Chapter 4

Semaphores

4.1 Introduction

The algorithms in the previous chapter can be run on a bare machine. That is, they
use only the machine language instructions that the computer provides. Though
bare-machine instructions can be used to implement correct solutions to mutual
exclusion and other concurrent programming problems, they are too low level to be
efficient and reliable. In this chapter, we will study the semaphore which provides
a concurrent programming primitive on a higher level than machine instructions.
Semaphores are usually implemented by an underlying operating system, but for
now we will investigate them by defining the required behavior and assuming that
this behavior can be efficiently implemented.

A semaphore is an integer-valued variable which can take only non-negative
values. Exactly two operations are defined on a semaphore S

Wait(S) If S > 0 then S := S — 1 else suspend the execution of this process.
The process is said to be suspended on the semaphore S.

Signal(S) If there are processes that have been suspended on this semaphore,
wake one of them else S := S + 1.

The semaphore has the following properties:

1. Wait(S) and Signal(S) are atomic instructions.! In particular, no instruc-
tions can be interleaved between the test that S > 0 and the decrement of S
or the suspension of the calling process.

2. A semaphore must be given a non-negative initial value.

3. The Signal(S) operation must waken one of the suspended processes. The
definition does not specify which process will be awakened.

A semaphore which can take any non-negative value is called a general sema-
phore. A semaphore which takes only the values 0 and 1 is called a binary sema-
phore in which case Signal(S) is defined by: if ...else S := 1.

' The original notation is P(S) for Wait(8) and V(S) for Signal(S), the letters P and V taken
from corresponding words in Dutch.
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4.2 Semaphore Invariants
A semaphore satisfies the following invariants:
$>0 (4.1)
S = 50+ #Signals — #Waits (4.2)

where S0 is the initial value of the semaphore, #Signals is the number of signals
executed on S, and #Waits is the number of completed waits executed on S.
These invariants follow directly from the definition of semaphores, i.e. if you
write a program and one of these formulas is not invariant, you have been given
a defective implementation of semaphores.

The only non-trivial part to prove is the case of a signal which wakes a sus-
pended process. But then #Signals and #Waits both increase by one so their
difference remains invariant as does the value of S.

In the next section we give a solution to the mutual exclusion problem using
semaphores and prove its correctness by appealing to the semaphore invariants.

4.3 Mutual Exclusion

Figure 4.1 is a solution to the mutual exclusion problem for two processes using
semaphores. A process that wishes to enter its critical section, say P1, executes a
pre-protocol that consists only of the Wait (S) instruction. If § =1 then S can be
decremented and P1 enters its critical section. When P1 exits its critical section

S: Semaphore := 1;

task body P1 is
begin
loop
Non_Critical_Section_1;
Wait(S);
Critical_Section_1;
Signal(S);
end loop;
end P1;

task body P2 is
begin
loop
Non_Critical_Section_2;
Wait (S);
Critical_Section_2;
Signal(S);
end loop;
end P2;

Figure 4.1 Mutual exclusion with semaphores
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and executes the post-protocol consisting only of the Signal(S) instruction, the
value S will once more be 1. However, if P2 attempts to enter its critical section
before P1 has left, S = 0 and P2 will suspend on S. When P1 finally leaves, the
Signal(S) will wake P2.

The solution is similar to the second attempt of the previous chapter, except
that the atomic implementation of the semaphore instruction prevents interleaving
between the test of S and the assignment to S. It differs from the test and
set instruction in that a process suspended on a semaphore no longer executes
instructions checking variables in a busy-wait loop.

Theorem 4.3.1 The mutual exclusion property is satisfied.

Proof: Let #CS be the number of processes in their critical sections. We will
prove that
#CS+S5=1 (4.3)
is invariant. Since S > 0 by invariant (4.1), simple arithmetic shows that #CS <1
which proves the mutual exclusion property.
To prove that (4.3) is invariant, we use the semaphore invariant (4.2).

