
JOAO GAZOLLA – PHD CANDIDATE / UFF MEDIALAB RESEARCHER

ESTEBAN CLUA – ASSOCIATE PROFESSOR / UFF MEDIALAB DIRECTOR

StarPU: Programming for

Heterogeneous MultiGPU Systems

GTC 2015, San Jose, CA, USA, March 18th, 2015.

About Us

Joao Gazolla is a PhD candidate a
UFF/Rio de Janeiro, Brazil and
Researcher at MediaLab/UFF.

Esteban Clua is an associate professor
at UFF (Federal Fluminense University)
and Director of MediaLab at UFF.

MediaLab UFF was the First Cuda Research Center in Latin America.

Medialab UFF

2012

Medialab UFF

Before we really start...

We are not part of the StarPU Team.

We are researchers using their framework.

 StarPU was developed by INRIA Bordeaux, France.

Outline

Objective

Motivation

StarPU Overview

StarPU “Hello World”

Conclusion

Questions and Answers

What you will learn in this session...

Understand what is StarPU.

Understand How It Works.

2 Main Objectives:

Outline

Objectives

Motivation

StarPU Overview

StarPU “Hello World”

Conclusion

Questions and Answers

Motivation

2 CPU Cores

8 GPU Cores

2010

4 CPU Cores

12 GPU Cores

2011/2012

5 CPU Cores

72 GPU Cores

2013

4 CPU Cores

192 GPU Cores

2014

8 CPU Cores

256 GPU Cores

2015

Motivation

“…very little attention has been

paid to…the possibility of having

heterogeneous accelerators and

processors to interact…” **

**StarPU Team at http://starpu.gforge.inria.fr/doc/html/

Imagine if...

Titan X

~3000 cores/each

GTX 660

960 cores

Geforce
9800 GT

112 cores

What is StarPU?

GPU CPU

High End

Architecture

StarPU is a task programming library for

hybrid architectures.

Can’t Ignore

CPUs

You could ask...

“…But using CUDA, you

can already program to

many GPUs and CPUS

simultaneously, right?”

You could ask...

+

StarPU

Outline

Objectives

Motivation

StarPU Overview

StarPU “Hello World”

Conclusion

Questions and Answers

About StarPU

 Developed by INRIA Bordeaux, France.

Why we are using StarPU?

StarPU on Google Scholar

Relevant

StarPU on Google Scholar

StarPU - Download

StarPU – Supported Operating Systems

StarPU - Installation

Easier to

Install

On Linux

Adjust Library

Path

StarPU – “System Requirements”

4 x K80

4 x 4992 CUDA Cores

~20000 Cores

Tips and Tricks

• Install hwloc: “libhwloc-dev”

Tips and Tricks

• Sample Codes Folder.

StarPU Considerations
Allocates and Dispatches Resources, based on
tasks.
 Submit

#1 #2 #3

CPUs

#1 #2

GPUs

Task
Submission

Queue

StarPU

Figure Source:

http://starpu.gforge.inria.fr/tutorials/2015-01-

HiPEAC/hipeac_tutorial_hetcomp_starpu_2015.pdf

StarPU Considerations

How you assign and schedule kernels to each
device can make a huge difference on execution
time of your program.

Greedy

Work Stealing

StarPU Considerations

What happens inside the
scheduler is up to you!

Analogy...

StarPU Considerations

StarPU gives you an unified view of the
computational resources.
 Submit

#1 #2 #3

CPUs

#1 #2

GPUs

Task
Submission

Queue

StarPU

Consequences...

StarPU Considerations

“What are the consequences ?”

#1 #2 #3

CPUs

#1 #2

GPUs

Imagine if...

Once

Implemented

 “Free

SpeedUps”

30% ?
10% ?

20% ?

StarPU Considerations

The core of StarPU is its run-time support
library, which is responsible for scheduling
application-provided tasks on heterogeneous
machines.

Outline

Objectives

Motivation

StarPU Overview

StarPU “Hello World”

Conclusion

Questions and Answers

StarPU - Hello World

StarPU – Scale a Vector

#1 #2 #3

CPUs

#1 #2

GPUs

Task

[0,1,2,3,4]

X 2.0

[0,2,4,6,8]

scale_cpu_f

scale_gpu_f

Schedule

Algorithms

Greedy

What you have learned in this session...

Understand what is StarPU.

Understand How It Works.

Outline

Objectives

Motivation

StarPU Overview

StarPU “Hello World”

Conclusion

Questions and Answers

Conclusions and Recap

Using StarPU programmers
can concentrate on

algorithmic concerns.

#1

Abstraction Layer!

Conclusions and Recap

The programmer has a view of unified
computation resources.

#2

Conclusions and Recap

A lot of has been done to improve
computing power, but many efforts still
needs to be done to improve
cooperation among different kind of
processors.

#3

Finding more information...

StarPU Official WebPage:

More Information...

StarPU Handbook:

Finding more information...

StarPU Basic Examples:

Finding more information...

StarPU Tutorials:

References

1. Augonnet, Cédric, et al. "StarPU: a unified platform
for task scheduling on heterogeneous multicore
architectures." Concurrency and Computation:
Practice and Experience 23.2 (2011): 187-198.

2. StarPU Web Site. Available:
<http://starpu.gforge.inria.fr/ Access in: 15 jan.
2015.

3. NVIDIA. Available: <http://www.nvidia.com/>. Access
in: 15 jan. 2015.

4. StarPU Tutorials. Available: <
http://starpu.gforge.inria.fr/tutorials/2015-01-
HiPEAC/hipeac_tutorial_hetcomp_starpu_2015.pdf>.
Access in: 15 jan. 2015.

Acknowledgements

THANK YOU

Please complete the Presenter Evaluation sent to you by email or through the

GTC Mobile App. Your feedback is important!

Contact us at
 gazolla@ic.uff.br
 esteban@ic.uff.br

gputechconf.com

Questions and Answers

Backup
Slides Area

Scaling a vector...

Scaling a vector...

MPI Support**

The integration of MPI transfers within task
parallelism is done in a very natural way by
the means of asynchronous interactions
between the application and StarPU. This is
implemented in a separate libstarpumpi
library which basically provides "StarPU"
equivalents of MPI functions.**

**StarPU Page at

http://starpu.gforge.inria.fr/doc/html/

StarPU Glossary**

A codelet records pointers to various implementations of the same theoretical function.

A memory node can be either the main RAM or GPU-embedded memory.

A bus is a link between memory nodes.

A data handle keeps track of replicates of the same data (registered by the application) over various memory nodes. The
data management library manages keeping them coherent.

The home memory node of a data handle is the memory node from which the data was registered (usually the main memory
node).

A task represents a scheduled execution of a codelet on some data handles.

A tag is a rendez-vous point. Tasks typically have their own tag, and can depend on other tags. The value is chosen by the
application.

A worker execute tasks. There is typically one per CPU computation core and one per accelerator (for which a whole CPU
core is dedicated).

A driver drives a given kind of workers. There are currently CPU, CUDA, and OpenCL drivers. They usually start several
workers to actually drive them.

A performance model is a (dynamic or static) model of the performance of a given codelet. Codelets can have execution
time performance model as well as power consumption performance models.

A data interface describes the layout of the data: for a vector, a pointer for the start, the number of elements and the size
of elements ; for a matrix, a pointer for the start, the number of elements per row, the offset between rows, and the size of
each element ; etc. To access their data, codelet functions are given interfaces for the local memory node replicates of the
data handles of the scheduled task.

**StarPU Page at

http://starpu.gforge.inria.fr/doc/html/

