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Abstract—This work studies what kind of input sequence a
Discrete Memoryless Channel must have to produce a mem-
oryless output. Actually, it is shown that there exist Discrete
Memoryless Channels where an input sequence with memory
can lead a memoryless output sequence. In these cases, the
mutual information between the input and the output is equal
to the sum of mutual informations between each pair of random
variables drawn from the input and the output sequences, that is,
I(Xn; Y n) =

∑n
i=1 I(Xi; Yi). This result is not a guarantee that

those input sequences achieve the channel capacity. This paper
presents some examples of Discrete Memoryless Channels where
input sequence with memory produces a memoryless output
computing their mutual informations. This work also presents
some results comparing the mutual information and the channel
capacity for Discrete Memoryless Channels with Markovian input
sequences and memoryless output sequences.

I. INTRODUCTION

More than 60 years ago, the channel capacity theorem for
a Discrete Memoryless Channel (DMC) was presented in the
seminal paper of Claude Shannon [1]. The capacity of a DMC
can be computed by the formulae

Cdmc = max
X

I (X;Y ) , (1)

where X is the channel input, and Y is the channel output
[2]. Distinct authors use different ways to define a general
expression for the capacity of a discrete channel with memory,
and each definition holds for a specific class of channels. A
popular expression is given by

C = lim
n→∞

sup
Xn

1
n
{I (Xn;Y n)} , (2)

where Xn = (X1, · · · , Xn) is the channel input sequence,
and Y n = (Y1, · · · , Yn) is the channel output sequence. In
[3], it was proved that this expression holds for the class of
information stable channel. A formulae for a broader class of
discrete channels can be found in [4].

Since the later equation is a generalization of the former,
it is obvious that (2) is reduced to (1) when the channel is
memoryless. A very simple way to show this result is by the
use of a popular theorem which states that for every DMC,

I (Xn;Y n) ≤
n∑

i=1

I (Xi;Yi) , (3)

with equality if X1, · · · , Xn are statistically independent,
see [5, theorem 4.2.1]. Let p (yi|xi) denote the single letter
transition probabilities of the channel, which is constant for
every i = 1, · · · , n. Then using (1) it can be concluded that

I (Xi;Yi) ≤ Cdmc, (4)

for every i, where Cdmc is computed considering that the
relationship between X and Y in (1) is given by the channel
transition probabilities. Furthermore (4) holds with equality if
Xi has the probability distribution which achieves the maximal
mutual information. Therefore, from (3) and (4) it can be
concluded that

I (Xn;Y n) ≤ nCdmc (5)

with equality if X1, · · · , Xn are independent and identically
distributed (i.i.d. — with distribution which achieves the
maximum mutual information). From (3) and (5), it can be
concluded (as expected) that

C = Cdmc,

for every DMC. Furthermore the channel capacity is achieved
if X1, · · · , Xn are i.i.d., with a known distribution.

It is interesting to observe that the above result presents
only a sufficient condition to achieve the channel capacity.
However, the theorem 4.2.1 of [5] can be slightly modified
to lead a necessary condition too. Actually, as mentioned in
[6, Problem 1.25], for a DMC, (3) holds with equality iff the
output sequence Y1, · · · , Yn is memoryless. This result can be
easily proved since

I (Xn;Y n) = H(Y n)−H(Y n|Xn)

= H(Y n)−
n∑

i=1

H(Yi|Xi)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

=
n∑

i=1

I (Xi;Yi) .

Above, the following results are used. For a DMC,
H(Y n|Xn) =

∑n
i=1H(Yi|Xi) and for every sequence Y n,

H(Y n) ≤
∑n

i=1H(Yi), with equality iff the components of
Y n are independent, see [2]. Therefore, a memoryless output



sequence is a necessary condition to achieve the channel
capacity. Here, it arises an interesting question. What kind of
input sequence can produce a memoryless output? It is easy
to see that if a memoryless sequence is applied in the input, a
memoryless sequence will be observed in the output. Thus, the
interesting point in the question is related to input sequences
with memory. Is it possible to construct an input sequence with
memory for a DMC which produces a memoryless output?
This question is closed related to the problem 6-14 proposed
in [7] and to the theorem 5.2.1 of [8]. Actually, in their book,
Proakis and Salehi proposed the following problem.

