
OpenMP Tutorial

Para saber se OpenMP está instlado no Ubuntu 14.04:

dpkg --get-selections | grep openmp

dpkg --get-selections | grep mpi

https://computing.llnl.gov/tutorials/openMP/

C / C++ - General Code Structure

#include <omp.h>

main () {

int var1, var2, var3;

% Serial code

 .

 .

 .

Beginning of parallel section. Fork a team of threads.

Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)

 {

 Parallel section executed by all threads

 .

 Other OpenMP directives

 .

 Run-time Library calls

 .

 All threads join master thread and disband

 }

% Resume serial code

 .

 .

 .

}

GNU C/C++ 4.4.7 OpenMP

3.0

OpenMP 4.0 Support: according to vendor documentation,

beginning with the following compiler versions, OpenMP 4.0

https://computing.llnl.gov/tutorials/openMP/

is supported:

 GNU: 4.9 for C/C++

Compiler / Platform Compiler Flag

 GNU gcc -fopenmp

C / C++ Directives Format

 Format:

#pragma
omp

directive-name [clause, ...] newline

Required for

all OpenMP

C/C++

directives.

A valid OpenMP

directive. Must

appear after the

pragma and before

any clauses.

Optional. Clauses

can be in any order,

and repeated as

necessary unless

otherwise restricted.

Required.

Precedes the

structured block

which is enclosed

by this directive.

 Example:

#pragma omp parallel default(shared) private(beta,pi)

C/C++

#pragma omp parallel [clause ...] newline

 if (scalar_expression)

 private (list)

 shared (list)

 default (shared | none)

 firstprivate (list)

 reduction (operator: list)

 copyin (list)

 num_threads (integer-expression)

% structured_block

 Notes:

 When a thread reaches a PARALLEL directive, it creates a team of

threads and becomes the master of the team. The master is a member of

that team and has thread number 0 within that team.

 Starting from the beginning of this parallel region, the code is

duplicated and all threads will execute that code.

 There is an implied barrier at the end of a parallel section. Only the

master thread continues execution past this point.

 If any thread terminates within a parallel region, all threads in the team

will terminate, and the work done up until that point is undefined.

How Many Threads?

 The number of threads in a parallel region is determined by the

following factors, in order of precedence:

1. Evaluation of the IF clause

2. Setting of the NUM_THREADS clause

3. Use of the omp_set_num_threads() library function

4. Setting of the OMP_NUM_THREADS environment variable

5. Implementation default - usually the number of CPUs on a node,

though it could be dynamic (see next bullet).

 Threads are numbered from 0 (master thread) to N-1

C / C++ - Parallel Region Example

#include <omp.h>

main () {

int nthreads, tid;

/* Fork a team of threads with each thread having a private tid

variable */

#pragma omp parallel private(tid)

 {

 /* Obtain and print thread id */

 tid = omp_get_thread_num();

 printf("Hello World from thread = %d\n", tid);

 /* Only master thread does this */

 if (tid == 0)

 {

 nthreads = omp_get_num_threads();

 printf("Number of threads = %d\n", nthreads);

 }

 } /* All threads join master thread and terminate */

}

OpenMP Exercise 1

Getting Started

Overview:

 Login to the workshop cluster using your workshop username and

OTP token

 Copy the exercise files to your home directory

 Familiarize yourself with LC's OpenMP environment

 Write a simple "Hello World" OpenMP program

 Successfully compile your program

 Successfully run your program

 Modify the number of threads used to run your program

 GO TO THE EXERCISE HERE

 https://computing.llnl.gov/tutorials/openMP/exercise.html

OpenMP Exercise

https://computing.llnl.gov/tutorials/openMP/exercise.html

Exercise 1

1. Login to the workshop machine

https://computing.llnl.gov/tutorials/openMP/exercise.html
https://computing.llnl.gov/tutorials/openMP/exercise.html

Workshops differ in how this is done. The instructor will go over this

beforehand.

2. Copy the example files

1. In your home directory, create a subdirectory for the example
codes and then cd to it.

2. mkdir openMP
cd openMP

3. Then, copy the C version of the parallel OpenMP exercise files
to your openMP subdirectory:

C: cp /usr/global/docs/training/blaise/openMP/C/*

~/openMP

https://computing.llnl.gov/tutorials/openMP/exercise.html

EXAMPLE 1 - hello world

/***

* FILE: omp_hello.c Hello world
* DESCRIPTION:

* OpenMP Example - Hello World - C/C++ Version

* In this simple example, the master thread forks a parallel region.

