet size is homogeneous
with the previous proposal of addressing processes and
follows the same logic of construction, where the maximum
data packet size will be:

value 00: 2^0 = 1byte (2^6)-1 = 63 bytes
value 01: 2^1 = 2bytes (2^14)-1 = 16.383 bytes
value 10: 2^2 = 4bytes (2^30)-1 = 1G-1 bytes
value 11: 2^3 = 8bytes (2^62)-1 = 4E-1 bytes

For the IP, TCP, and UDP that use 16 bits to inform the
packet size, the maximum size is 64k bytes, being inferior to
the capacity of this proposal, which allows increasing the
packet sizes. This can be useful in certain cases, in the
distributed communication when it is necessary sending a
great quantity of data. For example, in the classification and
target analysis and spacial cube edges using UWB (Ultra-
Wideband). In this situation, it would not be necessary to
send multiple packets, which reduces the network overhead
generated by sending the heading in each packet.

It is important to highlight that for certain networks there
is fragmentation of the packets due to the MTU (Maximum
Transmission Unit) what can limit this development
possibility. In Ethernet networks, for example, it is common
the use of MTU equal to 1500 bytes and there is also the
Jumbo Frame with 9000 bytes.

For the distributed programming, sending the packets
can be done by the use of UDP or TCP. For the
communication with UDP there is no guarantee for the
packet delivery, however this guarantee takes place in the
TCP. The considerations over this guarantee are approached
in the next sub-section.

D. Considerations over packet delivery guarantee

In the TCP/IP architecture not all packets need a delivery
guarantee by the transport layer, since some applications use
their own mechanisms of control and make use of the UDP

for network cost reduction [16]. With the technological
evolution, in the last decades and the gradual reduction of
network elements with less quality, which increased the
collisions (hub, for example), the distributed programming
had therefore an advance in quality of communication.

Thus, is suggested that the data delivery guarantee,
between hosts, be performed by the link layer, from the use
of network elements with enough quality for that and using
the principles discussed by Tanenbaum and Kurose [17]
[18], where the layer 2 is responsible for detecting and
correcting the errors in sending data between hosts.

The proposals to address hosts/processes, control the
packet size and guarantee the delivery in networks with
connectivity in layer 2 can be used in such a way to
guarantee the inter-operability with current architectures,
which will be discussed in the next sub-section.

E. Considerations over inter-operability with current
architectures

In order not to cause impact in current communication
structures, this proposal needs to be implemented in the
most transparent way possible for the applications. This is
possible beginning with the change of modules of
Distributed Operational Systems, which are responsible for
implementing the protocol stack of the TPC/IP architecture.

In this protocol stack modification, it is proposed to use
a new Ether type, substituting the 0x800 (2048 decimal).
The new value will be used to identify the packets with this
new structure. To use this new Ether type, it is suggested to
register in IANA the Ether type 0x809 (2057 decimal),
which is available for use according to the list (partial)
bellow, depicted from IANA:
 Ether type Exp. Ether. Description References
 ------------- ----------- ----------- ----------
 2048 0800 513 1001 Internet IPv4 [IANA]
 2049 0801 - - X.75 Internet [XEROX]
 2050 0802 - - NBS Internet [XEROX]
 2051 0803 - - ECMA Internet [XEROX]
 2052 0804 - - Chaosnet [XEROX]
 2053 0805 - - X.25 Level 3 [XEROX]
 2054 0806 - - ARP [IANA]
 2055 0807 - - XNS Compatability [XEROX]
 2056 0808 - - Frame Relay ARP [RFC1701]
 2076 081C - - Symbolics Private [DCP1]
 2184 0888-088A - - Xyplex [XEROX]

Fonte: http://www.iana.org/assignments/ethernet-numbers

The applications constructed by the definitions of this
proposal inform the Distributed Operational System, in the
“bind” routine, that they are prepared to receive the
communication flow. Thus, the Distributed Operational
System send the data directly to them, without the need of
going through the traditional TCP/IP stack.