“Show that, for a DMC, the average mutual infor-
mation between a sequence X1X2 · · ·Xn of channel
inputs and the corresponding channel outputs satisfy
the condition

I (X1, X2, · · · , Xn;Y1, Y2, · · · , Yn) ≤
n∑

i=1

I (Xi;Yi)

with equality if and only if the set of inputs symbols
is statistically independent.”

In the same way, Blahut in his book, presents the following
theorem.

“The mutual information between the block input
and block output of a discrete memoryless channel
satisfies

I (X1, · · · , Xn;Y1, · · · , Yn) ≤
n∑

`=1

I (X`;Y`)

with equality if and only if the input random vari-
ables X1, · · · , Xn are independent.”

If the above statements are true, it can be concluded that it is
not possible to construct an input sequence with memory for
a DMC which produces a memoryless output. Actually, in the
proof of theorem 5.2.1 presented in [8], it is affirmed that a
necessary and sufficient condition to a memoryless output is
a memoryless input (even though, it was not proved).

It is important to mention that the inequality (3) can be
found in many books [2, lemma 8.9.2], [5, theorem 4.2.1],
and [6, theorem 1.9]. However, it is only in [7, Problem 6-
14] and in [8, theorem5.2.1] that is posted that the statistically
independence of the input sequence is a necessary condition
to equality.

The aim of this work, which is motivated by the problem
6-14 of [7], is to show that there are Discrete Memoryless
Channels for which an input sequence with memory leads to a
memoryless output (i.e., a counterexample for the statement of
this problem and for the theorem 5.2.1 of [8]). For these chan-
nels, it is interesting to see if input sequences with memory
can achieve the channel capacity. Even though this work does
not stress this problem, it presents some results concerning
the capacity of DMC’s with input Markovian sequences. This
paper is organized as follows. Section II is devoted to DMC’s
with the desired property. In Section III, the results concerning
the capacity of DMC’s with input Markovian sequences are
shown. The last Section presents the final remarks.

II. INPUT SEQUENCE WITH MEMORY PRODUCING A
MEMORYLESS OUTPUT IN A DMC

As mentioned in the Introduction of this work, the statement
of the problem 6-14 of [7] is equivalent to say that the output
of a DMC is memoryless iff the input sequence is memoryless.
In fact, the problem asks to the reader to prove that for a DMC,

I (Xn;Y n) ≤
n∑

i=1

I (Xi;Yi) ,

with equality iff the input sequence is memoryless. Since the
equality holds iff the output is memoryless, if the statement
is true, it can be concluded that the output is memoryless iff
the input is memoryless too. The aim of this Section is to
show that there are some DMC’s for which an input sequence
with memory can lead to a memoryless output. Actually, the
most trivial example of this kind of Channel is the Binary
Symmetric Channel (BSC) with null capacity. This channel
has the property that the input is statistically independent of
the output. Then I (Xn;Y n) = 0 and

∑n
i=1 I (Xi;Yi) = 0

for every input sequence (including any sequence X1, · · · , Xn

with memory), that is, I (Xn;Y n) =
∑n

i=1 I (Xi;Yi) = 0.
In this case, it is also interesting to observe that any input
sequence with memory achieves the channel capacity.

Even though the BSC with null capacity is an example for
a channel where an input sequence with memory produces a
memoryless output sequence and achieves the channel capac-
ity, it is not a useful channel (since it has no transmission
capacity). In fact, it is possible to show some examples
based on memoryless channels with non null capacity. Let
AI = {a1, · · · , amI

} and AO = {b1, · · · , bmO
} be the input

alphabet and the output alphabet of the DMC, respectively.
Let Π = {pi,j} denote a mO × mI matrix of transition
probabilities, that is, pi,j = Pr [Y = bj|X = ai]. To produce
an output random variable Y with a probability vector given
by

pO = (Pr [Y = b1] ,Pr [Y = b2] , · · · ,Pr [Y = bmO ])T
,

then the input random variable X must have a probability
vector p such that

pO = Πp. (6)

Analogously, let Π(n) denote a mn
O×mn

I matrix of transition
probabilities for vectors with n symbols, that is, each element
of Π(n) is a probability of Y n is equal to a specific sequence
with n symbols in AO, given that Xn is a known sequence
with n samples of AI . Since the channel is memoryless, Π(n)

can be written as a Krönecker product of Π, that is,

Π(n) = Π⊗Π⊗ · · · ⊗Π︸ ︷︷ ︸
n times

.

