

E uma API destinada a computacao paralela, GPGPU,
e computacao heterogénea, criada

pela Nvidia, destinada a placas graficas que suportem
a APl (normalmente placas graficas com chipset da

Nvidia).

CUDA da acesso ao conjunto de
Jde computacao

~
Y a

O QUE E CUDA

https://pt.wikipedia.org/wiki/Interface_de_programa%C3%A7%C3%A3o_de_aplica%C3%A7%C3%B5es
https://pt.wikipedia.org/wiki/Computa%C3%A7%C3%A3o_paralela
https://pt.wikipedia.org/wiki/GPGPU
https://pt.wikipedia.org/wiki/Nvidia
https://pt.wikipedia.org/wiki/Conjunto_de_instru%C3%A7%C3%B5es
https://pt.wikipedia.org/w/index.php?title=N%C3%BAcleo_de_computa%C3%A7%C3%A3o&action=edit&redlink=1

No final dos anos 90, surgiu a primeira GPU da NVIDIA, quando o
hardware comecou a tornar-se cada vez mais programavel

Em 2003, um grupo de pesquisadores liderado por [an

Buck desenvolveu o primeiro modelo de programacdo a
adotar a linguagem C em uma plataforma de computacdo
a, revelando assim uma GPU, como um processador
ma linguagem de alto nivel, aléem de

allale

https://pt.wikipedia.org/w/index.php?title=Ian_Buck&action=edit&redlink=1
https://pt.wikipedia.org/wiki/C_(linguagem_de_programa%C3%A7%C3%A3o)

A NVIDIA entao, investiu num hardware extremamente
rapido e convidou lan Buck para trabalhar na empresa

e comecar a desenvolver uma solucao para executar o
C na GPU de forma melhor.

1 NVIDIA aresentou em 2006 o CUDA, a
putacao de propadsito geral

https://pt.wikipedia.org/w/index.php?title=Ian_Buck&action=edit&redlink=1

What is a GPU chip? GPU

A Graphic Processing Unit (GPU) chips is an adaptation of
the technology in a video rendering chip to be used as a
math coprocessor.

The earliest graphic cards simply mapped memory bytes to
screen pixels - i.e. the Apple][in 1980.

The next generation of graphics cards (1990s) had 2D
rendering capabilities for rendering lines and shaded areas.

Graphics cards started accelerating 3D rendering with
standards like OpenGL and DirectX in the early 2000s.

The most recent graphics cards have programmable
processors, so that game physics can be offloaded from the
main processor to the GPU.

A series of GPU chips sometimes called GPGPU (General
Purpose GPU) have double precision capability so that they
can be used as math coprocessors.

What algorithms work well on GPUs Code

' ([i)oting the same calculation with many pieces of input
ata.

The number of processing steps should be at least an
order of magnitude greater than the number of pieces of
input/output data.

Single precision performance is better than double
precision.

Algorithms where most of the cores will follow the same
branch paths most of the time.

Algorithms that require little if any communication
between threads.

_—

" CUDA Programming Language CLJDA

The GPU chips are massive multithreaded, manycore
SIMD processors.

SIMD stands for Single Instruction Multiple Data.

Previously chips were programmed using standard
graphics APIs (DirectX, OpenGL).

CUDA, an extension of C, is the most popular GPU
programming language. CUDA can also be called
from a C++ program.

The CUDA standard has no FORTRAN support, but .
Portland Group sells a third party CUDA FORTRAN.

Theoretical Peak Performance, Single Precision

INTEL Xeon CPUS =i
NVIDIA GeForce GPUs —Jil—
AMD Radeon GPUs =——dff—
INTEL Xe0n Phis st

2012 2014 2016
End of Year

Comparison of theoretical peak GFLOP/sec in single precision. CPU data is for a single socket. Higher is better.

GFLOP/sec

10°

10°

Theoretical Peak Performance, Double Preasion

............

. L) L] AJ
.

..

INTEL Xeon CPUS gl
NVIDIA Tesla GPUs —{i}—
AMD Radeon GPUs —{—

a

Sadaton Al ol

3 ‘ﬁm 'q’?, 6‘9
% < R INTEL X@on Phis s
2008 2010 2012 2014 2016
End of Year

Comparison of theoretical peak GFLOP/sec in double precision. CPU data is for a single socket. Higher is better.

Heterogeneous Computing &

nvibDiAa

GPU

Software

|

Thread

il

Thread Block

HH

HH

Hardware

B Thread is a single execution
of a kernel, and all

Thread Processor execute the same code
[

Threads within a block have
access to shared memory
for local cooperation

Multiprocessor

Kernel launched as a grid of
iIndependent thread
blocks, and only a single
kernel executes at a time
(on T10)

A
AN

T10

30 multiprocessors with

8 single precision thread
processors

2 special function units
Double precision unit

1.3 GHz

240 cores per chip
1036.8 GFLOP single
86.4 GFLOP double

NVIDIA.