* All threads in the team obtain their unique thread number and

print it.

* The master thread only prints the total number of threads. Two

OpenMP

* library routines are used to obtain the number of threads and each

* thread's number.

* AUTHOR: Blaise Barney 5/99

* LAST REVISED: 04/06/05

**

********/

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[])

{

int nthreads, tid;

/* Fork a team of threads giving them their own copies of variables */

#pragma omp parallel private(nthreads, tid)

 {

 /* Obtain thread number */

 tid = omp_get_thread_num();

 printf("Hello World from thread = %d\n", tid);

https://computing.llnl.gov/tutorials/openMP/exercise.html

 /* Only master thread does this */

 if (tid == 0)

 {

 nthreads = omp_get_num_threads();

 printf("Number of threads = %d\n", nthreads);

 }

 } /* All threads join master thread and disband */

}

Using your choice of compiler (see above section 4), compile your hello world
OpenMP program. This may take several attempts if there are any code
errors. For example:

gcc -fopenmp omp_hello.c -o hello

1. When you get a clean compile, proceed.

2. Run your hello executable and notice its output.

o Is it what you expected? As a comparison, you can compile and

run the provided omp_hello.c example program.

3. How many threads were created? By default, the GNU compilers will

create 1 thread for each core.

4. Notes:

o For the remainder of this exercise, you can use the compiler

command of your choice unless indicated otherwise.

o Compilers will differ in which warnings they issue, but all can be

ignored for this exercise. Errors are different, of course.

EXAMPLE 2 – workShare1

/***

* FILE: omp_workshare1.c Loop work-sharing
* DESCRIPTION:

* OpenMP Example - Loop Work-sharing - C/C++ Version

* In this example, the iterations of a loop are scheduled

dynamically

* across the team of threads. A thread will perform CHUNK

iterations

* at a time before being scheduled for the next CHUNK of work.

* AUTHOR: Blaise Barney 5/99

* LAST REVISED: 04/06/05

**

********/

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

#define CHUNKSIZE 10

#define N 100

int main (int argc, char *argv[])

{

int nthreads, tid, i, chunk;

float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

 a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,nthreads,chunk) private(i,tid)

{

 tid = omp_get_thread_num();

 if (tid == 0)

 {

 nthreads = omp_get_num_threads();

 printf("Number of threads = %d\n", nthreads);

 }

 printf("Thread %d starting...\n",tid);

#pragma omp for schedule(dynamic,chunk)

 for (i=0; i<N; i++)

 {

 c[i] = a[i] + b[i];

 printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);

 }

} /* end of parallel section */

}

EXAMPLE 3 - workShare2

/***

* FILE: omp_workshare2.c

* DESCRIPTION:

* OpenMP Example - Sections Work-sharing - C Version

* In this example, the OpenMP SECTION directive is used to assign

* different array operations to each thread that executes a SECTION.

* AUTHOR: Blaise Barney 5/99

* LAST REVISED: 07/16/07

**

/

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

#define N 50

int main (int argc, char *argv[])

{

int i, nthreads, tid;

float a[N], b[N], c[N], d[N];

/* Some initializations */

for (i=0; i<N; i++) {

 a[i] = i * 1.5;

 b[i] = i + 22.35;

 c[i] = d[i] = 0.0;

 }

#pragma omp parallel shared(a,b,c,d,nthreads) private(i,tid)

{

 tid = omp_get_thread_num();

 if (tid == 0)

 {

 nthreads = omp_get_num_threads();

 printf("Number of threads = %d\n", nthreads);

 }

 printf("Thread %d starting...\n",tid);

 #pragma omp sections nowait

 {

 #pragma omp section

 {

 printf("Thread %d doing section 1\n",tid);

 for (i=0; i<N; i++)

 {

 c[i] = a[i] + b[i];

 printf("Thread %d: c[%d]= %f\n",tid,i,c[i]);

 }

 }

 #pragma omp section

 {

 printf("Thread %d doing section 2\n",tid);

 for (i=0; i<N; i++)

 {

 d[i] = a[i] * b[i];

 printf("Thread %d: d[%d]= %f\n",tid,i,d[i]);

 }

 }

 } /* end of sections */

 printf("Thread %d done.\n",tid);

 } /* end of parallel section */

}

EXAMPLE

/***

* FILE: omp_mm.c Matrix multiply

* DESCRIPTION:

* OpenMp Example - Matrix Multiply - C Version

* Demonstrates a matrix multiply using OpenMP. Threads share row

iterations

* according to a predefined chunk size.