In this case, to produce an output sequence Y n with a
probability vector given by

p(n)
O =


Pr [Yn = b1b1 · · · b1]
Pr [Yn = b2b1 · · · b1]

...
Pr [Yn = bmObmO · · · bmO ]





the input random sequence Xn must have a probability vector
p(n) such that

p(n)
O = Π(n)p(n). (7)

If Y n is a sequence of i.i.d. random variables then

p(n)
O = p(1)

O ⊗ p(1)
O ⊗ · · · ⊗ p(1)

O︸ ︷︷ ︸
n times

.

From (6), it is obvious that p(1)
O = Πp(1). Thus

p(n)
O = Πp(1) ⊗Πp(1) ⊗ · · · ⊗Πp(1)

= (Π⊗ · · · ⊗Π)
(
p(1) ⊗ · · · ⊗ p(1)

)
(8)

= Π(n)
(
p(1) ⊗ · · · ⊗ p(1)

)
. (9)

From (9) it can be seen that the probability vector p(n) =(
p(1) ⊗ · · · ⊗ p(1)

)
satisfies (7). Since this probability vector

is a measure of a memoryless sequence, it can be concluded
that for every valid i.i.d. output sequence, there is a memo-
ryless input sequence which can be used to yield this output
(a valid i.i.d. output sequence is a sequence which can be
produced in the channel output by the use of a specific
input). Furthermore, for this memoryless input, (3) holds with
equality.

At this point, it is interesting to notice that depending of
Π(n), (7) can have more than one solution. In fact, the critical
point is the rank of the matrix defined by

Πext =
(

Π
1 1 · · · 1

)
(10)

If rank
(
Πext

)
= mI, then there is only one solution for

the system of linear equations defined in (6) which is a valid
probability vector. Furthermore, it can also be shown that there
is only one valid solution for (7) which is obviously the mem-
oryless solution. In this case, there is no statistically dependent
input sequence such that I (Xn;Y n) =

∑n
i=1 I (Xi;Yi). This

is the case of any BSC with error probability different from 1
2 .

Therefore, for every non null capacity BSC, the input sequence
is memoryless iff the output is memoryless too. However, if
the rank of Πext is less than mI , then (6) has more than one
solution and these solutions can be combined to construct an
input sequence with memory for which (3) holds with equality
(an input with memory leading to a memoryless output). The
following example illustrates this combination and it serves
as a counterexample for the statement of the problem 6-14 of
[7].

Example 1: Let C be a DMC with a ternary input alphabet
and a ternary output alphabet, that is mI = mO = 3, and with
a matrix of transition probabilities given by

Π =

 2
3

1
3 0

1
3

1
3

1
3

0 1
3

2
3


It is possible to show that

rank
(
Πext

)
= 2.

and thus for every probability vector pO, (6) has more than
one solution. For example, if pO is set to

(
1
3 ,

1
3 ,

1
3

)T
, then

p1 =
(

1
3
,
1
3
,
1
3

)T

(11a)

p2 =
(

1
2
, 0,

1
2

)T

(11b)

p3 = (0, 1, 0)T (11c)

are valid solutions for (6). For a vector with two components,
since the channel is memoryless, Π(2) = Π⊗Π. If the output
probability vector is set to

p(2)
O =

(
1
9
,
1
9
,
1
9
,
1
9
,
1
9
,
1
9
,
1
9
,
1
9
,
1
9

)T

then there are many solutions for (7) and some of them will
produce a pair of statistically dependent random variables. In
fact, it is easy to see that

p(2) =
(

1
6
, 0,

1
6
, 0,

1
3
, 0,

1
9
,
1
9
,
1
9

)T

(12)

is a solution. It is also easy to observe that this random vector
is not independent. For this solution, the mutual informations
are given by

I(X1;Y1) = 0.4444 (13a)

I(X2;Y2) = 0.3704 (13b)

I(X2;Y 2) = 0.8148 (13c)

�
In Example 1, it is interesting to observe that even though

I(X2;Y 2) = I(X1;Y1) + I(X2;Y2), the mutual information
between the input and output vectors does not achieve its
maximum value. Actually, if the solution

p(2) =
(

1
9
,
1
9
,
1
9
,
1
9
,
1
9
,
1
9
,
1
9
,
1
9
,
1
9

)T

was chosen, then I(X2;Y 2) = 0.8888. Example 1 is a
particular case of the following example.