Nvidia GPU Models

Chips

Fermi (T20) Kepler (K20)

14 multiprocessors with

32 thread processors are single
& double add/multiply

4 special function units

2 clock ticks per double
precision operation

1.15 GHz
Faster memory bus

Multiple kernels
(subroutines) can run at
once

13 multiprocessors with
192 single precision thread

processors

64 double precision thread

processors

32 special function units

0.706 GHz

Threads can spawn new
threads (recursion)

Muitiple CPU cores can
access simultaneously

448 cores per chip
1288 GFLOP single
515.2 GFLOP double

2496 cores per chip
3520 GFLOP single
1170 GFLOP double

SIMD Programming CUDA

Copy an array of data to the GPU.

Call the GPU, specifying the dimensions of thread
blocks and number of thread blocks (called a grid).

All processors are executing the same subroutine on
a different element of the array.

The individual processors can choose different
branch paths. However, there is a performance
Benalty as some wait while others are executing their

ranch path. V/
Copy an array of data back out to the CPU. ,

[

€

\

GPU programming is more closely tied to chip
architecture than conventional languages.

-

Multiple types of memory
help optimize performance Code

GPU chip
Global memory — Visible to all multiprocessors on the GPU chip.

Constant memory — Device memory that is read only to the thread

processors and faster access than global memory.
Texture & Surface memory — Lower latency for reads to adjacent

array elements.

Multiprocessor
Shared memory — Shared between thread processors on the same

multiprocessor.

———

Performance Optimization Code

Utilize the type of memory that will give the best
performance for the algorithm.

The chip is made for zero latency swapping threads so that
a different warp (group of usually 32 threads) can run while
one warp is waiting on 10, SFU, DPU. Thus it is often best
to have more threads than thread processors.

The best number of threads/block depends on the program,
but should be a multiple of 32 such as 64, 128, 192, 256, 768.

The grid size should be at least the number of
multiprocessors, and also works well as a multiple of the
number of multiprocessors.

If __syncthreads() slows the code, use more, smaller
blocks.

=
Low Latency or High Throughput?

ALU ALU

CPU

1000's of ALUs

1000's of ALUs

GPU
¢ Optimized for low-latency access to ¢ Optimized for data-parallel,
cached data sets throughput computation
* Control logic for out-of-order and * Architecture tolerant of memory
speculative execution latency

* More transistors dedicated to
computation

-

.

Started.vy

o

Mark Ebersole, NVIDIA
CUDA Educator

=

v)
R
—
-~ 0~ -
T
. \-P

CUDAC

o~

b
-

-~

S

\;/3: e

-
S

>
—
—

p
74 o
(>

-

R 4

"~

; X
Past Massively Parallel Supercomputers ™™=

Thinking Machine

MasPar

=

NVIDIA

1.31 TFLOPS on

>
GeForce 8: First Fully Programmable GPU™

Nvidia — Geforce -
aceleradore
desenvolvido pelc NVIDIA.

7
As placas graficas avancadas, com solucdes e tecnologias de games - da NVIDIA.

_/

https://www.nvidia.com/en-us/geforce/

Nvidia — Geforce — Hardware -
Notebooks

https://www.geforce.com/hardware/notebook-gpus

Placas de video Radeon™

AMD 1
RADEON

A primeira GPU de 7nm para jogos do mundo

——

——
SoLsatNLALRTAD
iRttt

ittt

sae

Radeon™ RY Série 400

https://www.amd.com/pt/graphics/radeon-rx-graphics

https://laptoping.com/gpus/product/intel-hd-620-review-graphics-of-7th-gen-core-u-series-kaby-lake-cpus/

OMPARISON

; e

AL L Iy

: v

P A . e 'y

vecvona e ’ r're

Coovea e .~\\\‘.\\l!
»

PSS
AL I

Introduct

<A NVIDIA.

NVIDIA

Mark Ebersole,
CUDA Educator

Introduction to
GPU Programming

with CUDA and OpenACC

What is CUDA?

¢ Programming language?
¢ Compiler?

