OpenMP Tutorial

Para saber se OpenMP esta instlado no Ubuntu 14.04:

dpkg --get-selections | grep openmp

dpkg --get-selections | grep mpi

https://computing.linl.qgov/tutorials/openMP/

C / C++ - General Code Structure

#include <omp.h>
main () {
int varl, var2, var3;

o

% Serial code

Beginning of parallel section. Fork a team of threads.
Specify variable scoping

#pragma omp parallel private(varl, var2) shared(var3)

{

Parallel section executed by all threads
Other Opean directives

Run-time Liérary calls

All threads.join master thread and disband
}

Q

% Resume serial code

GNU C/C++

4.4.7

OpenMP
3.0

OpenMP 4.0 Support: according to vendor documentation,

beginning with the following compiler versions, OpenMP 4.0

https://computing.llnl.gov/tutorials/openMP/

IS supported:

« GNU: 4.9 for C/C++

-fopenmp

C / C++ Directives Format

Format:

@

Required for | A valid OpenMP Optional. Clauses Required.
all OpenMP | directive. Must can be in any order, | Precedes the
C/C++ appear after the and repeated as structured block
directives. pragma and before | necessary unless which is enclosed
any clauses. otherwise restricted. | by this directive.
Example:

#pragma omp parallel default(shared) private (beta,pi)

#pragma omp parallel [clause ...] newline
if (scalar expression)
private (list)
shared (list)
default (shared | none)
firstprivate (Iist)
reduction (operator: 1list)
copyin (list)
num_ threads (integer-expression)

% structured block

Notes:

« When a thread reaches a PARALLEL directive, it creates a team of
threads and becomes the master of the team. The master is a member of
that team and has thread number 0 within that team.

« Starting from the beginning of this parallel region, the code is
duplicated and all threads will execute that code.

« There is an implied barrier at the end of a parallel section. Only the
master thread continues execution past this point.

« If any thread terminates within a parallel region, all threads in the team
will terminate, and the work done up until that point is undefined.

How Many Threads?

« The number of threads in a parallel region is determined by the
following factors, in order of precedence:
1. Evaluation of the zr clause
2. Setting of the num_tHREADS Clause
3. Use of the omp_set num_threads () Ilbrary function
4. Setting of the OMP_NUM_THREADS environment variable
5. Implementation default - usually the number of CPUs on a node,
though it could be dynamic (see next bullet).

« Threads are numbered from 0 (master thread) to N-1

C / C++ - Parallel Region Example

#include <omp.h>
main () {
int nthreads, tid;

/* Fork a team of threads with each thread having a private tid
variable */
#pragma omp parallel private (tid)

{

/* Obtain and print thread id */
tid = omp get thread num();
printf ("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0)
{
nthreads = omp get num threads();
printf ("Number of threads = %d\n", nthreads);
}

} /* All threads join master thread and terminate */

OpenMP Exercise 1

Getting Started

Overview:

e Login to the workshop cluster using your workshop username and
OTP token

Copy the exercise files to your home directory

Familiarize yourself with LC's OpenMP environment

Write a simple ""Hello World" OpenMP program

Successfully compile your program

Successfully run your program

Modify the number of threads used to run your program

GO TO THE EXERCISE HERE

https://computing.lInl.gov/tutorials/openMP/exercise.html

https://computing.linl.gov/tutorials/openMP/exercise.html

Exercise 1

1. Login to the workshop machine

https://computing.llnl.gov/tutorials/openMP/exercise.html
https://computing.llnl.gov/tutorials/openMP/exercise.html

Workshops differ in how this is done. The instructor will go over this
beforehand.

2. Copy the example files

1. In your home directory, create a subdirectory for the example
codes and then cd to it.

2. mkdir openMP
cd openMP

3. Then, copy the C version of the parallel OpenMP exercise files
to your openMP subdirectory:

C: cp /usr/global/docs/training/blaise/openMP/C/*
~/openMP

https://computing.llnl.gov/tutorials/openMP/exercise.html

EXAMPLE 1 - hello world

/***

* FILE: omp_hello.c Hello world

DESCRIPTION:
OpenMP Example - Hello World - C/C++ Version
In this simple example, the master thread forks a parallel region.
All threads in the team obtain their unique thread number and

* % X

*

print it.

* The master thread only prints the total number of threads. Two
OpenMP

* library routines are used to obtain the number of threads and each
* thread's number.