* AUTHOR: Blaise Barney

* LAST REVISED: 06/28/05

**

/

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

#define NRA 62 /* number of rows in matrix A */

#define NCA 15 /* number of columns in matrix A */

#define NCB 7 /* number of columns in matrix B */

int main (int argc, char *argv[])

{

int tid, nthreads, i, j, k, chunk;

double a[NRA][NCA], /* matrix A to be multiplied */

 b[NCA][NCB], /* matrix B to be multiplied */

 c[NRA][NCB]; /* result matrix C */

chunk = 10; /* set loop iteration chunk size */

/*** Spawn a parallel region explicitly scoping all variables ***/

#pragma omp parallel shared(a,b,c,nthreads,chunk) private(tid,i,j,k)

 {

 tid = omp_get_thread_num();

 if (tid == 0)

 {

 nthreads = omp_get_num_threads();

 printf("Starting matrix multiple example with %d

threads\n",nthreads);

 printf("Initializing matrices...\n");

 }

 /*** Initialize matrices ***/

 #pragma omp for schedule (static, chunk)

 for (i=0; i<NRA; i++)

 for (j=0; j<NCA; j++)

 a[i][j]= i+j;

 #pragma omp for schedule (static, chunk)

 for (i=0; i<NCA; i++)

 for (j=0; j<NCB; j++)

 b[i][j]= i*j;

 #pragma omp for schedule (static, chunk)

 for (i=0; i<NRA; i++)

 for (j=0; j<NCB; j++)

 c[i][j]= 0;

 /*** Do matrix multiply sharing iterations on outer loop ***/

 /*** Display who does which iterations for demonstration purposes

***/

 printf("Thread %d starting matrix multiply...\n",tid);

 #pragma omp for schedule (static, chunk)

 for (i=0; i<NRA; i++)

 {

 printf("Thread=%d did row=%d\n",tid,i);

 for(j=0; j<NCB; j++)

 for (k=0; k<NCA; k++)

 c[i][j] += a[i][k] * b[k][j];

 }

 } /*** End of parallel region ***/

/*** Print results ***/

printf("**\n");

printf("Result Matrix:\n");

for (i=0; i<NRA; i++)

 {

 for (j=0; j<NCB; j++)

 printf("%6.2f ", c[i][j]);

 printf("\n");

 }

printf("**\n");

printf ("Done.\n");

}

https://computing.llnl.gov/tutorials/parallel_comp/

Parallel Computing:

 In the simplest sense, parallel computing is the simultaneous
use of multiple compute resources to solve a computational
problem:

o A problem is broken into discrete parts that can be solved
concurrently

o Each part is further broken down to a series of instructions
o Instructions from each part execute simultaneously on

different processors
o An overall control/coordination mechanism is employed

https://computing.llnl.gov/tutorials/parallel_comp/

 The computational problem should be able to:
o Be broken apart into discrete pieces of work that can be

solved simultaneously;
o Execute multiple program instructions at any moment in

time;
o Be solved in less time with multiple compute resources

than with a single compute resource.
 The compute resources are typically:

o A single computer with multiple processors/cores
o An arbitrary number of such computers connected by a

network.

OPENMP
C Examples of Parallel Programming with OpenMP

https://people.sc.fsu.edu/~jburkardt/c_src/openmp/openmp.html

OpenMP Exercise

https://computing.llnl.gov/tutorials/openMP/exercise.html

Aprendendo a usar a estrutura OpenMP com GCC

http://www.ibm.com/developerworks/br/aix/library/au-aix-openmp-framework/#list2

https://people.sc.fsu.edu/~jburkardt/c_src/openmp/openmp.html
https://computing.llnl.gov/tutorials/openMP/exercise.html
http://www.ibm.com/developerworks/br/aix/library/au-aix-openmp-framework/#list2