CUDA Parallel Computing Platform >

. NVIDIA
www.nvidia.com/getcuda

r
Approaches
'3 “Drop-in” Acceleration Easily Accelerate Apps Maximum Flexibility)
(. ™)
Development . Nsight IDE CUDA-GDB debugger
. inux, Mac and Windows E :
Environment GPU Debugging and Profiling NVIDIA Visual Profiler
. J
r ; R
Open Compller Enables compiling new languages to CUDA platform, and
T00| Ch ain CUDA languages to other architectures
y
4)
Hardware
Capabilities
_ J

Geting Strted vith CUDA b1

GPU Accelerated Science Applications >

Over 145+ Accelerated science apps in our catalog. Just a few:

GROMACS LAMMPS

www.nvidia.com/teslaapps

Tsunami RTM

GPU Accelerated Workstation Applications &,

Fifty accelerated workstation apps in our catalog. Just a few:

.
The proven combination for perfect
designs. .carn more -

Maximize your pr
learn more >

-
Examine every aspect of your model. The right solutions. The right decision.

learn more > learn more >

Experience a
learn more »

www.nvidia.com/object/gpu-accelerated-applications.html

3 Ways to Accelerate Applications

<3

nvinia

Applications }
4 D (C A
o OpenACC Programmin
Libraries gl J J
Directives Languages
- J >
“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility

3 Ways to Accelerate Applications =

Applications }
& h 4
OpenACC Programming
Directives Languages
——

“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility

GPU Accelerated Libraries <3
“Drop-in” Acceleration for your Applications

NVIDIA cuBLAS | NVIDIA CURAND f| NVIDIA cuSPARSE

Py WoiPL

Vector Signal GPU Accelerated Matrix Algebra on
Image Processing Linear Algebra GPU and Multicore v

ROGUE WAVE

3OETWARE ArrayFire Matrix Sparse Linear @ | C++ STL Features
IMSL Library Computations Algebra for CUDA -

Explore the CUDA (Libraries) Ecosystem >,

* CUDA Tools and Ecosystem M — ,
described in detail on NVID'A @ DEVELOPER

Developer Zone:
developer.nvidia.com/cuda-tools-ecosystem

* Watch past GTC library talks

3 Ways to Accelerate Applications

<3

nvibia

Applications

D

J

Libraries

“Drop-in”
Acceleration

Easily Accelerate
Applications

(

_

Programming
Languages

\

J

Maximum
Flexibility

What is OpenACC?
OpenACC is a user-driven directive-based performance-
portable parallel programming model designed for scientists
and engineers interested in porting their codes to a wide-variety
of heterogeneous HPC hardware platforms and architectures
with significantly less programming effort than required with a
low-level model.

#pragma acc data copy(A) create(Anew)
while (error > tol && iter < iter max) {
error = 0.0;
#pragma acc kernels {
#pragma acc loop independent collapse(2)
for (int 3J =1; jJ < n-1; J++) {
or take the next steps for (L dnt i =15 1 <m-d; ik) | .
Anew [j] [1i] = ©.25 * (A [3] [i+1] + A [j] [i-1] +
A [j-1] [i] + A [j+1] [i]);
error = max { error, fabs (Anew [j] [1] - A [3] [i]));

https://www.openacc.org/get-
started

OpenACC Directives >

NVIDIA

CPU GPU

= Simple Compiler hints

Compiler Parallelizes code

Program myscience
... serial code ...
I$acc kernels

OpenACC |

dok=1,n1
doi=1n2 Compiler Works on many-core GPUs &
... parallel code . Hint .
enddo multicore CPUs

I$acc end kernels
End Program myscience

Your original
Fortran or C code

OpenACC Specification and Website

* Full OpenACC 1.0 Specification available online

WWW.0openacc.org

* OpenACC 2.0 Specification just announced

* Implementations available now from PGI, Cray (beta),
and CAPS

<3

NVIDIA

The OpenACC™ API

QUICK REFERENCE GUIDE

CAPS
Rl

NVIDIA.
PGl

© 20 OownACL Saneat o) 81 VPO T el

Start Now with OpenACC Directives e

Sign up for a free trial of the
directives compiler now!

Free trial license to PGl Accelerator AnviDIA E—

DOWNLOAD DRIVERS COOL STUFF SHOP PRODUCTS TEGHNOLOGES (ITES SUPPORT

Tools for quick ramp

www.nvidia.com/gpudirectives

<ANVIDIA

3 Ways to Accelerate Applications <.

Applications]
i 4 i)
. . OpenACC
Libraries P .
Directives
3 _ Y,
“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility

GPU Programming Languages &

nvibia

Numerical analyticsf MATLAB, Mathematica, LabVIEW
Fortranh OpenACC, CUDA Fortran
C > OpenACC, CUDAC
C++ ’, Thrust, CUDA C++
Python >_} PyCUDA, Copperhead

C# P GPU.NET

Programming a CUDA Language >

* CUDA C/C++
* Based on industry-standard C/C++
¢ Small set of extensions to enable heterogeneous programming
¢ Straightforward APIs to manage devices, memory etc.