Example 2: Let C be a ternary-input-ternary-output chan-
nel with a matrix transition probabilities given by

Π =

 1− ε1 ε1 0
ε1 1− ε1 − ε2 ε2
0 ε2 1− ε2

 , (14)

where ε2 = 1−2ε1
2−3ε1

. Let r1, r2 and r3 be the rows of this matrix.
It is easy to see that r1 + r2 + r3 = (1, 1, 1). Furthermore, it
can shown that αr1 +(1−α)r3 = r2, if α = ε1

1−ε1
. Therefore,

rank
(
Πext

)
= 2 and (6) has more than one solution. These

solutions can be used to build an input sequence with memory
which produces a memoryless output and for which

I (Xn;Y n) =
n∑

i=1

I (Xi;Yi) ,



If ε1 = 1
3 , then this example is identical to Example 1. It is

interesting to observe that in this case (ε1 = 1
3 ), 1

2r1 + 1
2r3 =

r2.
�

In Example 1, the input X2 was built using different
solutions for (6). It is easy to see that this procedure can also
be used to construct a Markovian sequence which produces a
memoryless output. This result is presented in the following
theorem.

Theorem 1: Let C be a DMC with a matrix of transition
probabilities Π. If rank

(
Πext

)
< mI, then there is a Marko-

vian input sequence which produces a memoryless output.
Proof:

Let qi = (q1,i, q2,i, q3,i)
T , i = 1, 2, 3 denote three different

probability vectors such that Πqi = pO. Let Πj be the jth

row of Π and let pOj denote the jth component of pO.
Therefore Πjqi = pOj .

Let X1, · · · , Xn be a Markovian sequence with matrix of
conditional probabilities defined by Q = {qi,j}, where qi,j =
Pr [Xk = ai|Xk−1 = aj].

If the input sequence is such that p(1) = q1, then from (7)
it can be concluded that

p(n)
O = Π(n)p(n).

= (Π⊗Π⊗ · · · ⊗Π)

n times︷ ︸︸ ︷
q1,1q1,1 · · · q1,1q1,1

q1,1q1,1 · · · q1,1q2,1

q1,1q1,1 · · · q1,1q3,1

...
q2,1q1,2 · · · q1,1q1,1

q2,1q1,2 · · · q1,1q2,1

...
q3,1q3,3 · · · q3,3q3,3



=



Π1q1Π1q1 · · ·Π1q1Π1q1

Π1q1Π1q1 · · ·Π1q1Π2q1

Π1q1Π1q1 · · ·Π1q1Π3q1

...
Π2q1Π1q2 · · ·Π1q1Π1q1

Π2q1Π1q2 · · ·Π1q1Π2q1

...
Π3q3Π3q3 · · ·Π3q3Π3q3



=



pn
O1

pn−1
O1

pO2

pn−1
O1

pO3

...
pO2p

n−1
O1

pO2p
n−2
O1

pO2

...
pn

O3


(15)

From (15) it can be concluded that the output sequence is

memoryless.

�

Theorem 1 shows a Markovian input sequence leading a
memoryless output in a DMC. Actually Example 1 uses the
same procedure of the proof of this Theorem. However, in this
Example, it is also shown that the input with memory does not
achieve the channel capacity. In the following Section, some
results for Markovian inputs are presented.

III. DMC CAPACITY AND AN INPUT WITH MEMORY

As mentioned in the Introduction, the inequality presented
in (3) plays an important role in the calculus of DMC capacity.
Since an input with memory can lead a memoryless output in
a DMC, producing an input-output pair such that (3) holds
with equality, nothing more natural than ask if an input with
memory can achieve the channel capacity. Even though this
work does not answer completely this question, this Section
shows some interesting results concerning a Markovian input
sequence.

In the channel of Example 1, the second row of Π is the
arithmetic mean of the first and third rows. The next theorem
shows that under this condition, the Markovian input sequence
which achieves the channel capacity is not a truly sequence
with memory.