The Distributed Operational System will also be in
charge of translating the data from the traditional
applications to the new ones when the packets are sent with
the current TCP/IP structure. In this situation, the

Distributed Operational System will send the received data
to the new applications with the change in the traditional
ports to the new addressing way proposed here, which will
guarantee the inter-operability with the tradicional
applications.

When the Distributed Operational System identifies the
packet received with the Ether type 0x809, a link layer
automatically delivers the data for the application with the
address correlation of the received process for the UDP/IP
port with the same value. Thus, to inter-operate with the
traditional applications, the process address information
must be limited to the value 65,535, limit for the number of
UDP and TCP ports.

The next section presents the performance evaluation
that this proposal enables through a real test analysis of a
distributed programming with MPI use.

IV. PERFORMANCE EVALUATION

To measure accurately the enhancement possibility
shown here, it is necessary to verify the impact of this
alternative in the network communication of distributed
programming. For so, the next subsections analyze a real
test case with the MPI use and the network optimization.

A. Network cost measurement of MPI distributed
programming

In the tests performed, 2 hosts were used (1 master and 1
slave) with the Linux Operational System version 2.6.27.5-
41 fc9.i686 and LAM implementation for MPI, version
7.1.4 / MPI 2, from the Indiana University. For capturing
the packets the Wireshark version 1.0.3 was used.

For sending and receiving the data were used
respectively the MPI Send and MPI Recv.

In the test case was sent a vector of 100 positions, for
summing up in the slave. In this procedure, 56 packet
between 2 hosts were sent. All sent packet had 20 bytes of
IP header (IHL minimum size), which means that there was
no information in the optional field and the communication
took place in 30mseg.

The Figure 2 shows the packet size sent, where it is also
verified the correlation between the total size informed in
the IP heading and the size informed by the UDP/TCP,
discussed before. The Y scale was intentionally limited in
300 for better viewing. That was necessary because the
packets from 9 to 12 had their sizes over the average of the
others, due to their use to send the packets from the master
to the slave. In fact, these 4 packets are fragments of a sole
packet, with the total size informed by the UDP equal to
4,508 bytes.

For the packets from 9 to 11 the IP total size was 1500
bytes, which is the MTU value in the used test environment.
Each one of the 3 packets had 1480 bytes of data and 20

bytes of IP heading. Packet number 12 had 20 bytes of IP
heading plus 8 bytes of the UDP heading.

Figure 2. Packet Size between Master and Slave

Exactly 50% of the packets sent were originated by the
master and 50% by the slave, considering that 76.8% (43)
used the UDP as transport protocol and the rest 23.2% (13)
were transmitted with TCP. From the packets sent by the
master, 82.1% (23) used the UDP and 17.9% (5) the TCP,
whereas the slave sent 71.4% (20) packets with the UDP
and 28.6% (8) with TCP.

Figure 3 shows the distribution chart of TCP and UDP
use between the master and the slave. It is possible to notice
that the TCP packets have delivery confirmation, therefore,
for each TCP packet sent there is another one, for
confirmation.

Figure 3. Packet Transport between Master and Slave

The difference between the quantity sent between the
master and the slave is explained by the TCP/IP
connection/disconnection procedure in 3 ways, where the
slave started and finished the connection. In the
disconnection, the slave sent the confirmation of the last
TCP packet received, being with 3 packets sent more than
the master.

B. Result of the proposed network cost optimization

To show the impact of this proposal in the network cost
reduction, is showed the re-construction of the first packet
which was sent from the master to the slave. Also is

presented the analysis of the total optimization for all
packets of the test performed with the LAM MPI.

The first packet sent had 102 bytes, distributed as
follows:

 1) Ethernet Protocol (14 bytes):
 00 1a 4d a3 34 11 00 1b 24 f6 d8 14 08 00

 2) IP (20 bytes):
 45 00 00 58 00 00 40 00 40 11 12 6d 0a 0a 0a 0a 0a 0a 0a 0b

 3) UDP (8 bytes):
 82 a3 bb 29 00 44 55 92

 4) Data (60 bytes):
 00 00 00 00 00 00 02 8f 00 00 00 01 40 00 00 0e 00 00 00 00
 00 00 00 00 00 00 01 00 00 00 00 00 ff ff d9 1c 00 00 00 01
 00 00 26 e4 00 00 00 05 00 00 00 05 00 00 00 05 bf 96 40 98

In this proposal there are changes in the protocols
according to the structures described in section 2. For the
Ethernet protocol there is a change of the Ether Type from
0800 to 0809, according to 2.5. To inform the destination
port of this packet (bb 29 = 47913) according to 2.2, it is
used the value “10” with 4 bytes to designate the port
number. Therefore, there are the byte “80 00 bb 29” by the
binary construction.