* This session introduces CUDA C/C++

Prerequisites >

NVIDIA

* You (probably) need experience with C or C++
* You don’t need GPU experience
* You don’t need parallel programming experience

* You don’t need graphics experience

CUDA 5 Toolkit and SDK - www.nvidia.com/getcuda <3

nVvIiDIA
CUDA S5 PRODUCTION RELEASE NOW AVAILABLE
The CUDA 5 Installers include the CUDA Toolkit, SDK code sam
Nant to know more about CUDA 5 features? Visit the
Tv. CUDA 5 and with us!.

WINDOWS: CUDA 5.0 Production Release
Win 8 / Win 7 / Win Vista WinXP

Desktop Notebook Desktop
64bit 64bit 64bit

32bit 32bit 32bit

LINUX: CUDA 5.0 Production Release

RHEL Ubuntu OpenSUSE SUSE SUSE
5.X 6.X 11.10 10.04 12.1 Server 11 SP1 Server 11 SP2

64bit 64bit 64bit 64bit 64bit 64bit 64bit

32bit 32bit 32bit 32bit 32bit

MAC OS X: CUDA 5.0 Production Release

DOWNLOAD

>

nvibDiA

—
_—
CONCEPTS
e

SAXPY

Standard C Code

///’*

{

}

int

A

void saxpy(int n, float a, float *x, float *y)

for (int 1 = 0; i < n; ++1)

// Perform SAXPY on 1M elements
saxpy(N, 2.0f, x, y);

“‘\\\

y[il = a*x[1] + y[il;

N = 1<<20;

4

http://developer.nvidia.com/cuda-toolkit

=

nvibia

Heterogeneous Computing <.

* Terminology:

= Host The CPU and its memory (host memory)
= Device The GPU and its memory (device memory)

o

&

S

gl . - >
¢ N\ ;::‘ ’/
“
F a4

Device

Parallelism on a GPU - CUDA Blocks >

A function which runs on a GPU is called a “kernel”

® Each parallel invocation of a function running on the GPU is called a
“block”

Parallelism on a GPU - CUDA Blocks

I”

the GPU is called a

>

nvibDiA

= BLOCK

Parallelism on a GPU - CUDA Blocks 2

A function which runs on a GPU is called a “kernel”
* Each parallel invocation of a function running on the GPU is called a

“block” G ri d O

blockldx.x =0 blockldx.x = 1 blockldx.x = 2 blockldx.x = N-1

“ A block can identify itself by reading blockidx.x

Parallelism on a GPU - CUDA Blocks 2

® A function which runs on a GPU is called a “kernel”
® Each parallel invocation of a function running on the GPU is called a

“block” G I’I d 1

bIokIdx.x =0 blokldx.x =1 blokldx.x =2 blockldx.x = W-1

* A block can identify itself by reading blockidx.x

Parallelism on a GPU - CUDA Threads <2

® Each block is then broken up into “threads”

UDA Threads <2

= THREAD

threadldx.x
can be read with blockDim.x

Parallelism on a GPU - CUDA Threads <2

* Each block is then broken up into “threads” B IOCk

threadldx.x =0 threadldx.x = 1 threadldx.x =2 threadldx.x=M - 1

* A thread can identify itself by reading threadldx.x

* The total number of threads per block can be read with blockDim.x
* In the above example blockDim.x = M

Why threads and blocks? <

nviDIA

* Threads within a block can

¢ Communicate very quickly (share memory)
® Synchronize (wait for all threads to catch up)

* Why break up into blocks?

* A block cannot be broken up among multiple SMs (streaming
multiprocessors), and you want to keep all SMs busy.

¢ Allows the HW to scale the number of blocks running in parallel based on
GPU capability

Why threads and blocks? >

GPU X GPUY

oo 1 ioces JRNN i1 [oo [st Jooecs
Time | Biock 2 | Block 4 | [Block 2 J Biock 7 [Biock 8 Jf Blocks |
| Biock 7 f Blook6
| Enem

* Why break up into blocks?

* A block cannot be broken up among multiple SMs (streaming
multiprocessors), and you want to keep all SMs busy.

* Allows the HW to scale the number of blocks running in parallel based on
GPU capability

X

Hello Parallelism!

kernel.cu X

(Global Scope)

-i#include "cuda runtime.h”
#include "device launch_parameters.h”

#include <stdio.h>

-] _global void hello()

printf("Hello Parallelism from thread %d in block %d\n", threadIdx.x, blockIdx.x);

main()

hello<<<1,1>>>();
cudaDeviceSynchronize();

return 0;