Theorem 2: Let C be a DMC where Πi, i = 1, · · · ,mO are
the rows of the matrix of transition probabilities Π. Suppose
that C has the following properties.

i. mI = mO,
ii. rank

(
Πext

)
< mI,

iii. rank (Π) = mI − `,
iv. Π has no two identical rows.

Let Xn be a stationary Markovian input sequence which
produces a memoryless output with maximum entropy and
suppose that Xn has a matrix of conditional probabilities given
by

Q =
(

q1 q2 · · · qmI

)
Then the matrix Q which maximizes the mutual information
has mI − ` identical columns and the others columns are
related to symbols with null probability.
Proof:

Since the output is memoryless with maximal entropy, the
mutual information between the input and the output can be
written as

1
n
I (Xn;Y n) = H (Y )−H (Y |X)

= Hmax −
mI∑
i=1

piH(qi) (16)

where pi = Pr [X = ai] and H(qi) = −
∑mI

j=1 qj,i log2 (qj,i).
Since rank (Π) = mI− ` and there are no two identical rows
in Π, there are ` rows in Π which are means of the others
rows. Let L be the set of all rows in Π which can be written
as a mean of others rows. By the concavity of the entropy,
it can be concluded that qi ∈ L, then there is j 6= i such



that qj 6∈ L and H(qj) < H(qi). Therefore the distribution
p1, · · · , pmI

which maximizes the mutual information is such
that pi = 0 for every qi ∈ L (symbols with null probability).
Since Xn is stationary,

Q

 p1

...
pmI

 =

 p1

...
pmI

 (17)

Let qi ∈ L. From (17),
∑mI

k=1 qi,kpk = pi = 0. Therefore,
in this sum, if pk 6= 0, then qi,k must be null. Thus if pk is
respected to a symbol with non null probability, qi,k must be
null. Then in the kth column of Q, qk has ` zeros — all qi,k
such that qi ∈ L. However, for every k, qk is a solution of
(6). Since rank (Π) = mI− `, there is only one solution with
` zeros. Thus all qk 6∈ L are the same vector.

�

Theorem 2 shows that for some DMC’s the unique Marko-
vian input sequence that can achieve the channel capacity is
a sequence such that all states with non null probability has
the same conditional probabilities, that is, the sequence is a
truly memoryless sequence. This is the case of the channel
presented in Example 2 when ε1 ∈

(
0, 1

2

)
.

The next theorem, which is the last result of this work, deals
with a channel where Π has identical rows.

Theorem 3: Let C be a DMC where Π has two identical
rows. Then there is a non memoryless input sequence which
achieves the capacity.
Proof:

Actually, the proof of this theorem is quite simple. Let
p = (p1, · · · , pmI

)T be an input vector probability which
leads to a maximum of I(X;Y ). Let pi and pj be the
probabilities of symbols which produces the identical rows
in Π. It is easy to see that if a new vector probability p′ such
that p′i = pi − δ, p′j = pj + δ and p′k = pk for all k 6= i, j,
then p′ produces the same output and achieves the channel
capacity. Using Theorem 1 these two vector probabilities can
be used to build a Markovian input sequence which achieves
the capacity.

�

The BSC with null capacity and the channel of Example 2
with ε1 = 1

2 are special cases of channels studied in Theorem
3. It is interesting to notice that the channel of Example 2
has non null capacity. However, it is obvious that two input
symbols with the same transition probability distribution do
not improve the channel capacity (i.e., one of the input symbol
can be discarded with no penalty in capacity). Therefore, in
practice Theorems 2 and 3 do not show any useful case of a
DMC with input sequence with memory.

IV. FINAL REMARKS

This work was strongly motivated by the problem 6-14 pro-
posed in [7]. Reading this problem, someone who knows that
(3) holds with equality iff the output sequence is memoryless

can be led to believe that a Discrete Memoryless Channel
with a memoryless output must have a memoryless input
sequence. In fact, even though it is not valid, this statement
sounds very intuitive and it is the error in the proof of
theorem 5.2.1 presented in [8]. In this work it was shown some
examples of DMC’s where an input with memory produces a
memoryless output. In this context, an important issue is the
relationship between the channel capacity and the maximum
mutual information when the input sequence has memory. In
the examples presented here, input sequences with memory
achieves the channel capacity only in some special cases which
are not useful.
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