1000 0000 0000 0000 1011 1011 0010 1001

For the packet size control there is the value “00” which
allows inform the data field with up to 63 bytes (2^6-1).
Thus, for this packet there is 1 byte (3C) of information:

0011 1100

There is no change in the data field and the packet
reconstruction is performed according to the sequence
bellow:

 1) Ethernet Protocol (14 bytes):
 00 1a 4d a3 34 11 00 1b 24 f6 d8 14 08 09

 2) Optimization Proposed (5 bytes):
 80 00 bb 29 3C

 3) Data (60 bytes):
 00 00 00 00 00 00 02 8f 00 00 00 01 40 00 00 0e 00 00 00 00
 00 00 00 00 00 00 01 00 00 00 00 00 ff ff d9 1c 00 00 00 01
 00 00 26 e4 00 00 00 05 00 00 00 05 00 00 00 05 bf 96 40 98

For this packet, there is an enhancement in network cost
from 102 to 79 bytes, which represents a reduction of 22.5%
in size. Concerning the layers 3 and 4, this proposal reduces
82.1% of its overhead, since the 28 bytes of the heading (20
from IP + 8 from the UDP) become only 5. For the TCP
use, the network cost reduction would be greater since this
protocol has the heading with a size greater than the UDP
and performs the packet confirmation.

The percentage reduction of the packet network cost,
shown before, has many variations according to the packets
size. For the test performed where the master sends a vector

1
135

9 17
21

25
29

33
37

41
45

49
53

0

50

100

150

200

250

300

IP Header length
IP Total Length

UDP/TCP Length

IP Header
length
IP Total Length
UDP/TCP
Length

UDP TCP
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%
Packet Transport

Master
Slave

of 100 positions for the sum up in a slave, the reduction of
network cost, per packet, is shown in Figure 4.

Figure 4. Network Optimization per Packet

Also, in this figure the Y scale was intentionally limited
in 300 for better viewing, because of the sizes of the packets
from 9 to 12.

In this test, the 56 packets had a total of 9,500 bytes.
With the new structure, there is a reduction to 8,067 bytes,
which represents an enhancement of 15.08% for the quantity
of bytes sent. In relation to the IP, UDP and TCP headers,
this proposal reduces the overhead from 1,724 to 291 bytes,
with a total of 83.12% of optimization.

V. CONCLUSION

The proposal presented in this work enables the network
cost reduction for the distributed programming in systems
with connectivity in layer 2. This optimization is possible
from attending the needs in communication for
hosts/processes addressing, packet size control, delivery
guarantee and inter-operability with the current
architectures. With the fulfillment of these needs, this work
contributes to the performance development of the
distributed programming applications.

For the test performed with the LAM MPI, there was a
reduction of 15.08% in the quantity of bytes between the
master and the slave for the sum of a vector of integers. In
scenarios that demand high processing this percentage
optimization can be even higher, because the option to sent
bigger packets.

For future works, is suggested the implementation of this
proposal and its expansion in tests and analysis of
performance for sending data with gradual size, starting
from small (1 byte) up to large ones (Giga bytes). Another
suggestion is to study over the possibility of reduction of
sent packet quantity, for example, the removal of
confirmation packets from TCP and the use of link layers
with MTU higher than 1500 to minimize the packet
fragmentation.

It is also pertinent the study a better mechanism to place
the ports, for different applications to communicate between
themselves and between the masters and the slaves using
distributed programming. For example, using the Horizontal
Addressing by Entity Title and the Domain Title Service
(DTS), described in [19].

REFERENCES

[1] Silberschatz, A., Galvin, P. B., Gagne, G. (2005) “Operating Systems
Concepts”. 7th ed., Wiley.