[l Show output from: | Build I AESIEYE I

Output X

nVvIiDIA

Build started: Project: hello_parallelism, Configuration: Debug Win32
1>Build started 18/2/2812 2:21:54 PM.
1>InitializeBuildStatus:
1> Creating "Debug\hello_parallelism.unsuccessfulbuild” because "AlwaysCreate"™ was specified.
1>AddCudaCompilePropsDeps:
1>Skipping target "AddCudaCompilePropsDeps™ because all output files are up-to-date with respect to the input files.
1>CudaBuild:
1> Compiling CUDA source file kernel.cu...
1>
1> C:\Users\mebersole\Documents\code\Hello\hello_parallelism>"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.8\bin\nvcc.exe" -ge
1> kernel.cu
1> tmpxft_00001ff0_000000008-2_kernel.cudafel.gpu
1> tmpxft_00001+F0_00000000-7_kernel.cudafel.gpu
1> kernel.cu
1> tmpxft_000081++0_00000000-2_kernel.cudatel.cpp
1> tmpxft_00001ff0_00000000-12 kernel.ii
1>ManifestResourceCompile:
1> All outputs are up-to-date.
1>Manifest:
1> All outputs are up-to-date.
1>LinkEmbedManifest:
1> All outputs are up-to-date.
1> hello_parallelism.vcxproj -> C:\Users\mebersole\Documents\code\Hello\hello_parallelism\Debug\hello_parallelism.exe
1>PostBuildEvent:
1> copy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.@\bin\cudart*.dll" "(C:\Users\mebersole\Documents\code\Hello\hello_parall
1> C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vS5.@\bin\cudart32_5€_27.d1l1
1> C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.8\bin\cudarté4_50_27.dl1l
1> 2 file(s) copied.
1>FinalizeBuildStatus:
1> Deleting file "Debug\hello_parallelism.unsuccessfulbuild”.
1> Touching "Debug\hello_parallelism.lastbuildstate”.
15|
1>Build succeeded.
1>
1>Time Elapsed 00:00:06.08
========== Byild: 1 succeeded, @ failed, @ up-to-date, @ skipped ==========

Hello Parallelism! <

C:\Users\mebersole\Documents\code\Hello\hello parallelism\Debug>hello parallelism.exe
Hello Parallelism from thread 0 in block 0

C:\Users\mebersole\Documents\code\Hello\hello parallelism\Debug>j]

Hello Parallelism! N>

int main()

T
L

hello<<<1,18>>>();

cudaDeviceSynchronize();

return 8;

Hello Parallelism

<3

NVIDIA

C:\Users\mebersole\Documents\code\Hello\hello parallelism\Debug>hello parallelism.exe

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism
Parallelism

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread
thread

0 in block 0
16 in block 0
1 in block 0
2 in block 0
17 in block 0
in block
in block
in block
in block
in block
in block
in block
in block
in block
in block
in block
in block
in block

C:\Users\mebersole\Documents\code\Hello\hello parallelism\Debug>fj

Hello Parallelism! N>

int main()

.
L

hello<<£2,18>>>();
cudaDeviceSynchronize();

return 9;

:\Users\mebersole\Documents\code\Hello\hello parallelism\Debug>hello parallelism.exe
ello Parallelism from thread 0 in block 0
Hello ello Parallelism from thread 1 in block 0
ello Parallelism from thread 2 in block 0
ello Parallelism from thread 16 in block 0
ello Parallelism from thread 3 in block 0
ello Parallelism from thread 4 in block 0
ello Parallelism from thread 17 in block 0
ello Parallelism from thread 5 in block 0
ello Parallelism from thread 6 in block 0
ello Parallelism from thread 7 in block 0
ello Parallelism from thread 8 in block 0
ello Parallelism from thread 9 in block 0
ello Parallelism from thread 10 in block
ello Parallelism from thread 11 in block
Hello Parallelism from thread 12 in block
ello Parallelism from thread 13 in block
ello Parallelism from thread 14 in block
ello Parallelism from thread 15 in block
ello Parallelism from thread 0 in block 1
|Hello Parallelism from thread 16 in block 1
|Hello Parallelism from thread 1 in block 1
ello Parallelism from thread 17 in block 1
|Hello Parallelism from thread 2 in block
ello Parallelism from thread 3 in block
Hello Parallelism from thread 4 in block
ello Parallelism from thread 5 in block
6
7
8
9

OCO0O000O0

ello Parallelism from thread in block
ello Parallelism from thread in block
ello Parallelism from thread in block
ello Parallelism from thread in block
ello Parallelism from thread 10 in block
ello Parallelism from thread 11 in block
ello Parallelism from thread 12 in block
ello Parallelism from thread 13 in block
ello Parallelism from thread 14 in block
ello Parallelism from thread 15 in block

N

[S = S S

SAXPY CPU 2

void saxpy_cpu(int n, float a, float *x, float *y)
{
for (Aint 1 =0; 1 < n; ++1)
y[1] = a*x[1] + y[1];

SAXPY kernel >

__global__ void saxpy_gpu(int n, float a, float *x, float *y)
{

int 1 = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
y[i]l = a*x[1] + y[i];

SAXPY kernel >

nvibia

_global__ void saxpy_gpu(int n, float a, float *x, float *y)