1. #CS = #Wait(S) — #Signal(S). An invariant easily proven from the pro-
gram text.

2. S =1+ #Signal(S) — #Wait(S). The semaphore invariant.

S =1-#CS. From (1) and (2).

4. #CS + S = 1. Immediate from (3). O

®

Theorem 4.3.2 The program cannot deadlock.

Proof: For the program to deadlock, both process must be suspended on Wait (S).
Then S = 0 because they are suspended and #CS = 0 since neither is in the
critical section. By the critical section invariant (4.3), 0 + 0 = 1 which is
impossible. O

Theorem 4.3.3 There is no individual starvation.

Proof: If P1 is suspended, the semaphore must be 0. By the semaphore invariant,
P2 is in the critical section. When P2 exits the critical section, it will execute
Signal(S) which will wake some process suspended on S. Since P1 is the only
process suspended on S, it will be awakened and enter its critical section. O

Finally, it should be obvious that in the absence of contention, S =1 and no
single process will be delayed.

4.4 Semaphore Definitions

There are many definitions of semaphores in the literature. It is important to be
able to distinguish between the various definitions because the correctness of a
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Monitors

' 5.1 Introduction

The semaphore was introduced to provide a synchronization primitive that does
not require busy waiting. Using semaphores, we have given solutions to common
concurrent programming problems. However, the semaphore is still a low-level

primitive because it is unstructured. If we were to build a large system using
semaphores alone, the responsibility for the correct use of the semaphores is dif-
fused among all the implementers of the system. If one of them forgets to call
Signal(S) after a critical section, the program can deadlock and the cause of the
failure will be difficult to isolate.

Monitors provide a structured concurrent programming primitive that con-
centrates the responsibility for correctness into a few modules. Monitors are a
generalization of the monolithic monitor (or kernel or supervisor) found in op-
erating systems. Critical sections such as allocation of I /O devices and memory,
queuing requests for I/O, and so on, are centralized in a privileged program. Or-
dinary programs request services which are performed by the central monitor.
- These programs are run in a hardware mode that ensures that they cannot be
interfered with by ordinary programs. Because of the separation between the sys-
tem and its applications programs, it is usually clear who is at fault if the system
crashes (though it may be extremely difficult to diagnose the exact reason).

The monitors discussed in this chapter are decentralized versions of the mono-
lithic monitor. Rather then have one system program handle all requests for ser-
vices involving shared devices or data structures, we can define a separate monitor
for each object or related group of objects. Processes request services from the
various monitors. If the same monitor is called by two processes, the implemen-
tation ensures that these are processed serially to preserve mutual exclusion. If
different monitors are called, their executions can be interleaved.

The syntax of monitors is based on encapsulating items of data and the proce-
dures that operate upon them in a single module. The interface to a monitor will
consist of a set of procedures. These procedures operate on data that are hidden
within the module. The difference between a monitor and an ordinary module
such as an Ada package is that a monitor not only protects internal data from
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unrestricted access but also synchronizes calls to the interface procedures. The
implementation ensures that the procedures are executed under mutual exclusion.

We will define a synchronization primitive that will allow a process to suspend
itself if necessary. For example, in the producer—consumer problem:

e The only operations permitted on a buffer are append and remove an item.
e Append and remove exclude each other.
e A producer will suspend on a full buffer and a consumer on an empty buffer.

5.2 Producer—Consumer Problem

We will define the monitor construct in parallel with the solution of the producer—
consumer problem (Figure 5.1).1 Note that the monitor is not a process (Ada
task), but a static module of data and procedure declarations. The actual pro-
ducer and consumer processes have to be programmed separately (Figure 5.2).

monitor Producer_Consumer_Monitor is
B: array(0..N-1) of Integer;
In_Ptr, Out_Ptr: Integer := 0;
Count: Integer := 0;
Not_Full, Not_Empty: Condition;

procedure Append(I: in Integer) is
begin
if Count = N then Wait(Not_Full); end if;
B(In_Ptr) := I;
In_Ptr := (In_Ptr + 1) mod N;
Signal (Not_Empty) ;
end Append;

procedure Take(I: out Integer) is

begin
if Count = O then Wait(Not_Empty); end if;
I := B(Out_Ptr);
OQut_Ptr := (Out_Ptr + 1) mod N;
Signal(Not_Full);

end Take;

end Producer_Consumer_Monitor;