[2] Tanenbaum, Andrew S., Steen, Maarten Van. (2007) ”Sistemas
Distribuídos”, 2ª ed, São Paulo, Prentice Hall Brasil.

[3] J. Postel, “DoD standard Internet Protocol”, DARPA Information
Processing Techniques Office, USC/Information Sciences Institute, RFC
760, 1980.

[4] J. Postel, “DoD Standard Transmission Control Protocol”, DARPA
Information Processing Techniques Office, USC/Information Sciences
Institute, RFC 761, 1980.

[5] J. Postel, “DoD Standard User Datagram Protocol”, DARPA
Information Processing Techniques Office, USC/Information Sciences
Institute, RFC 768, 1980.

[6] J. H. S. Pereira, S. T. Kofuji and P. F. Rosa, “Distributed Systems
Ontology”, New Technologies, Mobility and Security Conference –
NTMS, IEEE Xplore, Cairo, 2009.

[7] J. H. S. Pereira, S. T. Kofuji and P. F. Rosa, “Horizontal Address
Ontology in Internet Architecture”, New Technologies, Mobility and
Security Conference – NTMS, IEEE Xplore, Cairo, 2009.

[8] Comer, Douglas (1995) “Internetworking with TCP/IP Volume I –
Principles, Protocols and Architecture”, 3ª ed, New Jersey, Prentice
Hall.

[9] E. S. Santos, F. S. F. Pereira, J. H. S. Pereira, P. F. Rosa e S. T. Kofuji,
"Optimization Proposal for Communication Structure in Local
Networks", International Conference on Networking and Services –
ICNS, IEEE Xplore, Mexico, 2010.

[10] F. S. F. Pereira, E. S. Santos, J. H. S. Pereira, P. F. Rosa e S. T. Kofuji,
"FINLAN Packet Delivery Proposal in a Next Generation Internet",
International Conference on Networking and Services – ICNS, IEEE
Xplore, Mexico, 2010.

[11] Hegering, Heinz-Gerd, Läpple, Alfred, (1993) "Ethernet - Building a
Communications Infrastructure", Addison-Wesley, Munich.

[12] Arkko, J., Pignataro, C. (2009) “IANA Allocation Guidelines for the
Address Resolution Protocol (ARP")”, RFC 5494.

[13] Cheshire, S. (2008) “IPv4 Address Conflict Detection”, RFC 5227.

[14] Plummer, D. (1982) “Ethernet Address Resolution Protocol: Or
Converting Network Protocol Addresses to 48bit Ethernet Address for
Transmission on Ethernet Hardware”, RFC 826.

[15] Halsall, F. (1992) “Data Communications, Computer Networks and
Open Systems”, 3ª ed, UK, Addison Wesley.

[16] Comer, Douglas, Stevens, David L. (1999) “Internetworking with
TCP/IP Volume II – Design, Implementation and Internals”, 3ª ed, New
Jersey, Prentice Hall.

[17] Kurose, J. F. e Ross, K. W. (2005) “Redes de computadores e a Internet
– Uma Nova Abordagem”, 3ª ed, São Paulo, Addison Wesley.

[18] Tanenbaum, Andrew S. (2007) “Sistemas Operacionais Modernos”, 2ª
ed, Rio de Janeiro, Prentice Hall Brasil.

[19] J. H. S. Pereira, P. F. Rosa e S. T. Kofuji, "Horizontal Addressing by
Title in a Next Generation Internet", International Conference on
Networking and Services – ICNS, IEEE Xplore, Mexico, 2010.

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

0

50

100

150

200

250

300
Packet Length

Frame Length
New Frame
Length

	I. Introduction
	II. Related Works Concerning Network Optimization in TCP/IP Architecture
	III. Headers Optimization Proposal for Distributed Programming
	A. Considerations over host addressing
	B. Considerations over the addressing of processes
	C. Considerations over packet size control
	D. Considerations over packet delivery guarantee
	E. Considerations over inter-operability with current architectures

	IV. Performance Evaluation
	A. Network cost measurement of MPI distributed programming
	B. Result of the proposed network cost optimization

	V. Conclusion