{
int 1 = blockIdx.x*blockDim.x + threadIdx.x;
1 1 < n)
yl[il/= a*x[1] + y[1);
}
blockldx.x: blockDim.x: threadldx.x:
Our Block ID Number of threads per Our thread ID

block

SAXPY kernel <3

nvibia

__global__ void saxpy_gpu(int n, float a, float *x, float *y)

{
int 1 = blockIdx.x*blockDim.x + threadIdx.x;
e n)
y[1\ = a*x[1] + y[i];
}

i is now an index into our input and |
output arrays

SAXPY kernel - with data <3

nvibia

_global__ void saxpy_gpu(int n, float a, float *x, float *y)

{
int 1 = blockIdx.x*blockDim.x + threadIdx.x;
1if 1 < n)
y[i]l = a*x[1] +/y[1];
}

¢ Let’s work with/30 data elements
o 3 blocks, with 10 threads per block

® So, blockDim.x =10

¢ Brokeni

SAXPY kernel - with data 2

__global__ void saxpy_gpu(int n, float a, float *x, float *y)

{
int 1 = blockIdx.x*blockDim.x + threadIdx.x;
1F €1 < n)
y[i]l = a*x[i] + y[i];
} 10 threads (hamsters)
each with a different 1
* For blockldx.x =0 A

| \
. 'i =0 * 10 + threadIdX.X - {0,1,2,3,4,5’6’718’9}

* For blockldx.x=1
® i =1%* 10 + threadIdx.x

* For blockldx.x = 2
® i =2 * 10 + threadIdx.x

110,11,12,13,14,15,16,17,18,19}

120,21,22,23,24,25,26.27,28,29}

GPU Programming Example CUDA

// CPU only matrix add // GPU kernel
int main() { __global _ gpu(A[N]|N], B|N]
int i, j; IN], CINJIN]) {
for (i=0;i<N;i++) { int i = threadldx.x;
for (j=0;j<N;j++) { int j = threadldx.y;
CIlillj1=Alil[j]+Blil[jl; ClilljI=ATL] Bl [j]s
h

int main() {
dim3 dimBIk(N,N);

gpu<<l,dimBIk>>(A,B,(C);
}

Calling saxpy_gpu: main ()

Standard C Code

#define N (2048 * 512)
int main(void) {
float *x, *y; // host copies

int size = N * sizeof (float);

’./f 3 7 YD S = Ao -
// Alloc space for host copies
X & y and setup input values

X = (float *)malloc (size);
random floats(x, N);
y = (float *)malloc(size);
random floats(y, N);

Parallel C Code

=

nNVIDIA

#define N (2048 * 512)
int main(void) {
float *x, *y; // ho
float *d x, *d y;// devic
int size = N * si] (£1

27 e . 3 > .
A —~ =~ ~ FAY Newrs oo ~ -
WIS RO LIS CC:’.._, L O AT V LT \,\JL/___.S

cudaMalloc((VOLd **)&d x, size);
cudaMalloc((void **)é&d y, size);

2 o e e s i g
=~ ce ‘ = e O
Al I1OC Space Ior nNost copies or1
C 7 and catrbn Tnniik R
4 y o [ST UM 4 & MUo AL UT O

x = (float *)malloc(s ze) ;
random floats(x, N);
y = (float *)malloc(size);
random floats(y, N);

Calling saxpy_gpu: main () >
Standard C Code Parallel C Code

Copy input to device
cudaMemcpy(d x, &x, size, cudaMemcpyHostToDevice);
cudaMemcpy(d y, &y, size, cudaMemcpyHostToDevice);
// Launch saxpy on CPU // Launch saxpy kernel on GPU

saxpy cpu(N, 2.0f, x, y); saxpy gpu<<<4096,256>>>(N, 2.0f, d x, d y);

// Copy result back to host

cudaMemcpy (&y, d_y, size, cudaMemcpyDeviceToHost);

// Cleanup // Cleanup
cudaFree (d x); cudaFree(d y);
free(x); free(y): free(x); freel(y):

return 0; return 0;

Other CUDA Tools

- CUDA Memory Checker (cuda-memcheck) can be used
to find memory violations

- CUDA debugger (cuda-gdb) is an extension of the GNU
debugger for Linux

* NVIDIA Parallel Nsight is a debugger for Microsoft

CUDA

Visual Studio A
- CUDA Visual Profiler s

= -
=
-
-
=
=
=
-
=

Ny F

NVIDIA® Nsight™ Eclipse Edition
for Linux and MacOS

CUDA-Aware Editor Nsight Debugger Nsight Profiler
® Automated CPU to GPU code ¢ Simultaneously debug CPU and GPU o Quickly identifies performance issues
refactoring ¢ Inspect variables across CUDA threads ¢ Integrated expert system
® Semantic highlighting of CUDA code ® Use breakpoints & single-step ® Source line correlation
¢ Integrated code samples & docs debugging

developer.nvidia.com/nsight

NVIDIA® Nsight Visual Studio Ed.