Figure 5.1 Monitor for producer-consumer

Despite the syntactic similarity to an ordinary module (Ada package), the
semantics of a monitor are different because only one process is allowed to execute

1 Unlike most of the examples in this book, this one is not executable in Ada without modifica-
tion. See Appendix B for details.
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task body Producer is
I: Integer;
begin
loop
Produce(I);
Append (1) ;
end loop;
; end Producer;

! task body Consumer is
I: Integer;
begin
loop
Take(I);
Consume (I);
end loop;
end Consumer;

Figure 5.2 Producer and consumer processes

a monitor procedure at any time. In this case, the producer can be executing
Append or the consumer Take, but not both. This ensures the mutual exclusion
on the global variables, in particular, on the variable Count which is updated by
both procedures.

The solution is more structured than the semaphore solution both because
the data and procedures are encapsulated in a single module and because the
mutual exclusion is provided automatically by the implementation. The producer
and consumer processes see only abstract Append and Take operations and do not
have to be concerned with correctly programming semaphores.

The solution that used binary semaphores, used three of them: S for mu-
tual exclusion, and Not_Empty and Not_Full for synchronization. The mutual
exclusion requirement is now satisfied by the definition of monitors. For synchro-
nization, we define a structure called condition variables. A condition variable C
has three operations defined upon it:?

Wait(C) The process that called the monitor procedure containing this state-
ment is suspended on a FIFO queue associated with C. The mutual exclusion
on the monitor is released.

Signal(C) If the queue for C is non-empty then wake the process at the head of
the queue.

Non_Empty(C) A boolean function that returns true if the queue for C is non-
empty.

The Wait operation allows a process to suspend itself. Conventionally, the
name of the condition variable is chosen so that Wait (C) can be read: ‘I am waiting

2 We are using the same names Wait and Signal that were used for the semaphore operations,
but there is no relation between the two primitives.
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5.3 Emulation of Semaphores by Monitors

In this section and the next one, we will show how to emulate a semaphore using
monitors and conversely. This will not only show that the two primitives are of
similar power and expressibility, but will also show that the monitor is a higher-
level abstraction than a semaphore because the emulation in one direction will
be so much easier. These emulations can also be used to port a program from a
system supplying one primitive to a system supplying the other one.

monitor Semaphore_Emulation is
S: Integer := SO;
Not_Zero: Condition;

procedure Semaphore_Wait is

begin
if S=0 then Wait(Not_Zero); end if;
S :=8 -1;

end Semaphore_Wait;

procedure Semaphore_Signal is
begin
S w=-5+ d3
Signal (Not_Zero) ;
end Semaphore_Signal;
end monitor;

Figure 5.3 Emulation of semaphores by monitors

The monitor in Figure 5.3 emulates a semaphore. The variable S holds the
value of the semaphore and is initialized to some non-negative value SO. (We
could also have defined another procedure to initialize S.) The condition variable
Not_Zero maintains the queue of processes waiting for the semaphore to be non-
zero.

Theorem 5.3.1 The semaphore invariants hold:
§>0 (5.1)
S = S0 + #waits — #signals (5.2)

Proof: As usual, the proof is by induction on the execution sequence. Since
each monitor procedure is executed under mutual exclusion with no possibility of
interleaving, we can relax the proof rules. It is sufficient to prove that the formulas
are invariant in any interleaving where every execution of a monitor procedure is
a single atomic instruction. The fact that the variables may temporarily have
values that falsify the invariant may be ignored since no other process can see
these values. Remember that a Wait(C) instruction is considered to cause a
process to leave the monitor, so the invariants must be checked there too.
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