* AUTHOR: Blaise Barney 5/99
* LAST REVISED: 04/06/05

Rk b b b b b dh b i
********/

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argvl[])

{
int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables */
#pragma omp parallel private(nthreads, tid)
{

/* Obtain thread number */
tid = omp_get thread num();
printf ("Hello World from thread = %d\n", tid);

https://computing.llnl.gov/tutorials/openMP/exercise.html

/* Only master thread does this */
if (tid == 0)
{
nthreads = omp get num threads();
printf ("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and disband */

Using your choice of compiler (see above section 4), compile your hello world
OpenMP program. This may take several attempts if there are any code
errors. For example:

gcc -fopenmp omp hello.c -o hello

=

When you get a clean compile, proceed.
2. Run your ne11o executable and notice its output.
o Is it what you expected? As a comparison, you can compile and
run the provided omp_hello.c €xample program.

3. How many threads were created? By default, the GNU compilers will
create 1 thread for each core.

4. Notes:

o For the remainder of this exercise, you can use the compiler
command of your choice unless indicated otherwise.

o Compilers will differ in which warnings they issue, but all can be
ignored for this exercise. Errors are different, of course.

EXAMPLE 2 — workSharel

/***

* FILE: omp worksharel.c LOOp work—sharing

* DESCRIPTION:

* OpenMP Example - Loop Work-sharing - C/C++ Version

* In this example, the iterations of a loop are scheduled
dynamically

* across the team of threads. A thread will perform CHUNK
iterations

* at a time before being scheduled for the next CHUNK of work.
* AUTHOR: Blaise Barney 5/99

* LAST REVISED: 04/06/05

khkhkhkhkhkhkhhkhhkhhkhkhhkhhkhhkhhhkhhkh kb hrhhkhkhhkhkhrhhkhkhhkhhkhhkhkhhkkhhrhkhkhkhhkkhkhrhkhhhhkhhhkhkkxk*k
********/

#include <omp.h>
#include <stdio.h>

#include <stdlib.h>
#define CHUNKSIZE 10
#define N 100

int main (int argc, char *argv([])
{

int nthreads, tid, i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; 1 < N; i++)

ali] = b[i] =1 * 1.0;
chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,nthreads,chunk) private (i,tid)
{
tid = omp get thread num();
if (tid == 0)
{
nthreads = omp get num threads();
printf ("Number of threads = %d\n", nthreads);

}
printf ("Thread %d starting...\n",tid);

#pragma omp for schedule (dynamic, chunk)
for (i=0; i<N; i++)
{
cl[i] = a[i]l + b[i];
printf ("Thread %d: c[%d]l= $f\n",tid,i,cl[i]);
}

} /* end of parallel section */

}

EXAMPLE 3 - workShare2

/***

FILE: omp workshareZ.c
DESCRIPTION:
OpenMP Example - Sections Work-sharing - C Version

In this example, the OpenMP SECTION directive is used to assign
different array operations to each thread that executes a SECTION.
AUTHOR: Blaise Barney 5/99
* LAST REVISED: 07/16/07
R IR b b b db b b dh b b S I b S SR b b S dh b 2R S b S dh b b 2h Sh b S dh b b 2R b b S IR b S Sb b 2 dh b 2 Sb b dh b b 2E db b b 2h Sh b 2 dh b 2 4
/
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define N 50

o o X X X

int main (int argc, char *argv([])
{

int i, nthreads, tid;

float a[N], b[N], c[N], d[N];

/* Some initializations */

for (i=0; 1i<N; i++) {
afi]l =1 * 1.5;
b[(i] = 1 + 22.35;
c[i] = d[i] = 0.0;

#pragma omp parallel shared(a,b,c,d,nthreads) private (i, tid)
{
tid = omp _get thread num();
if (tid == 0)
{
nthreads = omp get num threads();
printf ("Number of threads = %d\n", nthreads);

}
printf ("Thread %d starting...\n",tid);

#pragma omp sections nowait

{

#pragma omp section

{

printf ("Thread %d doing section 1\n",tid);

for (i=0; 1i<N; i++)
{
cl[i] = al[i]l + b[i]l;
printf ("Thread %d: c[%d]l= %f\n",tid,i,cl[i]);
}

}

#pragma omp section

{

printf ("Thread %d doing section 2\n",tid);

for (i=0; i<N; i++)
{
dfi] = al[i] * b[i];
printf ("Thread %d: d[%d]l= %f\n",tid,1i,d[i]);
}

} /* end of sections */
printf ("Thread %d done.\n",tid);

} /* end of parallel section */

EXAMPLE

/***

* FILE: omp_mm.c Matrix multiply

* DESCRIPTION:
* OpenMp Example - Matrix Multiply - C Version

* Demonstrates a matrix multiply using OpenMP. Threads share row
iterations
* according to a predefined chunk size.