CUDA Debugger

b Debug CUDA kernels directly on GPU hardware
® Examine thousands of threads executing in parallel
® Use on-target conditional breakpoints to locate errors

CUDA Memory Checker
® Enables precise error detection

System Trace

® Review CUDA activities across CPU and GPU

® perform deep kernel analysis to detect factors
limiting maximum performance

CUDA Profiler

® Advanced experiments to measure memory
utilization, instruction throughput and stalls

NVIDIA Visual Profiler]

File View Run Help
EEe W e <
© *dctBxB.vp B | Wl Properties i2 | Il Deta

CuDAkernel lLDCT(Roat*, int, int, int)
= Process: 11119
=l Thread: -1494415584
Runtimea API
Driver AP
=l [0] GeForce GTX 480
=l Context 1 (CUDA)
T MemCpy (HtoD)

Value
161.329 ms

T MemCpy (DtoH) | Memcpy DtoH [sync] |
T MemCpy (DtoD) —
=l Compute
T 0.7%[101] CUD
T 0.3% [10] CUDAL..
T 0.0% [2] CUDAke CUDAkemelQua...
¥ 0.0%[1] cuDAke
T 0.0% [1] CUDAke.
T 0.0% [1] CUDAke
T 0.0% [1] CUDAke
T 0.0% [1] CUDAke:
= Streams

Stream 1 CuDAkemnelQua... | JCUDAkemellIDCT(float*, int..|™ Memcpy DioH [sync] |

M Analysis & I§ Details B Console [l Settings

Analysis Results
Reset All), Analyze All s
High Branch Divergence Overhead [35.1% avg, for kernels accounting for 1.9% of compute]

Timeline [I | t i

i o, -}
e — High Instruction Replay Overhead [46.6% avg, for kernels accounting for 39.1% of compute]

A e na I 1 3 hare 3l 3| memory renlavs are causing sioniBcant inst t < & erhea

Kernel Memory . High Global Memaory Instruction Replay Overhead [45.9% avg, for kernels accounting for 39.1% of compute]

B slecrad alabhal rrser " nA cianific ant inct i o y Th

Kernel Instruction

nvprof - CUDA 5.0 Toolkit >

¢ Textual reports
¢ Summary of GPU and CPU activity
* Trace of GPU and CPU activity
* Event collection

¢ Headless profile collection

* Use nvprof on headless node to collect data
* Visualize timeline with Visual Profiler

Links to get started <.

® Get CUDA: www.nvidia.com/getcuda
e Nsight: www.nvidia.com/nsight

* Programming Guide/Best Practices...
® docs.nvidia.com

® Questions:
* NVIDIA Developer forums devtalk.nvidia.com
® Search or ask on www.stackoverflow.com/tags/cuda

® General: www.nvidia.com/cudazone

Developer Curriculum >

® Site: developer.nvidia.com/cuda-education
* Mailing list is live!

* Forums for discussion:
¢ Education section on: devtalk.nvidia.com

< CUDA References DoOC

On the Alabama Supercomputer Center
systems, documentation is in the
directory /opt/asn/doc/gpu

Start with README .txt and TIPS.txt
CUDA_C_Getting_Started_Linux.pdf
CUDA_C_Programming_Guide.pdf
CUDA_C_Best_Practices_Guide.pdf

Examples are in the portland_accelerator and
portland_cuda_fortran directories C U DA
There is more information in the supplmental_docs BY EXAMPLE

An Introduction to General-Purpose

directory = -~ GPU Programming

A good introduction to CUDA programming

"CUDA BY EXAMPLE" by J. Sanders, E. Kandrot,
Addison Wesley, 2011.

Other GPU Programming Options COd¢

* PGl Accelerator is a commercial compiler that allows
programming NVIDIA GPUs with OTenACC, a syntax

similar to OpenMP. OpenACC.

DIRECTIVES FOR ACCELERATORS

OpenMP is starting to release GPU features.

OpenCL - is a language under development for parallel
programming of many different hardware architectures
with a common syntax.

There are CUDA plugins for Python, Matlab, and

Mathematica

Math Libraries
cuSOLVER (BLAS, Lapack)
CUFFT ' “E A
NVIDIA Performance Primitives library — NPP S /‘
GPULIb ~
FLAGON - Fortran-9x library
Thrust (C++11) OpenCL

Several more came and went already

What is OpenACC?

OpenACCis a user-driven directive-based performance-
portable parallel programming model designed for scientists
and engineers interested in porting their codes to a wide-variety
of heterogeneous HPC hardware platforms and architectures
with significantly less programming effort than required with a

low-level model.

hitps://www.openacc.org/get-
started

¥pragma acc data copy(A) create(Ancw)
while (error > tol B8& iter < iter_max) {
error = 9.0,
#pragma acc kernels {
#pragma acc loop independent collapse(2)
int j=1; § <n-1; j++) |
t i=s1;1<m1; i) {
Anew [3] [i] = 0.25 * (A [§] [i+1] + A [§] [i-1]
A [j-1] [i] + A [#1] [i]);
error = max (error, fabs (Anew (3] [1]) - A [3] [1]));

A OpenACC Example OpenACC

// OpenACC matrix add ~openACC is 'e‘asier

i ; to program than

lflt mam() { CUDA

gL J; “ but less efficient, so
#pragma acc kernels loop gang(32), vector (16) 3 :

the program wont
for (i=0;i<N;it++) { run as fast

#pragma acc loop gang(16), vector(32)
for (j=0;J<N:j++) {
ChllI=ALILIHBIA]]
b

h

h

Common OpenACC directives PENACC

OpenACC directives in C and C++
#pragma acc DIRECTIVE

OpenACC directives in Fortran
I$acc DIRECTIVE
lines of Fortran code
1$acc end DIRECTIVE

Directive to attempt automatic parallelization
#pragma acc kernels

Directive to parallelize the next loop
#pragma acc parallel loop

Directive to specify which variables are copied, and
which are local

#pragma acc data copy(A), create(Anew)

The data directive is often needed to cut out data bottlenecks

.

Compiling and Running ~ UPENACC

Typical compile command for C
pgcc -acc -Minfo=accel -ta=nvidia -o file file.c

Environment variable to print GPU use information at
run time

export PGI_ACC_TIME=1
The program runs slightly slower with this turned on

Environment variable to print out information about data
transfers to the GPU at run time

export PGI_ACC_NOTIFY=3
This slows down execution significantly

i

Ideal cases for OpenAcc ~ OPENACC

Programs where one or a few small sections of the
program are responsible for most of the CPU time.

Loops with many iterations.

Loops with no data dependencies between iterations.
Loops that work on many elements of large arrays.
Loops where functions can be inlined.

Conditional statements are OK, but better if you can
guess in advance which batches of data will follow the
same branch.

Portland Group compilers create programs with code
for three generations of GPUs; Tesla, Fermi, & Kepler

A What Does NOT work well (OPEnACC

- Loops with 10 statements.
- Loops with early exits, including do-while loops.

- Loops with many branches to other functions.

* Pointer arithmetic

OpenACC vs. CUDA Code

CUDA creates software for nVidia GPUs only. OpenACC
;:(an p?rgram GPUs, Opteron, ATI, APUs, Xeon, and
eon Phi.

OpenACC does loop level parallelization. CUDA
parallelizes at the subroutine level.

OpenACC is easier to program, or adapt an existing
code.

CUDA is currently used more widely.

Some algorithms can be implemented in CUDA, but not
in OpenACC. i.e. recursion or early exit loops

OpenACC is newer (version 2.0 is out). CUDA is on
version 7

Both are still undergoing significant changes.

CUDA programs usually run faster (perhaps 30%).

e

b .

< OpenACC documentation DoOC

Look at the Getting Started documentation and videos at
openacc-standard.org

https://developer.nvidia.com/content/openacc-example-part-1

The PGI Acclerator Compilers OpenACC Getting Started Guide
http://www.pgroup.com/doc/openACC_gs.pdf

There are example programs in the directories
lopt/asn/doc/pgi/accelerator_examples
/opt/asn/doc/pgi/openacc_example

There are tips for best results in the file
lopt/asn/doc/gpu/openacc_tips.txt

OpenACC 2.0 examples are at

http://devblogs.nvidia.com/parallelforall/7-powerful-new-features-openacc-2-0/

Unfortunately, once you get past the introductory
documentation, you will need to read the OpenACC technical
specifications and ask questions on user forums to maximize
performance with OpenACC.

/A
VAN Summary Done

There is a lot of interest in the HPC community about using GPU
chips because GPUs can give 10-300 fold the processing capacity
for the dollar spent on hardware... provided you have invested the
effort to port the software to that architecture.

GPUs are easier to program than other coprocessor technologies
(i.,e. FPGASs).

The GPGPU programming market is currently dominated by Nvidia
chips and the CUDA programming language.

CUDA is the most mature of the GPU programming options, but still
an early stage technology.

OpenACC is increasing in popularity.

CUDA is more closely tied to hardware than higher level languages
like C++.

Many experts predict that OpenCL could become the preferred GPU
programming method if future versions achieve the intended goal of
being a “write once — run anywhere” parallel language.