* AUTHOR: Blaise Barney
* LAST REVISED: 06/28/05

R e I b e S b e S b S b I S SR I I b S S b B S b S S e B 2 S b R S b S b S b I S b B S B S b S b S b S b S b S b b 4

/

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

#define NRA 62 /* number of rows in matrix A */
#define NCA 15 /* number of columns in matrix A */
#define NCB 7 /* number of columns in matrix B */

int main (int argc, char *argv([])

{

int tid, nthreads, i, j, k, chunk;

double a[NRA] [NCA], /* matrix A to be multiplied */
b [NCA] [NCB], /* matrix B to be multiplied */
c[NRA] [NCB]; /* result matrix C */

chunk = 10; /* set loop iteration chunk size */

/*** Spawn a parallel region explicitly scoping all variables ***/
#pragma omp parallel shared(a,b,c,nthreads,chunk) private(tid,i,j, k)
{
tid = omp get thread num();
if (tid == 0)
{
nthreads = omp get num threads();
printf ("Starting matrix multiple example with %d
threads\n",nthreads) ;
printf ("Initializing matrices...\n");
}
/*** Initialize matrices ***x/
#pragma omp for schedule (static, chunk)
for (i=0; 1i<NRA; i++)
for (3j=0; J<NCA; j++)
ali]l [3]1= i+3;
#fpragma omp for schedule (static, chunk)
for (i=0; 1<NCA; i++)
for (j=0; J<NCB; j++)
b[i][J1= i*3j;
#fpragma omp for schedule (static, chunk)
for (i=0; 1<NRA; i++)
for (j=0; J<NCB; j++)
c[i]l[31= O;

/*** Do matrix multiply sharing iterations on outer loop ***/
/*** Display who does which iterations for demonstration purposes
***/

printf ("Thread %d starting matrix multiply...\n",tid);
#pragma omp for schedule (static, chunk)
for (i=0; 1i<NRA; i++)

{

printf ("Thread=%d did row=%d\n",tid,1i);

for (j=0; J<NCB; Jj++)

for (k=0; k<NCA; k++)
clil[3] += alillk]l * blk]lI[J];

} /*** End of parallel region ***/
/*** Print results ***/

prlntf ("**\n") ;

printf ("Result Matrix:\n");

for (i=0; i<NRA; i++)
{
for (3j=0; J<NCB; j++)
printf ("%$6.2f ", clil i)
printf ("\n");
}

printf ("**\n") ;

printf ("Done.\n");

}

https://computing.linl.gov/tutorials/parallel comp/

Parallel Computing:

« Inthe simplest sense, parallel computing is the simultaneous
use of multiple compute resources to solve a computational
problem:

o A problem is broken into discrete parts that can be solved
concurrently
Each part is further broken down to a series of instructions

o Instructions from each part execute simultaneously on
different processors

o An overall control/coordination mechanism is employed

problem instructions

N 3 2 1

R A
BEE R

https://computing.llnl.gov/tutorials/parallel_comp/

problem instructions

do_payroll{emp1)

instruc3
instruc2
instruc1

EE R

do_payroll{emp2)

instruc1

do_payroll{emp3)

-
o
=]

=
1)

=

do_payroll{empN)

A

instruc1

[hstruce J Tnetruce 8 Tnstruce 8 nstruce §
struca Jf nstruca 8 nstruca “nstruca 1

2

« The computational problem should be able to:
o Be broken apart into discrete pieces of work that can be
solved simultaneously;
o Execute multiple program instructions at any moment in
time;
o Be solved in less time with multiple compute resources
than with a single compute resource.
« The compute resources are typically:
o A single computer with multiple processors/cores
o An arbitrary number of such computers connected by a
network.

OPENMP
C Examples of Parallel Programming with OpenMP

https://people.sc.fsu.edu/~jburkardt/c src/openmp/openmp.html

https://computing.lInl.gov/tutorials/openMP/exercise.html

Aprendendo a usar a estrutura OpenMP com GCC

http://www.ibm.com/developerworks/br/aix/library/au-aix-openmp-framework/#list2

https://people.sc.fsu.edu/~jburkardt/c_src/openmp/openmp.html
https://computing.llnl.gov/tutorials/openMP/exercise.html
http://www.ibm.com/developerworks/br/aix/library/au-aix-openmp-framework/#list2

